多面体欧拉公式的发现(二)共9页
- 格式:doc
- 大小:43.50 KB
- 文档页数:9
多面体欧拉公式的发现欧拉公式是数学中的一项重要发现,它描述了多面体的顶点、边和面之间的关系。
发现这个公式的历史可以追溯到18世纪,当时瑞士数学家欧拉在研究多面体时首次提出了这个公式。
多面体是由平面面构成的立体,它可以是凸多面体(所有面都凸),也可以是非凸多面体(至少有一个面是凹的)。
欧拉公式适用于任何类型的多面体,它给出了多面体中顶点、边和面的数量之间的关系。
欧拉公式的数学表达式为:V-E+F=2,其中V表示多面体的顶点数,E 表示边数,F表示面数。
这个公式很简洁,却能揭示多面体的基本性质。
让我们来探索一下欧拉公式的发现过程。
首先,我们从最简单的多面体开始,即立方体。
立方体有8个顶点,12条边和6个面。
代入欧拉公式:8-12+6=2,等号左边的结果与右边的结果相等。
这意味着欧拉公式在立方体上成立。
接下来,让我们考虑一个更复杂的多面体,例如八面体。
八面体有6个顶点、12条边和8个面。
再次代入欧拉公式:6-12+8=2,等号左边的结果与右边的结果相等。
欧拉公式在八面体上同样成立。
通过反复尝试,我们可以发现,无论是简单的立方体还是复杂的八面体,欧拉公式都成立。
这提示我们欧拉公式可能是普适的。
更进一步,我们可以通过归纳法来证明欧拉公式对于任意多面体都成立。
假设对n-1个面的多面体,欧拉公式成立。
现在考虑多面体增加一个面的情况。
如果我们在新面上加上一个新顶点,那么顶点数V将增加1,边数E将增加至少3(因为每个新面至少有3条边相邻),面数F将增加1、根据归纳法的假设,对于n-1个面的多面体,欧拉公式成立,即V-E+F=2(V+1)-(E+3)+(F+1)=V-E+F+2=2+2=4所以对于n个面的多面体,欧拉公式仍然成立。
通过归纳法的推理,我们可以证明欧拉公式对于任意多面体都成立。
总结起来,欧拉公式的发现是通过观察不同形状的多面体并尝试找到它们之间的共同点。
通过代入不同的数值并观察等式的平衡,欧拉发现了顶点、边和面的数量之间的关系,并提出了著名的欧拉公式。
欧拉公式多面体顶点数棱数面数关系推导嘿,咱今天来聊聊欧拉公式中多面体顶点数、棱数和面数的关系推导。
先给您说个事儿,之前我去参加一个数学科普活动,遇到一个小朋友,拿着一个魔方,满脸疑惑地问我:“这魔方到底有啥数学秘密呀?”我当时就想到了咱们今天要说的欧拉公式。
那欧拉公式到底是啥呢?简单来说就是对于任何一个凸多面体,顶点数 V、棱数 E 和面数 F 之间都存在一个固定的关系:V - E + F = 2 。
咱们先来直观感受一下这个公式。
比如说一个正方体,它有 8 个顶点,12 条棱,6 个面。
咱们算算:8 - 12 + 6 ,嘿,正好等于 2 !那这公式咋推导出来的呢?咱们一步步来。
假设一个多面体是空心的,就像一个吹起来的气球。
咱把它的面都剪成一个个小三角形。
这时候注意啦,每剪一条棱,就会多出一个面。
比如说原来有 1 个面,2 条棱,现在剪成 2 个三角形,就有 2 个面,3条棱啦。
再想象一下,如果把这个空心多面体不断地“压缩”,就像把气球压扁。
这时候,面和棱的数量可能会变化,但是顶点数可不变哟。
咱接着来,把多面体想象成是由一个个小三角形拼接起来的。
如果两个三角形有一条公共边,那就把这条边去掉,这样面和棱的数量就会减少,但顶点数还是不变。
经过这样一系列操作,最后会得到一个像大三角形一样的东西。
这个大三角形有 3 个顶点,3 条棱,1 个面。
那咱们反推回去,每增加一个三角形,顶点数就增加 2 个,棱数增加 3 条,面数增加 1 个。
所以呀,顶点数 V 、棱数 E 和面数 F 之间就有了 V - E + F = 2 这样的关系。
回到开头那个小朋友的魔方,其实魔方的每个小块儿,每个面的组合,都能从欧拉公式里找到数学的规律。
咱们在学习数学的时候,像这样看似复杂的公式,只要咱们多观察、多思考,多动手试试,就能发现其中的奥秘。
总之,欧拉公式中多面体顶点数、棱数和面数的关系推导,就像是一场有趣的数学探险,等着咱们去发现更多的惊喜!。
多面体的欧拉公式的证明嘿,咱今天来聊聊多面体的欧拉公式的证明!多面体的欧拉公式啊,就像是数学世界里的一把神奇钥匙,能打开好多有趣的大门。
这个公式说的是对于任何一个凸多面体,它的面数 F、棱数 E 和顶点数 V 之间都存在一个固定的关系,那就是 F + V - E = 2 。
先来说说证明的思路哈。
咱们可以从简单的多面体开始入手,比如说三棱柱。
三棱柱有 5 个面,9 条棱,6 个顶点。
算一算,5 + 6 - 9 ,嘿,正好等于 2 !那咱们再复杂一点儿,来看看四棱锥。
四棱锥有 5 个面,8 条棱,5 个顶点。
同样地,5 + 5 - 8 ,还是 2 !我记得有一次给学生们讲这个知识点,有个小家伙特别较真儿,一直问我:“老师,这到底是为啥呀?”我就跟他说:“别着急,咱们一步步来。
”咱们可以这样想,把多面体想象成是用橡皮做的,然后呢,我们把它的一个面给“扒拉”开,就像是把一个气球给戳破了一个口。
这个时候,面数 F 就会减少 1 ,棱数 E 也会减少 1 ,但是顶点数 V 不变。
所以 F + V - E 的值是不变的。
然后咱们继续“扒拉”其他的面,每次这样操作,F + V - E 的值都不会改变。
一直到最后,把多面体变成了一个像平面网络一样的东西。
