第3章 固体中的扩散
- 格式:ppt
- 大小:795.50 KB
- 文档页数:31
固体的扩散习题与答案固体的扩散习题与答案扩散是指物质在空间中自发的、无宏观流动的传递过程。
在固体中,扩散现象常常发生,它对于材料的性能和应用具有重要影响。
下面将介绍一些固体扩散的习题和答案,帮助读者更好地理解和掌握这一概念。
习题一:某金属材料的扩散系数为2.5×10^-5 cm^2/s,温度为800℃。
若在1小时内,该金属材料中某种元素的浓度从表面向内部下降了0.1%,求该元素在1小时内的扩散深度。
解答:根据扩散定律,扩散深度可以用以下公式计算:L = √(D × t)其中,L表示扩散深度,D表示扩散系数,t表示时间。
代入已知数据,得到:L = √(2.5×10^-5 cm^2/s × 3600 s)计算结果约为0.3 cm。
所以,在1小时内,该元素的扩散深度约为0.3 cm。
习题二:某金属材料的扩散系数为1.8×10^-6 m^2/s,温度为900K。
若在10小时内,该金属材料中某种元素的扩散深度为0.5 mm,求该金属材料的扩散系数。
解答:根据扩散定律,扩散系数可以用以下公式计算:D = (L^2)/(4t)其中,D表示扩散系数,L表示扩散深度,t表示时间。
代入已知数据,得到:D = (0.5×10^-3 m)^2 / (4 × 10 × 3600 s)计算结果约为2.08×10^-7 m^2/s。
所以,该金属材料的扩散系数约为2.08×10^-7 m^2/s。
习题三:某金属材料的扩散系数为1.2×10^-9 cm^2/s,温度为500℃。
若在5小时内,该金属材料中某种元素的扩散深度为0.2 mm,求该元素的扩散时间。
解答:根据扩散定律,扩散时间可以用以下公式计算:t = (L^2)/(4D)其中,t表示扩散时间,L表示扩散深度,D表示扩散系数。
代入已知数据,得到:t = (0.2 mm)^2 / (4 × 1.2×10^-9 cm^2/s)计算结果约为2.78×10^7 s。
第1章固体结构1.何谓晶体?晶体与非晶体有何区别?2.已知MgO晶体中Mg2+和O2-在三维空间有规律地相间排列,其晶体结构相当于两套面心立方点阵互相套叠在一起,晶胞常数a=b=c=4.20 ,α=β=γ=90℃,请回答:①画出MgO晶体二维和三维空间的晶体结构图.②从①的图形中抽象出MgO晶体的空间点阵图形.③从②中划分出单位空间格子,计算其结点数.④画出晶胞结构图,指出晶胞中的分子数.3.何谓元素电负性,有何意义?在元素周期表中分布规律如何?4.何谓晶格能,用途?试计算MgO晶格能。
已知:MgO属NaCl型结构,立方面心点阵N0=6.023×1023,e=4.8×10-10静电单位,r =1.32 , r =0.78 ,A=1.74765.画出MgO晶体(立方面心点阵)在(1 0 0)、(1 1 0)、(1 1 1)晶面上的结点和离子排布图.6.立方晶系中①画出下列晶面:(0 0 1)、(1 0)、(1 1 1)②在①所画晶面上分别标出下列晶向:[2 1 0]、[1 1 1]、[1 0 ].7.在立方晶系中给出(1 1 1)面和(1 1 )面交棱的晶棱符号.8.找出正交晶系(斜方)(P点阵)宏观对称型.9.何谓布拉维点阵?举例论证为什么仅有14种?14种布拉维点阵分属的七个晶系名称?点阵常数特点?14种布拉维点阵分为几个类型?结点数计算?10.表示晶体的宏观对称性,其特点?如何表示晶体的微观对称性,其特点?11.划分单位平行六面体应遵循那些原则?何谓晶格常数?12.