弹性力学圆形薄板
- 格式:pdf
- 大小:11.25 MB
- 文档页数:47
第四节平板应力分析3.4平板应力分析3.4.1概述3.4.2圆平板对称弯曲微分方程3.4.3圆平板中的应力3.4.4承受对称载荷时环板中的应力3.4.1概述1、应用:平封头:常压容器、高压容器;贮槽底板:可以是各种形状;换热器管板:薄管板、厚管板;板式塔塔盘:圆平板、带加强筋的圆平板;反应器触媒床支承板等。
2、平板的几何特征及平板分类w/t≤1/5时(小挠度)按小挠度薄板计算3、载荷与力载荷:①平面载荷:作用于板中面的载荷②横向载荷垂直于板中面的载荷③复合载荷力:①薄膜力——中面的拉、压力和面剪力,并产生面变形②弯曲力——弯矩、扭矩和横向剪力,且产生弯扭变形◆当变形很大时,面载荷也会产生弯曲力,而弯曲载荷也会产生面力,所以,大挠度分析要比小挠度分析复杂的多。
◆本书仅讨论弹性薄板的小挠度理论。
4、弹性薄板的小挠度理论基本假设---克希霍夫K i r c h h o f f① 板弯曲时其中面保持中性,即板中面各点无伸缩和剪切变形,只有沿中面法线w 的挠度。
只有横向力载荷②变形前位于中面法线上的各点,变形后仍位于弹性曲面的同一法线上,且法线上各点间的距离不变。
类同于梁的平面假设:变形前原为平面的梁的横截面变形后仍保持为平面,且仍然垂直于变形后的梁轴线。
③平行于中面的各层材料互不挤压,即板垂直于板面的正应力较小,可忽略不计。
◆研究: 弹性,薄板 / 受横向载荷 / 小挠度理论 / 近似双向弯曲问题3.4.2 圆平板对称弯曲微分方程分析模型分析模型:半径R ,厚度t 的圆平板受轴对称载荷P z ,在r 、θ、z 圆柱坐标系中,力M r 、M θ、Q r 三个力分量轴对称性:几何对称,载荷对称,约束对称,在r 、θ、z 圆柱坐标系中,挠度w 只是 r 的函数,而与θ无关。
求解思路:经一系列推导(基于平衡、几何、物理方程)→弯曲挠度微分方程(z p w:)→求w 求→力r M M θ、→求应力r θσσ、微元体力 :径向:M r 、M r +(d M r /d r )d r 周向:M θ、 M θ横向剪力:Q r 、Q r +(d Q r /d r )d r 微元体外力 :上表面z P p rd dr θ=2、几何协调方程(W ~ε)取AB dr =,径向截面上与中面相距为z ,半径为r 与r dr +两点A 与B 构成的微段板变形后:微段的径向应变为 ()r z d z d z dr dr ϕϕϕϕε+-==(第2假设)过A 点的周向应变为()222r z r z r rθπϕπϕεπ+-==(第1假设)作为小挠度dwdrϕ=-,带入以上两式,得 应变与挠度关系的几何方程:22r d wz dr z dw r drθεε=-=-(2-55) 3、物理方程根据第3个假设,圆平板弯曲后,其上任意一点均处于两向应力状态。
第四节平板应力分析平板应力分析3.4.1概述3.4.2圆平板对称弯曲微分方程3.4.3圆平板中的应力3.4.4承受对称载荷时环板中的应力3.4.1概述1、应用:平封头:常压容器、高压容器;贮槽底板:可以是各种形状;换热器管板:薄管板、厚管板;板式塔塔盘:圆平板、带加强筋的圆平板;反应器触媒床支承板等。
2、平板的几何特征及平板分类几何特征:中面是一平面厚度小于其它方向的尺寸。
t/b≤1/5时(薄板)w/t≤1/5时(小挠度)按小挠度薄板计算3、载荷与内力载荷:①平面载荷:作用于板中面内的载荷②横向载荷垂直于板中面的载荷③复合载荷内力:①薄膜力——中面内的拉、压力和面内剪力,并产生面内变形②弯曲内力——弯矩、扭矩和横向剪力,且产生弯扭变形◆当变形很大时,面内载荷也会产生弯曲内力,而弯曲载荷也会产生面内力,所以,大挠度分析要比小挠度分析复杂的多。
◆本书仅讨论弹性薄板的小挠度理论。
4、弹性薄板的小挠度理论基本假设---克希霍夫K i r c h h o f f①板弯曲时其中面保持中性,即板中面内各点无伸缩和剪切变形,只有沿中面法线w的挠度。
只有横向力载荷②变形前位于中面法线上的各点,变形后仍位于弹性曲面的同一法线上,且法线上各点间的距离不变。
类同于梁的平面假设:变形前原为平面的梁的横截面变形后仍保持为平面,且仍然垂直于变形后的梁轴线。
③平行于中面的各层材料互不挤压,即板内垂直于板面的正应力较小,可忽略不计。
◆研究:弹性,薄板/受横向载荷/小挠度理论/近似双向弯曲问题3.4.2圆平板对称弯曲微分方程分析模型柱坐标系中,分析模型:半径R,厚度t的圆平板受轴对称载荷P z,在r、θ、z圆体。
微元体内力 :径向:M r 、M r +(d M r /d r )d r 周向:M θ、 M θ横向剪力:Q r 、Q r +(d Q r /d r )d r 微元体外力 :上表面z P p rd dr θ=2、几何协调方程(W ~ε)取AB dr =,径向截面上与中面相距为z ,半径为r 与r dr +两点A 与B 构成的微段板变形后:微段的径向应变为 ()r z d z d z dr drϕϕϕϕε+-==(第2假设)过A 点的周向应变为()222r z r z r rθπϕπϕεπ+-==(第1假设)作为小挠度dwdrϕ=-,带入以上两式,得 应变与挠度关系的几何方程:22r d wz dr z dw r drθεε=-=-(2-55) 3、物理方程根据第3个假设,圆平板弯曲后,其上任意一点均处于两向应力状态。