这个平面网络里,每一个面都是三角形。
咱们来数一数,假如有 n个三角形,那么就有3n/2 条棱。
因为每一条棱都被两个三角形共用嘛。
然后顶点数就是 n 个三角形的顶点数之和,也就是 3n 个。
面数呢,就是 n 个三角形,也就是 n 。
所以 F + V - E 就等于 n + 3n - 3n/2 ,算一算,还是 2 !怎么样,是不是有点儿意思啦?其实数学里好多东西啊,看起来很复杂,但是只要咱们耐下心来,一步一步地去琢磨,就能发现其中的奥秘。
多面体的欧拉公式的证明,就像是一场有趣的探险。
咱们在这个过程中,不断地思考、尝试,最终找到了那个神奇的答案。
这也告诉咱们,面对难题别害怕,勇敢地去探索,总会有惊喜等着咱们!希望大家通过这次的讲解,能对多面体的欧拉公式有更深入的理解,以后在数学的海洋里畅游得更欢快!。
高二数学第九节多面体欧拉公式的发现知识精讲人教版1.多面体的概念和分类由若干个多边形所围成的几何体,叫做多面体.围成多面体的各个多边形叫做多面体的面,两个面的公共边叫做多面体的棱,若干个面的公共顶点叫做多面体的顶点.把多面体的任何一个面伸展为平面,如果所有其他各面都在这个平面的同侧,这样的多面体叫做凸面体,图1是凸多面体,图2不是凸多面体,前面学过的棱柱,棱锥都是凸多面体.一个多面体至少有四个面,多面体按它的面数分别叫做四面体、五面体、六面体.2.正多面体的概念为了更好地弄清正多面体的概念,我们讲一讲与多面体有关的一些其他概念.多面角:从一点出发并且不在同一平面内的几条射线,以及每两条相邻射线之间的平面部分叫组成的图形.如图所示是一个多面角,记作多面体S—ABCD,或者多面角S.图中射线如SA叫做多面角的棱,S叫做顶点,相邻两棱如SA、SB之间的平面部分叫做多面角的面,∠ASB为多面角的面角.每相邻两个面角间的二面角为多面角的二面角,如E —SA—B.正多面体:如果面体的各个面都是全等的正多边形,并且各个多面角都是全等的多面角,这样的多面体叫做正多面体.3.正多面体的性质(i)正多面体的所有的棱,所有的面角和所有的二面角都相等.(ii)经过正多面体上各面的中心所在面的垂线相交于一点,这点到各顶点的距离相等,到各面的距离也相等.(iii)正多面体各面经过它中心的垂线的交点叫做正多面体的中心.定理:任何正多面体有一个内接球和一个外切球,这两个球同心.(iv)正多面体只存在五种:因为一个多面角的面数至少是三,并且它的各面角的和必须小于360°,而正n 边形的每个内角等于nn ︒⋅-180)2(,所以,由正三角形组成的正多面体只有三种:正四面体、正八面体和正十二面体;由正方形组成的正多面体只有一种:正六面体;由正五边形组成的正多面体也只有一种:正十二面体.书中是这样定义的正多面体:每个面都是有相同边数的正多边形,且以每个顶点为其一端都有相同的数目的棱的凸多面体,叫做正多面体.其实质是一样的.4.欧拉公式如果简单多面体的顶点数为V ,面数F ,棱数E ,那么V+F-E =2,这个公式叫做欧拉公式.计算棱数E 常见方法: (1)E =V+F-2(2)E =各面多边形边数和的一半 (3)E =顶点数与共顶点棱数积的一半【重点难点解析】本节是新增内容,教学要求只是了解,作为知识的综合性与联系,重点应掌握正多面体的概念,尤其是正四面体和正方体的性质,难点是欧拉公式例1 下列几何体是正多面体的是( ) A.长方体 B.正四棱柱C.正三棱锥D.棱长都相等的三棱锥 解 选D.因为棱长都相等的三棱锥就是正四面体.例2 对于下列命题:(1)底面是正多边形的,而侧棱长与底面边界长都相等的棱锥是正多面体;(2)正多面体的面不是三角形,就是正方形;(3)若长方体的各侧面都是正方形时,它就是正多面体;(4)正三棱锥就是正四面体,其中正确的序号是 .解 (2)显然不对,∵正十二面体每个面都是全等的正五边形.(1)所给的几何体是正棱锥,作为正棱锥每个侧面都是全等的正三角形,底面正多边形是任意的,而作为正多面体的所有面必须是全等的正多边形,故(1)、(4)不对.∴应填(3).例3 一个凸多面体有8个顶点,①如果它是棱锥,那么它有 条棱, 面;②如果它是棱柱,那么它有 条棱 个面.解 ①如果它是棱锥,则是七棱锥,有14条棱,8个面 ②如果它是棱柱,则是四棱柱,有12条棱,6个面【难题巧解点拨】例1 一个凸多面体的各面都是五边形,求多面体的顶点数V 与面数F 之间的关系. 解 ∵凸多面体各面是五边形,且面数为F.∴该凸多面体的棱数E =25F ,代入欧拉公式:V+F-25F =2 即2V-3F =4.例2 一凸多面体的棱数为30,面数为12,则它的各面多边形的内角总和为( ) A.5400° B.6480° C.7200° D.7920° 解 由欧拉公式,V =E-F+2=30-12+2=20∴内角总和为(V-2)×360°=6480° ∴应选B.例3 将边长为a 的正方体各侧面中心连结起来得到一个正八面体,求此正八面体的体积.解 根据正方体与正八面体的联系.可知正八面体的高为a ,侧棱长为22)2()2(a a =22a ,而正八面体可分为两个正四棱锥. 故 V =2×(22a)2×2a ×31=62a .说明 用分割的方法把八面体分割成两个锥体,然后求体积.例4 在正四面体ABCD 中,E 、F 分别为棱AD 、BC 的中点,连接AF 、CE , (1)求异面直线AF 、CE 所成角的大小; (2)求CE 与底面BCD 所成角的大小.