何谓晶胞、原胞、单位空间格子?13.试举例说明:晶体结构与空间点阵?晶胞与单位空间格子的关系?14.什么叫离子半径?有何实用意义?什么叫离子极化?极化对晶体结构有什么影响?15.解释原子,离子配位数. 根据半径比关系,说明下列离子与O2-配位时的配位数及配位多面体的类型.r =1.32 , r =0.39 ,r =0.57 ,r =0.78 ,r =1.10 .16.胞林规则有几条?其要点是什么?应用胞林规则有何局限性?17.试用胞林规则分析MgO晶体结构.(r =0.78 ,r =1.32 )18.运用胞林规则来解释在氧离子立方密堆体中,对于获得稳定结构各需要何种电价的离子,其中:①所有八面体间隙位置均填满.②所有四面体间隙位置均填满.③填满一半八面体间隙位置.④填满一半四面体间隙位置.19.已知:r =0.78 ,Mg的原子量为24.30,r =1.32计算:①MgO的点阵常数;②MgO的密度.20.画出闪锌矿、萤石晶胞结构在(0 0 1)面上的投影图.21.金红石的晶胞为什么不属于四方体心格子而是四方原始格子呢?而萤石的结构为什么不是立方原始格子而是立方面心格子?22.比较ThO2、TiO2、MgO结构中间隙的大小.23.简单说明下列名词的含义:反萤石结构,反尖晶石结构.24.指出下列化合物的结构类型,并改写成化学式:γ-Ca2[SiO4]、Ca2Al[AlSiO7]、CaMg[Si2O6]、Mg3[Si4O10](OH)2、K[AlSi3O8].25.高岭石、叶腊石和云母具有相似的结构,画出它们的结构草图,说明它们结构的区别及由此而引起的性质上的差异.26.下列物质的结构式,化学组成式写成相应的化学组成式和结构式:a) Al2O3·2SiO2·2H2O; ②2CaO·5MgO·8SiO2·H2O;③CaMg[Si206]; ④Na[AlSi3O8]27.说明高岭石、叶腊石和白云母结构区别及由此引起的性质上差异.28.在层状硅酸盐结构中,八面体层中的Al3+可以取代四面体层中的Si4+、而四面体层中的Si4+从来不会置换八面体层中的Al3+为什么?已知:r =1.40 , r =0.40 ,r =0.53 .29.青石2MgO·2Al2O3·5SiO2具有与绿柱石Be3Al2[Si6O8]类型结构,写出它的结构式,并指出它是由绿柱石进行怎样的离子置换而得来的?30.α—方石英属立方晶系,面心立方点阵,a=7.05 ,请a) 画出晶胞在(0 0 1)面上的投影图,注明各离子相对标高。
第七章扩散要求:掌握扩散方程、扩散机理和扩散系数,无机固体材料的扩散,了解影响扩散的因素重点及难点:扩散机理、固体中的扩散、影响扩散的因素、§7.1 引言§7.2 扩散动力学方程§7.3 固体的扩散机制及扩散系数§7.4 固体中的扩散及影响因素主要内容:§7.1 引言一、基本概念1.扩散现象气体在空气(气体)中的扩散气体在液体介质中的扩散液体在液体中的扩散固体内的扩散:气体在固体中的扩散液体在固体中的扩散固体在固体中的扩散2.扩散系统扩散物质扩散介质3、扩散由于大量原子的热运动引起的物质的宏观迁移。
扩散是一种传质过程:宏观上表现为物质的定向迁移扩散的本质:质点的热运动(无规则运动)注意:扩散中原子运动的自发性、随机性、经常性,以及原子随机运动与物质宏观迁移的关系流体中发生的扩散速率大,迁移方向各向同性。
固体受其结构影响,固体中的扩散有其自身的特点:扩散温度高(扩散活化能);质点扩散各向异性;扩散速率较低。
4.固体中的扩散现象扩散活化能△G:当温度一定时,热起伏将使一部分粒子能够从一个晶格的平衡位置跳跃势垒△G 迁移到另一个平衡位置的能量,使扩散得以进行。
