弹性力学基本理论
- 格式:ppt
- 大小:588.00 KB
- 文档页数:18
弹性力学理论弹性力学理论是研究物体在受力作用下的变形和应力分布规律的科学理论。
它是应用力学的基础学科,对于工程领域的设计和分析至关重要。
本文将从理论概述、基本原理、应力分析、变形分析和应用等方面对弹性力学进行论述。
一、理论概述弹性力学理论是力学中的重要分支,它研究的是物体在受力作用下的弹性变形和应力分布规律。
从宏观上来看,弹性力学理论可以用于解释物体的形变和变形后的恢复情况。
从微观角度来看,弹性力学理论涉及到原子和分子之间的相互作用力,以及它们之间的位移和应力的关系。
二、基本原理弹性力学理论建立在几个基本原理之上。
首先是虚功原理,它表明物体在受力作用下的形变能量等于外力对物体所做的功。
其次是共轭原理,说明应力与应变之间存在一一对应的关系。
弹性力学还依赖于线性弹性假设,即假设物体的应力与应变之间是线性关系。
三、应力分析弹性力学理论对于应力分析提供了有力的工具。
应力是物体内部的力分布,它可以通过弹性模量、泊松比等参数进行描述。
弹性力学理论可以计算各个部位的应力大小和分布情况,从而评估物体在受力下是否会发生破坏。
在工程实践中,应力分析是设计结构和材料的重要环节。
四、变形分析除了应力分析,变形分析也是弹性力学理论的重要内容。
变形是物体在受力作用下发生的形状改变,它可以通过应变进行描述。
弹性力学理论可以计算物体在受力下的变形情况,包括线性弹性变形和非线性变形等。
通过对变形进行分析,可以判断物体是否满足设计要求,以及设计参数的合理性。
五、应用弹性力学理论在工程领域有广泛的应用。
在结构设计中,弹性力学理论可以用于计算各个部位的应力和变形情况,从而预测结构的安全性和可靠性。
在材料工程中,弹性力学理论可以评估材料的弹性性能和变形行为,为材料选择和优化提供指导。
此外,弹性力学理论还被应用于地质勘探、地震学和生物力学等领域。
结论弹性力学理论作为应用力学的基础学科,对于工程领域的设计和分析具有重要意义。
通过理论概述、基本原理、应力分析、变形分析和应用等方面的论述,对弹性力学进行了全面介绍。
第二章 弹性力学基本理论及变分原理弹性力学是固体力学的一个分支。
它研究弹性体在外力或其他因素(如温度变化)作用下产生的应力、应变和位移,并为各种结构或其构件的强度、刚度和稳定性等的计算提供必要的理论基础和计算方法。
本章将介绍弹性力学的基本方程及有关的变分原理。
§2.1小位移变形弹性力学的基本方程和变分原理在结构数值分析中,经常用到弹性力学中的定解问题及与之等效的变分原理。
现将它们连同相应的矩阵形式的张量表达式综合引述于后,详细推导可参阅有关的书籍。
§2.1.1弹性力学的基本方程的矩阵形式弹性体在载荷作用下,体内任意一点的应力状态可由6个应力分量表示,它们的矩阵表示称为应力列阵或应力向量111213141516222324252633343536444546555666x x y y z z xy xy yz yz zx zx D D D D D D D D D D D D D D D D D D D D D σεσεσετγτγτγ⎧⎫⎡⎤⎧⎫⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎪⎪=⎢⎥⎨⎬⎨⎬⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎩⎭⎣⎦⎩⎭ (2.1.1) 弹性体在载荷作用下,将产生位移和变形,弹性体内任意一点位移可用3个位移分量表示,它们的矩阵形式为[]T u u v u v w w ⎧⎫⎪⎪==⎨⎬⎪⎪⎩⎭(2.1.2)弹性体内任意一点的应变,可由6个应变分量表示,应变的矩阵形式为x y Tz xy z xy yz zx xy yz zx εεεσεεεγγγγγγ⎧⎫⎪⎪⎪⎪⎪⎪⎪⎪⎡⎤==⎨⎬⎣⎦⎪⎪⎪⎪⎪⎪⎪⎪⎩⎭(2.1.3)对于三维问题,弹性力学的基本方程可写成如下形式 1 平衡方程0xy x zx x f x y z τστ∂∂∂+++=∂∂∂ 0xy y zy y f xyzτστ∂∂∂+++=∂∂∂0yz zx zz f x y zττσ∂∂∂+++=∂∂∂ x f 、y f 和z f 为单位体积的体积力在x 、y 、z 方向的分量。
弹塑性力学基础理论与应用弹塑性力学是力学中一个重要的分支,涵盖了弹性力学和塑性力学的基本原理和应用。
本文将简要介绍弹塑性力学的基础理论和一些应用领域。
一、弹塑性力学的基础理论1. 弹性力学理论弹性力学研究材料在外力作用下的弹性变形及其恢复过程。