解 (1)如图所示,设正四体棱长为a.在平面AFD 内作EG ∥AF 交DF 于G ,那么CE 与GE 所成非钝角的角就是异面直线AF 、CE 所成的角.由于正四面体的各个面是正三角形,所以AF =CE =DF =23a,GF =EG =21AF =43a,CG 2=CF 2+GF 2=(21a)2+(23a)2,即CG 2=167a 2,于是CG =47a.在ΔCEG 中,cos ∠CEG =GE CE CG GE CE ⋅-+2222,所以cos ∠CEG =32,于是∠CEG =arccos32. 因此AF 、CE 所成的角为arccos32. (2)设A 在底面内射影为O ,连AO ,则AO ⊥平面BCD ,在平面AFD 内作EH ∥AO 交FD 于H ,那么EH ⊥平面BCD ,且EH =2122OD AD -=2122)2332(a a ⋅-=66a,CE =23a ,显然∠ECH 就是CE 底面BCD 所成的角.在Rt ΔEHC 中,sin ∠ECH =CEEH=66a ∶23a =32,所以∠ECH =arcsin 32.例5 如图所示,四面体ABCD 的棱长为1,求AB 与CD 之间的距离.分析 AB 与CD 显然异面,这是求解异面直线间的距离问题,取AB 、CD 的中点E ,F ,连EF ,可设想EF 就是公垂线段。
多面体欧拉定理定理简单多面体的顶点数V、棱数E及面数F间有关系对于简单多面体,有著名的欧拉公式:V-E+F=2简单多面体即表面经过连续变形可以变为球面的多面体。
多面体欧拉定理式中V表示多面体的顶点数,E表示棱数,F表示面数。
定理一证分析:以四面体ABCD为例。
将它的一个面BCD去掉,再使它变为平面图形,四面体的顶点数V、棱数E与剩下的面数F1变形后都没有变(这里F1=F-1)。
因此,要研究V、E和F的关系,只要去掉一个面,将它变形为平面图形即可。
只需平面图形证明:V+F1-E=1(1)去掉一条棱,就减少一个面,V+F1-E的值不变。
例如去掉BC,就减少一个面ABC。
同理,去掉棱CD、BD,也就各减少一个面ACD、ABD,由于V、F1-E的值都不变,因此V+F1-E的值不变(2)再从剩下的树枝形中,去掉一条棱,就减少一个顶点,V+F1-E的值不变。
例如去掉CA,就减少一个顶点C。
同理去AD就减少一个顶点D,最后剩下AB。
在以上变化过程中,V+F1-E的值不变,V+F1-E=2-0-1=1,所以V+F-E= V+F1-E+1=2。
对任意的简单多面体,运用这样的方法,都是只剩下一条线段。
公式对任意简单多面体都是正确的。
定理意义(1)数学规律:公式描述了简单多面体中顶点数、面数、棱数之间特有的规律;(2)思想方法创新训练:在定理的发现及证明过程中,在观念上,假设它的表面是橡皮薄膜制成的,可随意拉伸;在方法上将底面剪掉,然后其余各面拉开铺平,化为平面图形(立体图→平面图)。
(3)引入拓扑新学科:“拉开图”与以前的展开图是不同的,从立体图到拉开图,各面的形状,以及长度、距离、面积、全等等与度量有关的量发生了变化,而顶点数,面数,棱数等不变。
事实上,定理在引导大家进入一个新几何学领域:拓扑学。
我们用一种可随意变形但不得撕破或粘连的材料(如橡皮波)做成的图形,拓扑学就是研究图形在这种变形过程中的不变的性质。
(4)给出多面体分类方法:在欧拉公式中,令f(p)=V+F-E,f(p)叫做欧拉示性数。
正多面体的欧拉公式正多面体是指所有的面都是相等的正多边形,并且每个顶点都是相等的。
欧拉公式是描述了正多面体的顶点数、边数和面数之间的关系。
欧拉公式可以表述为:正多面体的顶点数加上面数等于边数加上2。
本文将详细介绍正多面体的欧拉公式以及相关概念和性质。
我们来了解一些基本概念。
正多面体有五种,它们分别是四面体、六面体、八面体、十二面体和二十面体。
每种正多面体都有其特点和性质。
四面体是一种最简单的正多面体,它有四个面、六条棱和四个顶点。
根据欧拉公式,四面体的顶点数加上面数等于边数加上2,即4+4=6+2。
六面体也被称为立方体,它有六个面、十二条棱和八个顶点。
根据欧拉公式,六面体的顶点数加上面数等于边数加上2,即8+6=12+2。
八面体是一种有八个面的正多面体,它有八个面、十八条棱和十二个顶点。
根据欧拉公式,八面体的顶点数加上面数等于边数加上2,即12+8=18+2。
十二面体是一种有十二个面的正多面体,它有十二个面、三十条棱和二十个顶点。
根据欧拉公式,十二面体的顶点数加上面数等于边数加上2,即20+12=30+2。
二十面体是一种有二十个面的正多面体,它有二十个面、三十条棱和十二个顶点。
根据欧拉公式,二十面体的顶点数加上面数等于边数加上2,即12+20=30+2。
欧拉公式不仅适用于正多面体,也适用于其他凸多面体。
凸多面体是指所有的面都位于多面体的外部,并且通过任意两点的连线都在多面体内部。
对于任意凸多面体,欧拉公式都成立。
除了欧拉公式,正多面体还有一些其他的性质。
正多面体的每个顶点都是由相同数量的面和边所围成的。
例如,四面体的每个顶点都被三个面和三条边所围成,六面体的每个顶点都被四个面和四条边所围成。
这个性质可以通过观察正多面体的结构来理解。
正多面体还具有对称性。
每个正多面体都有一些旋转对称轴和镜像对称面。
例如,六面体有六个旋转对称轴和三个镜像对称面。