图粒子跳跃势垒示意图5、扩散的应用材料中的许多工艺过程,如相变过程、固相反应、烧结、固溶体的形成等,以及材料的使用性能,如离子晶体的导电、耐火材料的侵蚀性都涉及质点的扩散。
本章重点阐述两方面的问题:扩散的宏观规律,扩散流产生后将遵循怎样规律进行,扩散动力学方程(菲克第一、第二定律)。
扩散系数,以及它和扩散的微观机构、晶体结构、组成、温度等诸因素之间的关系。
§7.2 扩散动力学方程——菲克定律一、基本概念1.扩散通量扩散通量——单位时间内通过单位横截面的粒子数。
用J表示,为矢量(因为扩散流具有方向性)量纲:粒子数/(时间.长度2)单位:粒子数/(s.m2)2 稳定扩散和不稳定扩散1)稳定扩散稳定扩散是指在扩散过程中,体系内部各处扩散质点的浓度不随时间变化,垂直扩散方向的任一平面上,在x 方向各处扩散流量相等J=const 。
第八部分 扩散在固体中,由于温度作用,原子会产生迁移现象,即原子从原来的平衡位置迁移到新的平衡位置。
虽然单个原子的迁移是随机的,但一定条件下大量原子的迁移有可能造成原子的宏观流动,这种现象称为扩散。
扩散是由于大量原子的热运动引起的物质宏观迁移(物质内部由于热运动而导致原子或分子迁移的过程)。
物质中的粒子由于热力学的影响,自发地进行迁移以达平衡的现象称为扩散。
在固体中,原子或分子的迁移只能靠扩散来进行,扩散是固体中物质传输的唯一方式。
说明:物质的迁移可通过对流和扩散两种方式进行,气体、液体中一般是通过对流和扩散来实现的,但固体中不发生对流,扩散是唯一的物质迁移方式。
扩散与材料在生产使用中的许多重要物理化学过程有密切关系,固体中许多反应:合金的相变、粉末烧结、离子固体的导电、外来分子向聚合物的渗透都受扩散的控制。
对扩散的研究主要有两方面:(ⅰ)对定向扩散流建立数学方程式,总结宏观规律。
已知边界条件、扩散系数条件下,计算浓度分布情况; 通过实验,利用公式求出扩散系数。
(ⅱ)搞清微观本质,探讨微观运动与扩散系数的关系,分析影响扩散的原因。
8.1 扩散现象及分类 扩散现象晶体中扩散的基本特点 从不同角度对扩散进行分类 ① 按浓度均匀程度分互扩散:有浓度差的空间扩散 自扩散:没有浓度差的空间扩散 ② 按扩散方向分上坡扩散:由高浓度区向低浓度区的扩散(顺扩散) 下坡扩散:由低浓度区向高浓度区的扩散(逆扩散) ③ 按原子的扩散方向分体扩散:在晶粒内部进行的扩散 表面扩散:在表面进行的扩散 晶界扩散:沿晶界进行的扩散其中,表面扩散和晶界扩散又称短路扩散,其扩散速度比体扩散快得多。
此外,还有沿位错线的扩散、沿层错面的扩散等。
原子的扩散激活能原子被束缚在其平衡位置上的势垒称为迁移激活能,其大小不仅与原子间的结合力有关,还与原子迁移的微观机制有关。
大量原子迁移的宏观效果就是扩散,故原子的迁移激活能就是原子的扩散激活能。
扩散⼯艺知识..第三章扩散⼯艺在前⾯“材料⼯艺”⼀章,我们就曾经讲过⼀种叫“三重扩散”的⼯艺,那是对衬底⽽⾔相同导电类型杂质扩散。
这样的同质⾼浓度扩散,在晶体管制造中还常⽤来作欧姆接触,如做在基极电极引出处以降低接触电阻。
除了改变杂质浓度,扩散的另⼀个也是更主要的⼀个作⽤,是在硅平⾯⼯艺中⽤来改变导电类型,制造PN 结。
第⼀节扩散原理扩散是⼀种普通的⾃然现象,有浓度梯度就有扩散。
扩散运动是微观粒⼦原⼦或分⼦热运动的统计结果。
在⼀定温度下杂质原⼦具有⼀定的能量,能够克服某种阻⼒进⼊半导体,并在其中作缓慢的迁移运动。