根据胡克定律,应力与应变成正比。
弹性力学理论通过应力张量与应变张量之间的关系描述了弹性材料的力学行为。
弹性模量是弹性力学的重要参数,表征了材料的刚度。
2. 塑性力学理论塑性力学研究材料在超过弹性极限后的变形行为。
当外力超过材料的弹性极限时,材料会发生塑性变形,而不是立即恢复到原来的形状。
塑性力学理论包括弹塑性本构方程的建立和塑性流动规律的描述。
3. 弹塑性力学理论弹塑性力学是弹性力学和塑性力学的综合应用。
它考虑了材料在弹性和塑性行为之间的转换。
在某些情况下,材料可以同时表现出弹性和塑性特性。
弹塑性力学理论利用不同的本构关系来描述材料在变形过程中的不同阶段。
二、弹塑性力学的应用1. 材料工程弹塑性力学在材料工程领域中具有重要的应用价值。
通过研究材料的弹性行为和塑性行为,可以确定材料的强度、韧性和耐久性,从而指导材料的选用和设计。
在材料的加工过程中,弹塑性力学理论也可以用于模拟和预测材料的变形行为。
2. 结构工程在结构设计和分析中,弹塑性力学也发挥着重要作用。
结构的承载能力和变形行为与材料的弹性和塑性特性密切相关。
通过考虑弹塑性行为,可以更准确地评估结构的安全性和稳定性。
3. 土木工程土木工程中的地基和土壤材料往往存在复杂的弹塑性特性。
弹塑性力学可用于分析土壤的沉降和变形行为,以及地基的稳定性。
在岩土工程中,弹塑性力学理论也可以用于分析岩土体的稳定性和变形行为。
4. 金属加工金属的塑性变形是金属加工过程中的核心问题。
弹塑性力学理论可以用于研究金属的屈服和流动行为,从而指导金属的模具设计和加工工艺的优化。
总结:弹塑性力学是力学中的一个重要分支,它综合了弹性力学和塑性力学的基础理论与应用。
弹性力学的基本理论及其在实际中的应用弹性力学是固体力学学科的分支。
其基本任务是研究弹性体由于外力载荷或者温度改变,物体内部所产生的位移、变形和应力分布等,为解决工程结构的强度,刚度和稳定性问题作准备,但是并不直接作强度和刚度分析。
一.弹性力学的基本规律规律假设弹性力学的研究对象是完全弹性体。
弹性力学所依据的基本规律有三个:变形连续规律、应力-应变关系和运动(或平衡)规律,它们有时被称为弹性力学三大基本规律。
井下工程是复杂多变的,随着工程的进展,巷道的应力情况也在不断的变化,我们研究的不是一个静止的物体,我们要研究的是一个动态的、不断变化的围岩条件。
要研究岩体的弹性问题,必须要给它一个前提,也就是对它的假设,基本假设是弹性力学讨论问题的基础。
没有基本假设任何问题也进行不了.下面简要介绍弹性力学的几个基本假设:1.连续性假设:假设所研究的整个弹性体内部完全由组成物体的介质所充满,各个质点之间不存在任何空袭。
2.均匀性假设:假设弹性物体是由同一类型的均匀材料组成的。
因此物体各个部分的物理性质都是相同的,不随坐标位置的变化而改变。
因此,物体的弹性性质处处是相同的。
3.各向同性假设:假定物体在各个不同的方向上具有相同的物理性质,这就是说物体的弹性常熟将不随坐标方向的改变而变化。
4.完全弹性假设:对应一定的温度,如果应力和应变之间存在一一对应关系,而且这个关系和时间无关,也和变形历史无关,称为完全弹性材料。
5.小变形假设:假设在外力或者其他外界因素(如温度等)的影响下,物体的变形与物体自身几何尺寸相比属于高阶小量。
6.无初始应力的假设:假设物体处于自然状态,即在外界因素(如外力或温度变化等)作用之前,物体内部没有应力。
根据这一假设,弹性力学求解的应力仅仅是外力或温度改变而产生的。
二.下面介绍一下弹性力学基本的解决问题的方法:弹性力学的研究方法主要有数学方法和实验方法,以及二者结合的方法。
数学方法基本上是根据弹性力学的基本方程,对岩体在某种假设的前提下进行弹性分析,从而得出岩体的各种力学参数。
弹性力学的基本原理弹性力学是研究物体在受力后能够恢复原状的力学分支。
它的基本原理可以总结如下:背景介绍弹性力学是力学学科的一个重要分支,研究物体受力后能够恢复原状的性质和行为。
弹性力学的研究对象可以是实物材料,如金属、塑料等,也可以是抽象的理想模型。
本文主要内容本文将讨论弹性力学的基本原理,包括以下几个方面:1. 倍力定律:弹性力学的基本原理之一是倍力定律。
倍力定律指出,在弹性变形范围内,物体受力与其变形之间存在着线性关系。
换句话说,物体受力越大,变形也越大,且两者之间成正比。
2. 弹性恢复:另一个基本原理是弹性恢复。
当外力作用于物体时,物体会变形,但在外力消失后,物体会努力恢复到原来的形状和尺寸。
这种恢复性质是弹性力学的核心特征。
3. 施加力和变形的关系:弹性力学研究物体受力后的变形情况。