这些对称性使得正多面体在数学和几何学中具有重要的地位。
多面体中的欧拉公式好的,以下是为您生成的文章:咱们来聊聊多面体中的欧拉公式,这可是个相当有趣的玩意儿!先来说说什么是多面体。
你看那骰子,是不是个多面体?对啦,还有魔方,也是!多面体就是由多个平面围成的立体图形。
记得有一次,我带着一群小朋友在教室里做手工,就是用卡纸折多面体。
有个小家伙特别机灵,他折了个三棱柱,然后就好奇地问我:“老师,这多面体有没有什么规律呀?”我就告诉他,这就不得不提到欧拉公式啦!欧拉公式说的是:对于任何一个凸多面体,它的面数 F、棱数 E 和顶点数 V 之间,总是有 F + V - E = 2 这么个关系。
比如说一个正方体,它有 6 个面,8 个顶点,12 条棱。
咱们来算算,6 + 8 - 12 是不是等于 2 ?没错,正好!再比如一个正四面体,4 个面,4 个顶点,6 条棱,4 + 4 - 6 也是 2 。
那欧拉公式有啥用呢?用处可大了!假设我们要设计一个新的多面体玩具,通过欧拉公式就能提前预估一下它的大致结构。
有一回,我和几个学生一起参加一个创意比赛,题目就是设计一个独特的多面体结构。
我们就先用欧拉公式来思考,大概需要多少面、多少棱和顶点,心里有个底,然后再动手去做。
还有啊,在建筑设计里也能用到。
有些独特的建筑造型就是多面体,设计师们得根据欧拉公式来保证结构的合理性和稳定性。
想象一下,如果没有欧拉公式,那咱们面对各种多面体的时候,得多混乱呀!总之,多面体中的欧拉公式就像是一把神奇的钥匙,能帮我们打开理解多面体世界的大门,让我们更清楚地看到它们的内在规律和美妙之处。
所以,同学们,以后再看到多面体,可别忘了欧拉公式这个好帮手哦!。
【课 题】研究性课题:多面体欧拉公式的发现(2)【教学目标】要求掌握用欧拉公式解决实际问题,特别是用来证明正多面体有且只有五种这一结论。
【教学重点】欧拉公式的应用.【教学难点】【教学过程】一、 复习引入1.简单多面体:考虑一个多面体,例如正六面体,假定它的面是用橡胶薄膜做成的,如果充以气体,那么它就会连续(不破裂)变形,最后可变为一个球面过连续变形可变为球面的多面体,叫做简单多面体3.欧拉定理(欧拉公式):简单多面体的顶点数V 、面数F 及棱数E 有关系式: 2V F E +-=.二、 讲解新课【例1】 由欧拉定理证明:正多面体只有正四面体、正六面体、正八面体、正十二面体、正二十面体这五种。
证明:设正多面体的每个面的边数为n ,每个顶点连有m 条棱,令这个多面体的面数为F ,每个面有n 条边,故共有nF 条边,由于每条边都是两个面的公共边,故多面体棱数2nF E = (1) 令这个多面体有V 个顶点,每一个顶点处有m 条棱,故共有mV 条棱。
由于每条棱有两个顶点,故多面体棱数2mV E =(2) 由(1)(2)得:2E F n =,2E V m =代入欧拉公式:222E E E m n+-=. ∴11112m n E +-= (3), ∵又3m ≥,3n ≥,但m ,n 不能同时大于3,否则,若3m >,3n >,则有11102m n +-≤,即10E≤这是不可能的。
∴m ,n 中至少有一个等于3.令3n =,则1111032m E +-=>,∴116m >,∴5m ≤,∴35m ≤≤. 同样若3m =可得35n ≤≤.【例2】 欧拉定理在研究化学分子结构中的应用:1996年诺贝尔化学奖授予对发现60C 有重大贡献的三位科学家60是由60个C 原子构成的分子,它是形如足球的多面体。
这个多面体有60个顶点,以每一个顶点为一端点都有三条棱,面的形状只有五边形和六边形,计算60C 分子中五边形和六边形的数目解:设C 60分子中形状为五边形和六边形的面各有x 个和y 个.多面体的顶点数V =60,面数F =x +y ,棱数E =21(3×60),根据欧拉公式,可得 60+(x +y )-21(3×60)=2 另一方面,棱数也可由多边形的边数来表示,即21(5x +6y )=21(3×60) 由以上两方程可解得:x =12,y =20答:C 60分子中形状为五边形和六边形的面各有12个和60个.【例3】 一个正多面体各个面的内角和为20π,求它的面数、顶点数和棱数解:由题意设每一个面的边数为m ,则(2)20F m ππ-=,∴(2)20F m -=, ∵2mF E =,∴10E F =+, 将其代入欧拉公式2V F E +-=,得12V =,设过每一个顶点的棱数为n , 则62n E V n ==,12n F m =得121262n n m +-=,即5213n m +=(1), ∵3m ≥,∴5n ≤,又3n ≥,∴n 的可能取值为3,4,5,当3n =或4n =时(1)中m 无整数解;当5n =,由(1)得3m =,∴30E =, ∴20F =,综上可知:30E =,12V =,20F =.【例4】 有没有棱数是7的简单多面体?具体说明理由。
多面体欧拉定理的发现本论文主要讲述多面体欧拉定理的发现,证明与完善,及其拓展应用前言多面体欧拉定理是著名瑞士数学家莱昂哈德·欧拉所提出的.欧拉,出生在瑞士的巴塞尔(Basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导.有许多关于欧拉的传说。
比如,欧拉心算微积分就像呼吸一样简单。