⼀.扩散定义在⾼温条件下,利⽤物质从⾼浓度向低浓度运动的特性,将杂质原⼦以⼀定的可控性掺⼊到半导体中,改变半导体基⽚或已扩散过的区域的导电类型或表⾯杂质浓度的半导体制造技术,称为扩散⼯艺。
⼆.扩散机构杂质向半导体扩散主要以两种形式进⾏:1.替位式扩散⼀定温度下构成晶体的原⼦围绕着⾃⼰的平衡位置不停地运动。
其中总有⼀些原⼦振动得较厉害,有⾜够的能量克服周围原⼦对它的束缚,跑到其它地⽅,⽽在原处留下⼀个“空位”。
这时如有杂质原⼦进来,就会沿着这些空位进⾏扩散,这叫替位式扩散。
硼(B )、磷(P )、砷(As )等属此种扩散。
2.间隙式扩散构成晶体的原⼦间往往存在着很⼤间隙,有些杂质原⼦进⼊晶体后,就从这个原⼦间隙进⼊到另⼀个原⼦间隙,逐次跳跃前进。
这种扩散称间隙式扩散。
⾦、铜、银等属此种扩散。
三.扩散⽅程扩散运动总是从浓度⾼处向浓度低处移动。
运动的快慢与温度、浓度梯度等有关。
其运动规律可⽤扩散⽅程表⽰,具体数学表达式为: N D tN 2?=?? (3-1)在⼀维情况下,即为: 22xN D t N ??=?? (3-2)式中:D 为扩散系数,是描述杂质扩散运动快慢的⼀种物理量;N 为杂质浓度;t 为扩散时间;x 为扩散到硅中的距离。
四.扩散系数杂质原⼦扩散的速度同扩散杂质的种类和扩散温度有关。
固体扩散的例子
固体扩散是指固体物质在无外力作用下,自发地在空间中向各个方向传播的过程。
下面列举了十个关于固体扩散的例子。
1. 金属材料的热扩散:当金属材料受热时,其原子会因热运动增加而扩散,导致金属体积的扩大。
2. 颜料在油画上的扩散:在油画制作过程中,颜料会通过画布的纤维间隙扩散,使颜色逐渐蔓延,形成画面的层次感。
3. 水中溶解氧的扩散:氧气分子会在水中自由扩散,使水体中的溶解氧浓度均匀分布。
4. 糖在茶水中的扩散:当向茶水中加入糖时,糖分子会自发地扩散到茶水中,使茶水味道变甜。
5. 香水在空气中的扩散:喷洒香水后,香水分子会自发地扩散到周围的空气中,形成香气。
6. 银饰品的氧化:银饰品长时间暴露在空气中,银表面的金属原子会与空气中的氧气反应,形成氧化银层,使银饰品变黑。
7. 蓝莓果实的颜色扩散:蓝莓果实中的花青素会在果实成熟过程中自发扩散到果肉中,使果肉呈现出深蓝色。
8. 针灸的效应:针灸时,针头插入皮肤后,刺激会沿着经络扩散,产生疗效。
9. 火焰的扩散:火焰是燃烧过程中火焰前进的结果,火焰中的燃烧物质会自发地向四周扩散,形成火焰形状。
10. 涂料的干燥:涂料在涂刷在物体表面后,溶剂会自发地扩散到空气中,使涂料快速干燥。
以上是关于固体扩散的十个例子。
固体扩散是一种普遍存在于我们生活和自然界中的现象,它在材料科学、化学、生物学等领域具有重要的应用价值。
通过了解和研究固体扩散的机制和特性,可以帮助我们更好地理解和利用这一现象。
第四章固体中的扩散物质传输的方式:1、对流--由内部压力或密度差引起的2、扩散--由原子性运动引起的固体中物质传输的方式是扩散扩散:物质中的原子或分子由于热运动而进行的迁移过程本章主要内容:扩散的宏观规律:扩散物质的浓度分布与时间的关系扩散的微观机制:扩散过程中原子或分子迁移的机制一、扩散现象原子除在其点阵的平衡位置作不断的振动外,某些具有高能量的单个原子可以通过无规则的跳动而脱离其周围的约束,在一定条件下,按大量原子运动的统计规律,有可能形成原子定向迁移的扩散流。
将两根含有不同溶质浓度的固溶体合金棒对焊起来,形成扩散偶,扩散偶沿长度方向存在浓度梯度时,将其加热并长时间保温,溶质原子必然从左端向右端迁移→扩散。