在弹性力学中,施加力的方式和大小与物体的变形密切相关。
不同的力学作用方式将导致不同类型的变形,如拉伸、压缩、弯曲等。
4. 弹性模量:弹性力学的另一个关键概念是弹性模量。
弹性模量是衡量物体对外力的抵抗程度的指标。
不同材料具有不同的弹性模量,例如金属具有较高的弹性模量,而橡胶具有较低的弹性模量。
结论弹性力学的基本原理包括倍力定律、弹性恢复、施加力和变形的关系以及弹性模量等重要概念。
理解这些原理可以帮助我们更好地理解物体的弹性行为和性质。
请注意,本文的内容仅为简要介绍弹性力学的基本原理,详细的数学理论和推导过程超出了本文的范围。
参考文献:。
弹性力学的理论模型和计算方法弹性力学是研究物体在外力作用下的形变和应力分布规律的学科。
它在工程学、物理学、材料学等领域中有着广泛的应用。
本文将介绍弹性力学的理论模型和计算方法,帮助读者更好地理解和应用弹性力学的知识。
1. 弹性力学的基本概念弹性力学研究物体在受力时的变形和应力,其中弹性变形指物体在外力作用下的恢复性形变,应力则是物体内部单元之间的相互作用力。
根据物体受力的不同方式,弹性力学可以分为静力学和动力学两个分支。
2. 弹性力学的理论模型在弹性力学中,最常用的理论模型是胡克定律。
胡克定律描述了物体的应力和应变之间的线性关系,即应力与应变成正比。
根据具体情况的不同,可以采用各种模型进行计算,如一维线弹性模型、平面应力和平面应变模型等。
3. 弹性力学的计算方法在实际应用中,针对不同的问题和受力情况,可以选择不同的计算方法来求解弹性力学的问题。
以下介绍几种常用的计算方法:a. 解析解法:从理论上解析得出物体的应力和应变分布规律,适用于简单几何形状和边界条件的情况。
b. 数值解法:通过建立有限元模型,利用数值方法求解弹性力学问题。
常用的数值解法有有限元法、有限差分法和边界元法等。
c. 实验方法:通过真实物体的实验测试来获取其力学性质,并反推计算应力和应变分布。
实验方法通常用于验证理论模型的正确性和精确度。
4. 弹性力学的应用领域弹性力学广泛应用于工程学和物理学等领域中。
在工程学中,弹性力学常用于结构设计和材料力学的分析,例如建筑物的承载能力计算和风力荷载分析等。
在物理学中,弹性力学被用于研究固体和流体的弹性性质,探究其力学行为和性能。
5. 弹性力学的发展趋势随着科技的不断发展和应用的深入,弹性力学的研究也在不断前进。
当前,弹性力学中的非线性、动态和复杂问题成为研究的热点。
同时,计算机技术和仿真方法的发展,为弹性力学的理论模型和计算方法提供了更多的工具和手段。
总结:弹性力学的理论模型和计算方法是研究物体在外力作用下的变形和应力分布规律的重要内容。
理论与应用力学中的弹性力学基本原理弹性力学是力学中的一个重要分支,研究物体在受力作用下的形变和应力分布规律。
它的基本原理包括胡克定律、应变能原理和位移方法等。
胡克定律是弹性力学的基石,它描述了物体在小变形范围内的应力和应变之间的关系。
根据胡克定律,应力与应变成正比,比例系数为弹性模量。
这意味着物体在受力作用下会发生弹性变形,一旦去除外力,物体就会恢复原状。
胡克定律的应用十分广泛,例如在工程结构设计中,可以根据物体的弹性模量来选择合适的材料,以确保结构的稳定性和安全性。
应变能原理是弹性力学中另一个重要的基本原理。
它基于能量守恒的原理,认为物体在受力作用下会存储一定的应变能,这部分能量来自外力对物体所做的功。
应变能原理可以用来推导物体的应力分布和形变情况,通过最小化应变能可以得到物体的平衡方程。
这个原理在工程实践中也有广泛的应用,例如在材料加工过程中,可以通过控制应变能来优化加工工艺,提高材料的性能。
位移方法是弹性力学中的一种常用分析方法,它通过假设物体的位移场,利用平衡方程和边界条件来求解物体的应力分布和变形情况。
位移方法的优点是可以处理复杂的几何形状和边界条件,适用于各种不同的力学问题。
例如在土木工程中,可以利用位移方法来分析桥梁和建筑物的结构响应,预测其在不同荷载下的变形和破坏情况。
除了这些基本原理,弹性力学还有许多其他的理论和方法,如弹性波传播、弹性体的稳定性和动力响应等。
这些理论和方法在不同领域的应用中发挥着重要的作用。
例如在地震工程中,可以利用弹性波传播理论来研究地震波的传播规律和地震对结构的影响,从而提高建筑物的抗震性能。
总之,弹性力学是力学中的一个重要分支,它研究物体在受力作用下的形变和应力分布规律。
胡克定律、应变能原理和位移方法是弹性力学的基本原理,它们在工程实践和科学研究中有着广泛的应用。
通过深入理解这些基本原理,我们可以更好地理解和应用弹性力学,为解决实际问题提供有效的方法和思路。