有一次他的两个学生把一个复杂的收敛级数的17项加起来,算到第50位数字,两人相差一个单位,欧拉为了确定究竟谁对,用心算进行全部运算,最后把错误找了出来。
欧拉创作文章的速度极快,通常上一本书还没有印刷完,新的手稿就写好了,导致他的写作顺序与出版顺序常常相反,让读者们很郁闷。
而且,收集这些数量庞大的手稿也是一件困难的事情。
瑞士自然科学会计划出一部欧拉全集,这本全集编了将近100年,终于在上个世纪90年代基本完成,没想到圣彼得堡突然又发掘出一批他的手稿,使得这本全集至今仍未完成。
欧拉在数学上的建树很多,对著名的哥尼斯堡七桥问题的解答开创了图论的研究.欧拉还发现,不论什么形状的凸多面体,其顶点数V、棱数E、面数F之间总有V-E+ F=2这个关系.V-E F 被称为欧拉示性数,成为拓扑学的基础概念.以欧拉的名字命名的数学公式、定理等在数学书籍中随处可见, 与此同时,他还在物理、天文、建筑以至音乐、哲学方面取得了辉煌的成就.欧拉还创设了许多数学符号,例如π(1736年),i(1777年),e (1748年),sin和cos(1748年),tg(1753年),△x(1755年),∑(1755年),f(x)(1734年)等.1733年,年仅26岁的欧拉担任了彼得堡科学院数学教授.1735年,欧拉解决了一个天文学的难题(计算彗星轨道),这个问题经几个著名数学家几个月的努力才得到解决,而欧拉却用自己发明的方法,三天便完成了.然而过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁.据说是因为操劳过度,也有一说是因为观察太阳所致.尽管如此他仍然靠心算完成了大量论文。
多面体的欧拉公式是多面体的欧拉公式啊,这可是个挺有意思的数学知识!咱们先来说说啥是多面体。
简单来讲,多面体就是由若干个平面多边形围成的几何体。
像咱们常见的正方体、长方体、三棱锥等等,都是多面体。
那欧拉公式是啥呢?它说的是对于任何一个凸多面体,其顶点数V、棱数 E 和面数 F 之间,总是存在一个固定的关系,那就是 V - E + F =2 。
就拿正方体来说吧,它有 8 个顶点,12 条棱,6 个面。
咱们来算算,8 - 12 + 6 ,正好等于 2 ,是不是很神奇?记得有一次,我给学生们讲这个欧拉公式。
当时有个小调皮,怎么都不相信这个公式能普遍适用。
我就拿出了一堆积木,有三角形的、正方形的、长方形的,让大家分组自己搭建不同的多面体,然后数一数顶点数、棱数和面数。
那场面,别提多热闹了!孩子们叽叽喳喳地讨论着,有的小组搭出了三棱柱,有的搭出了四棱锥。
最后大家算出来的结果,都符合欧拉公式。
那个一开始不相信的小调皮,眼睛瞪得圆圆的,嘴里直说:“这也太神奇啦!”咱们再深入讲讲这个公式的应用。
在解决一些几何问题的时候,欧拉公式可是能帮大忙的。
比如说,告诉你一个多面体的顶点数和面数,让你求棱数,直接代入公式就能算出来。
而且啊,欧拉公式不仅仅在数学里有用,在现实生活中也能找到它的影子呢。
就像建筑设计中,设计师们在构思一些独特的建筑造型时,可能就会用到这个公式来确保结构的合理性。
还有哦,对于喜欢玩拼图或者搭积木的小朋友来说,了解了欧拉公式,说不定能搭出更有趣、更复杂的造型呢!总之,多面体的欧拉公式虽然看起来有点复杂,但只要咱们用心去理解,多动手实践,就能发现其中的乐趣和奥秘。
希望大家都能跟这个神奇的公式成为好朋友,让它帮助咱们更好地探索数学的奇妙世界!。
●教学时间第十课时●课题§9.9.2 研究性课题:多面体欧拉公式的发现(二)●教学目标(一)教学知识点1.欧拉公式的证明.2.欧拉公式的应用.(二)能力训练要求1.使学生能理解多面体欧拉公式的证明过程并能叙述其证明思路.2.使学生掌握多面体欧拉公式并灵活地将其应用于解题中.(三)德育渗透目标继续培养学生寻求规律、发现规律、认识规律、并利用规律解决问题的能力.●教学重点欧拉公式的应用.●教学难点欧拉公式的证明思路.●教学方法学导式本节课继续上节课对欧拉公式的研究活动,遵循寻求规律——发现规律——认识规律——应用规律的学习过程,对上节课已猜想出的欧拉公式进一步深入研究,探索它的证明思路,让学生了解这种证明思想,进而达到熟练掌握欧拉公式的目标,以便于学生得心应手地将欧拉公式应用到各种问题的解决中.●教具准备投影片三张第一张:课本P59问题5(1)(2)(记作§9.9.2 A)第二张:本课时教案例1(记作§9.9.2 B)第三张:本课时教案例2(记作§9.9.2 C)●教学过程Ⅰ.课题导入[师]上节课我们已经猜想出了欧拉公式并且同学们也已自学了它的证明过程,这节课我们继续对它的证明方法及其重要应用进行学习和探讨.Ⅱ.讲授新课[师]上节课我们已对课本P58的欧拉公式的证明进行了自学,那么,谁能说一下课本中的证明思路和关键是什么?[生]将立体图形转化为平面图形.[师]好,前面,我们经常使用把不在同一平面中的几何图形的问题转化为同一平面中图形的问题,所以此处如果能把求一个简单多面体的V、F、E三者之间的关系问题,转化为平面中的问题就会前进一大步了.那么课本中是怎样实现转化的呢?[生]把多面体想成是用橡皮膜做成的,即课本P58图9—85的多面体,将它的底面ABCDE剪掉,然后其余各面拉开铺平,得到如图9—86相应的平面多边形.[师]在这个变化过程中虽然实现了立体图形平面化的目的,但是不是又引起了我们原来多面体的V、F、E的改变了呢?为什么?