沿长度方向浓度梯时逐渐减少,最后整个园棒溶质原子浓度趋于一致二、扩散第一定律(Fick第一定律)Fick在1855年指出:在单位时间内通过垂直于扩散方向某一单位截面积的扩散物质流量(扩散通量)与该处的浓度梯度成正比。
数学表达式(扩散第一方程)式中 J:扩散通量:物质流通过单位截面积的速度,常用量钢kg·m-2·s-1D:扩散系数,反映扩散能力,m2/S:扩散物质沿x轴方向的浓度梯度负号:扩散方向与浓度梯度方向相反可见:1), 就会有扩散2)扩散方向通常与浓度方向相反,但并非完全如此。
适用:扩散第一定律没有考虑时间因素对扩散的影响,即J和dc/dx不随时间变化。
故Fick第一定律仅适用于dc/dt=0时稳态扩散。
实际中的扩散大多数属于非稳态扩散。
三、扩散第二定律(Fick第二定律)扩散第二定律的数学表达式表示浓度-位置-时间的相互关系推导:在具有一定溶质浓度梯度时固溶体合金棒中(截面积为A)沿扩散方向的X轴垂截取一个微体积元A·dx,J1,J2分别表示流入和流出该微体积元的扩散通量,根据扩散物质的质量平衡关系,流经微体积的质量变化为:流入的物质量—流出的物质量=积存的物质量物质量用单位时间扩散物质的流动速度表示,则流入速率为,流出速率为∴积存率为积存速度也可以用体质C的变化率表示为比较上述两式,得将Fick第一定律代入得=(D) ——扩散第二方程若扩散系统D与浓度无关,则对三维扩散,扩散第二方程为:(D与浓度,方向无关)1、晶体中原子的跳动与扩散晶体中的扩散是大量原子无规则跳动的宏观统计结果。
固相反应法的扩散原理固相反应法是一种常用于合成无机材料的方法,它基于反应物在固体相中的扩散过程,常被用于合成无机材料、合成陶瓷、高温材料和催化剂等。
在固相反应法中,反应物通过扩散在固体相中发生反应,产生所需的产物。
固相反应法的扩散原理可以从多个角度来解释。
以下将从热力学、扩散动力学和固体反应机理三个方面进行讨论。
首先,从热力学角度来看,固相反应需要满足热力学的平衡条件。
这意味着反应混合物组分的化学势之差在反应过程中趋于零。
在固相反应中,反应物分子通过扩散逐渐相互接触,形成局部的处于平衡状态的小区域。
在这些小区域内,反应物由于浓度梯度和局部的温度梯度,会发生反应并释放出能量。
随着时间的推移,反应会逐渐在整个反应体系中进行,直到达到平衡状态。
因此,固相反应法的扩散原理与热力学平衡密切相关。
其次,从扩散动力学的角度来看,固相反应是通过固体颗粒之间的物质迁移实现的。
扩散作为固体相中的质量传递过程,是指物质在固体内部的非均匀分布的自发性移动。
固体颗粒之间存在浓度梯度,质量从梯度高的区域扩散到梯度低的区域。
在固相反应中,反应物的迁移路径通常是由固体颗粒的晶格结构以及物质扩散的速率决定的。
例如,在固相反应法中,反应物粉末的大小、形状和分布对反应速率和产物的物理性质具有显著影响。
因此,固相反应法的扩散原理与物质分子的迁移和扩散速率有关。
最后,从固体反应机理的角度来看,固相反应法是通过反应物的物质转移和相互作用实现的。
在固相反应中,反应物的化学成分从一个相转移到另一个相,进而形成产物。
通常,反应物的转移路径可以分为三个步骤:扩散、表面反应和体相反应。
首先,反应物通过扩散进入固体颗粒相互接触的位置。
然后,在固体颗粒的表面处发生反应,通常是一些中间生成物的生成和反应。
最后,中间生成物会继续在固体内部进行扩散和反应,直到形成所需的产物。
因此,固相反应法的扩散原理与反应物的物质转移和固体表面反应密切相关。
综上所述,固相反应法的扩散原理涉及热力学平衡、扩散动力学和固体反应机理等方面。