[生]不会引起原来多面体中V 、E 、F 的变化,以上变化过程中只改变了原多面体各面的大小,各棱的长短,而V 、F 、E 这三个数与各面的大小、各棱的长短是无关的.[师]也就是说只要不改变每个面(多边形)的边数,不使顶点(棱或面)重合,无论怎样改变面的形状的大小及棱的长短,V 、F 、E 这三个数就不变,当然,它们之间的关系也不会改变.好,下面请同学提出在自学欧拉公式证明过程中所遇到的问题.(学生思考整理问题,教师等待、耐心解答,可能会问到以下问题)①在课本P 59的3.计算多边形内角和(2)中n 1+n 2+…+n F 和多面体的棱数E 有什么关系?说明理由.(教师应给学讲清因为多面体每一条棱同属于两个面,所以有n 1+n 2+…+n F =2E ) ②怎样理解P 59的3.计算多边形内角和(4)中的“全体多边形”?(教师应给学生说清是各小多边形及最大多边形ABCDE )③怎样说明为什么有“(E -F )·360°=(V -2)·360°”?(教师应再次强调给学生:在变形过程中,原来多面体的面是几边形,它对应的仍是几边形,而多边形的内角和仅与边数有关,所以多面体各面多边形的内角和应等于图9—86中各小多边形及“最大”多边形(即多边形ABCDE )的内角总和.[师]欧拉定理表明,任意的一个简单多面体,经过连续变形后,尽管它的形状可以变化万千,但有一个数始终不变,这就是:顶点数+面数-棱数,它总是等于2.所以将2叫做连续变形下的不变数.下面,我们来应用欧拉定理.(打出投影片§9.9.2 A,读题)[师]问题5的(1)是关于化学上C 60分子的结构问题,也是欧拉公式的应用问题(以下过程教师板书)解:设C 60分子中形状为五边形和六边形的面各有x 个和y 个.多面体的顶点数V =60,面数F =x +y ,棱数E =21(3×60),根据欧拉公式,可得 60+(x +y )-21(3×60)=2 另一方面,棱数也可由多边形的边数来表示,即21(5x +6y )=21(3×60) 由以上两方程可解得x =12,y =20答:C 60分子中形状为五边形和六边形的面各有12个和60个.[师]对于问题5(2)则通常先假设一个简单多面体的棱数E =7,再根据欧拉公式进行推理论证.(师生共同写出以下过程)解:假设一个简单多面体的棱数E =7,根据欧拉公式V +F -E =2,得V +F =7+2=9因多面体的顶点数V ≥4,面数F ≥4,所以只有两种情况:V =4,F =5或V =5,F =4,因为4个顶点的多面体只有是四面体,而四面体也只有4个面,所以上述两种情况(V +F =9)都不存在.答:没有棱数是7的简单多面体.[师]通过问题5两个小题的分析之后,你体会到解决(1)的关键是什么?[生甲]利用欧拉公式列出一个等式.[生乙]利用棱数与边数的关系列出一个等式.[师]甲、乙两位同学说得都对,解决(1)的关键就是找等量关系,即根据欧拉公式及棱数与边数的关系列出两个变量关系.再思考(1)中应用了数学的什么重要思想?[生]方程思想.[师]对,本题也旨在培养同学们利用方程解未知量的思想.对于解决(2)的关键又是什么呢?[生]V ≥4,F ≥4是一个几何体为凸多面体的必要条件.本题中抓住F =4与V =4必然同时成立引出矛盾.[师]这也是凸多面体具有的一条重要性质,希望同学们能够注意.继续体会欧拉公式的应用.(打出投影片§9.9.2 B,读题)[例1]已知,一个简单多面体的各个顶点都有三条棱,求证:V =2F -4.[师]欲求出V 与F 的关系,需结合已知条件寻找V 与E 的关系,再结合欧拉公式得出,具体如何做呢?[生]因此简单多面体每个顶点都有三条棱,而每条棱上有两个顶点,所以有3V =2E 即E =23V .又因为简单多面体顶点数、棱数、面数之间适合欧拉公式,所以V +F -23V =2, 即2V +2F -3V =4.故得V =2F -4.[师]以上题目要注意准确恰当地将已知条件中关于顶点数与棱数的关系转化成代数关系式.下面请同学们回忆前面所学过的关于正多面体的概念及其种类.[生]每个面都是有相同边数的正多边形,且以每个顶点为其一端都有相同数目的棱的凸多面体,叫做正多面体.正多面体只有五种:正四面体、正六面体、正八面体、正十二面体和正二十面体.[师]对于“为什么只有五种正多面体”的问题,今天就可以利用欧拉公式证明了. (打出投影片§9.9.2 C,读题)[例2]证明:正多面体只有四种,即正四面体、正六面体、正八面体、正十二面体、正二十面体.[师]解决这个问题,应从什么地方入手考虑?[生]从正多面体的定义考虑.[师]同学们翻开课本P 63欧拉公式和正多面体的种类,仔细阅读,体会其中的证明思路与方法.(学生自学,教师查看,解决学生疑难问题)Ⅲ.课堂练习课本P 61习题9.9 3、4.P 61习题9.9 3:C 70分子是与C 60分子类似的球状多面体结构,它有70个顶点,以每个顶点为一端都有3条棱,各面是五边形或六边形,求C 70分子中五边形和六边形的个数.答案:设有x 个五边形和y 个六边形∴F =x +y ,∵E =2370 =105∵V =70,E =21(5x +6y ) ∵⎪⎩⎪⎨⎧=+=-++105)65(21210570y x y x 解之得x =12,y =25答:C 70分子中五边形为12个,六边形为25个.P 61习题9.9.4:设一个凸多面体有V 个顶点,求证它的各面多边形的内角总和为(V -2)· 360°.证明:设这一凸多面体的各面分别为n 1,n 2,…,n F 边形,则各面多边形内角和是(n 1-2)·180°+(n 2-2)·180°+…+(n F -2)·180°=(n 1+n 2+…+n F )·180°-2F · 180°=(n 1+n 2+…+n F -2F )·180°∵n 1+n 2+…+n F =2E∴原式=(E -F )·360°∵V +F -E =2∴E -F =V -2∴原式=(V -2)·360°Ⅳ.课时小结本节课我们探讨了欧拉公式的证明方法及其重要应用,在理解欧拉公式的证明过程的同时重在体会其中的“立体图形平面化”的思想.另外,同学们要适当准确地应用欧拉公式去解决与多面体的顶点数、面数及棱数有关的问题.Ⅴ.课后作业(一)求证:如果简单多面体的所有面都是奇数边的多边形,那么面数是偶数.证明:设简单多面体的面数为F ,因为各面的边数为奇数,所以简单多面体各面边数的和为F 个奇数的和.即)12()12()12(++++++k n m .当把F 个面拼合成多面体时,两条边合成一条棱,则棱数E =22)(22)12()12()12(F F k n m k n m +=++++=++++++偶数 因为E 必须为整数,所以(偶数+F )能被2整除,又因为(偶数+F )中偶数能被2整除,所以F 必须被2整除,即F 必须为偶数.(二)1.预习内容课本P 651.球的概念和性质至P 66结束2.预习提纲(1)怎样给球定义呢?(2)准确表述出球心、球的半径、球的直径等概念.(3)尝试归纳并证明球的性质.(4)结合地球仪理解地球上的经纬线,知道某地点的经度与纬度.(5)你是怎样理解“球面上,两点之间的最短连线的长度”?①②。
●教学时间第十课时●课题§9.9.2 研究性课题:多面体欧拉公式的发现(二)●教学目标(一)教学知识点1.欧拉公式的证明.2.欧拉公式的应用.(二)能力训练要求1.使学生能理解多面体欧拉公式的证明过程并能叙述其证明思路.2.使学生掌握多面体欧拉公式并灵活地将其应用于解题中.(三)德育渗透目标继续培养学生寻求规律、发现规律、认识规律、并利用规律解决问题的能力.●教学重点欧拉公式的应用.●教学难点欧拉公式的证明思路.●教学方法学导式本节课继续上节课对欧拉公式的研究活动,遵循寻求规律——发现规律——认识规律——应用规律的学习过程,对上节课已猜想出的欧拉公式进一步深入研究,探索它的证明思路,让学生了解这种证明思想,进而达到熟练掌握欧拉公式的目标,以便于学生得心应手地将欧拉公式应用到各种问题的解决中.●教具准备投影片三张问题5(1)(2)(记作§9.9.2 A)第一张:课本P59第二张:本课时教案例1(记作§9.9.2 B)第三张:本课时教案例2(记作§9.9.2 C)●教学过程Ⅰ.课题导入[师]上节课我们已经猜想出了欧拉公式并且同学们也已自学了它的证明过程,这节课我们继续对它的证明方法及其重要应用进行学习和探讨.Ⅱ.讲授新课的欧拉公式的证明进行了自学,那么,[师]上节课我们已对课本P58谁能说一下课本中的证明思路和关键是什么?[生]将立体图形转化为平面图形.[师]好,前面,我们经常使用把不在同一平面中的几何图形的问题转化为同一平面中图形的问题,所以此处如果能把求一个简单多面体的V、F、E三者之间的关系问题,转化为平面中的问题就会前进一大步了.那么课本中是怎样实现转化的呢?[生]把多面体想成是用橡皮膜做成的,即课本P图9—85的多面体,58将它的底面ABCDE剪掉,然后其余各面拉开铺平,得到如图9—86相应的平面多边形.[师]在这个变化过程中虽然实现了立体图形平面化的目的,但是不是又引起了我们原来多面体的V、F、E的改变了呢?为什么?[生]不会引起原来多面体中V、E、F的变化,以上变化过程中只改变了原多面体各面的大小,各棱的长短,而V、F、E这三个数与各面的大小、各棱的长短是无关的.[师]也就是说只要不改变每个面(多边形)的边数,不使顶点(棱或面)重合,无论怎样改变面的形状的大小及棱的长短,V、F、E这三个数就不变,当然,它们之间的关系也不会改变.好,下面请同学提出在自学欧拉公式证明过程中所遇到的问题.(学生思考整理问题,教师等待、耐心解答,可能会问到以下问题)的3.计算多边形内角和(2)中n1+n2+…+n F和多面体的棱①在课本P59数E有什么关系?说明理由.(教师应给学讲清因为多面体每一条棱同属于两个面,所以有n1+n2+…+n F=2E)的3.计算多边形内角和(4)中的“全体多边形”?②怎样理解P59(教师应给学生说清是各小多边形及最大多边形ABCDE)③怎样说明为什么有“(E-F)·360°=(V-2)·360°”?(教师应再次强调给学生:在变形过程中,原来多面体的面是几边形,它对应的仍是几边形,而多边形的内角和仅与边数有关,所以多面体各面多边形的内角和应等于图9—86中各小多边形及“最大”多边形(即多边形ABCDE )的内角总和.[师]欧拉定理表明,任意的一个简单多面体,经过连续变形后,尽管它的形状可以变化万千,但有一个数始终不变,这就是:顶点数+面数-棱数,它总是等于2.所以将2叫做连续变形下的不变数.下面,我们来应用欧拉定理.(打出投影片§9.9.2 A,读题)[师]问题5的(1)是关于化学上C 60分子的结构问题,也是欧拉公式的应用问题(以下过程教师板书)解:设C 60分子中形状为五边形和六边形的面各有x 个和y 个.多面体的顶点数V =60,面数F =x +y ,棱数E =21(3×60),根据欧拉公式,可得60+(x +y )-21(3×60)=2另一方面,棱数也可由多边形的边数来表示,即21(5x +6y )=21(3×60) 由以上两方程可解得x =12,y =20答:C 60分子中形状为五边形和六边形的面各有12个和60个.[师]对于问题5(2)则通常先假设一个简单多面体的棱数E =7,再根据欧拉公式进行推理论证.(师生共同写出以下过程)解:假设一个简单多面体的棱数E =7,根据欧拉公式V +F -E =2,得 V +F =7+2=9因多面体的顶点数V ≥4,面数F ≥4,所以只有两种情况:V=4,F=5或V=5,F=4,因为4个顶点的多面体只有是四面体,而四面体也只有4个面,所以上述两种情况(V+F=9)都不存在.答:没有棱数是7的简单多面体.[师]通过问题5两个小题的分析之后,你体会到解决(1)的关键是什么?[生甲]利用欧拉公式列出一个等式.[生乙]利用棱数与边数的关系列出一个等式.[师]甲、乙两位同学说得都对,解决(1)的关键就是找等量关系,即根据欧拉公式及棱数与边数的关系列出两个变量关系.再思考(1)中应用了数学的什么重要思想?[生]方程思想.[师]对,本题也旨在培养同学们利用方程解未知量的思想.对于解决(2)的关键又是什么呢?[生]V≥4,F≥4是一个几何体为凸多面体的必要条件.本题中抓住F=4与V=4必然同时成立引出矛盾.[师]这也是凸多面体具有的一条重要性质,希望同学们能够注意.继续体会欧拉公式的应用.(打出投影片§9.9.2 B,读题)[例1]已知,一个简单多面体的各个顶点都有三条棱,求证:V=2F -4.[师]欲求出V与F的关系,需结合已知条件寻找V与E的关系,再结合欧拉公式得出,具体如何做呢?[生]因此简单多面体每个顶点都有三条棱,而每条棱上有两个顶点,3V.又因为简单多面体顶点数、棱数、面数之间适合欧所以有3V=2E即E=23V=2,拉公式,所以V+F-2即2V+2F-3V=4.故得V=2F-4.[师]以上题目要注意准确恰当地将已知条件中关于顶点数与棱数的关系转化成代数关系式.下面请同学们回忆前面所学过的关于正多面体的概念及其种类.[生]每个面都是有相同边数的正多边形,且以每个顶点为其一端都有相同数目的棱的凸多面体,叫做正多面体.正多面体只有五种:正四面体、正六面体、正八面体、正十二面体和正二十面体.[师]对于“为什么只有五种正多面体”的问题,今天就可以利用欧拉公式证明了.(打出投影片§9.9.2 C,读题)[例2]证明:正多面体只有四种,即正四面体、正六面体、正八面体、正十二面体、正二十面体.[师]解决这个问题,应从什么地方入手考虑?[生]从正多面体的定义考虑.欧拉公式和正多面体的种类,仔细阅读,体[师]同学们翻开课本P63会其中的证明思路与方法.(学生自学,教师查看,解决学生疑难问题)Ⅲ.课堂练习课本P61习题9.9 3、4.P61习题9.9 3:C70分子是与C60分子类似的球状多面体结构,它有70个顶点,以每个顶点为一端都有3条棱,各面是五边形或六边形,求C70分子中五边形和六边形的个数.答案:设有x个五边形和y个六边形∴F=x+y,∵E=2370 =105∵V=70,E=21(5x+6y)解之得x=12,y=25答:C70分子中五边形为12个,六边形为25个.P61习题9.9.4:设一个凸多面体有V个顶点,求证它的各面多边形的内角总和为(V-2)·360°.证明:设这一凸多面体的各面分别为n1,n2,…,n F边形,则各面多边形内角和是(n1-2)·180°+(n2-2)·180°+…+(n F-2)·180°=(n1+n2+…+n F)·180°-2F·180°=(n1+n2+…+n F-2F)·180°∵n1+n2+…+n F=2E∴原式=(E-F)·360°∵V+F-E=2∴E-F=V-2∴原式=(V -2)·360°Ⅳ.课时小结本节课我们探讨了欧拉公式的证明方法及其重要应用,在理解欧拉公式的证明过程的同时重在体会其中的“立体图形平面化”的思想.另外,同学们要适当准确地应用欧拉公式去解决与多面体的顶点数、面数及棱数有关的问题.Ⅴ.课后作业(一)求证:如果简单多面体的所有面都是奇数边的多边形,那么面数是偶数.证明:设简单多面体的面数为F ,因为各面的边数为奇数,所以简单多面体各面边数的和为F 个奇数的和.即444444844444476Λ)12()12()12(++++++k n m .当把F 个面拼合成多面体时,两条边合成一条棱,则棱数E =22)(22)12()12()12(F F k n m k n m +=++++=++++++偶数Λ444444844444476Λ 因为E 必须为整数,所以(偶数+F )能被2整除,又因为(偶数+F )中偶数能被2整除,所以F 必须被2整除,即F 必须为偶数.(二)1.预习内容课本P 651.球的概念和性质至P 66结束2.预习提纲(1)怎样给球定义呢?(2)准确表述出球心、球的半径、球的直径等概念.(3)尝试归纳并证明球的性质.(4)结合地球仪理解地球上的经纬线,知道某地点的经度与纬度.(5)你是怎样理解“球面上,两点之间的最短连线的长度”?●板书设计希望以上资料对你有所帮助,附励志名3条:1、积金遗于子孙,子孙未必能守;积书于子孙,子孙未必能读。
不如积阴德于冥冥之中,此乃万世传家之宝训也。
2、积德为产业,强胜于美宅良田。
3、能付出爱心就是福,能消除烦恼就是慧。