期末复习(勾股定理)
- 格式:doc
- 大小:160.00 KB
- 文档页数:2
初二数学 勾股定理复习一、知识点: 1、勾股定理:直角三角形两直角边的平方和等于斜边的平方。
数学式子:∠C=900⇒222a b c +=2、神秘的数组(勾股定理的逆定理):如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形. 数学式子:222a b c +=⇒∠C=900满足a 2+b 2=c 2三个数a 、b 、c 叫做勾股数。
要点回顾【知识点 1】 勾股定理内容: 〖基础回顾〗1、 在Rt △ABC 中, a ,b ,c 分别是三条边,∠C =90°,已知,a b 则c = ; 已知,a c 则b = 。
2、在Rt △ABC 中, a ,b ,c 分别是三条边,∠B =90°,已知a =6,b =10,则c= 。
3、在ABC Rt ∆中,,4,3cm b cm a == 则=c 。
4、在Rt △ABC 中,已知两边长分别是6和8,则其面积为 。
【知识点 2】 勾股数 回忆常见的勾股数 〖基础回顾〗1、下列各组数中,不能作为直角三角形三边长度的是( ) A .72425a b c === B . 1.52 2.5a b c === C .111345a b c === D .15817a b c === 2、、判断a 、b 、c 是否是勾股数。
(1)a=7,b=24,c=25 (2)a=5,b=13,c=12 (3)a=4,b=5,c=6 ⑷Aa【知识点 3】定理与逆定理的应用 〖基础回顾〗1、三角形的三边长为ab c b a 2)(22+=+,则这个三角形是 。
2、已知a 、b 、c 为三个正整数,如果a +b +c =12,那么以a 、b 、c 为边能组成的三角形是:①等腰三角形;②等边三角形;③直角三角形;④钝角三角形.以上符合条件的正确结论是______.3、在△ABC 中, AB=15,AD=12,BD=9,AC=13,求△ABC 的周长和面积。
A B C D E勾股定理期末复习1.以下列线段a 、b 、c 的长为三边的三角形中,不能构成直角三角形的是( ) A .a =9,b =41,c =40 B .a=b =5,c =25 C .a ∶b ∶c =3∶4∶5 D .a =11,b =12,c =15 2.已知一直角三角板的木版三边的平方和为18002cm ,则斜边的长为( ).A 80cmB 30cmC 90cmD 120cm 3.点A 、点B 的坐标分别为(-4,0)、(0,3),则坐标原点O 到线段AB 的距离为( ) A 2 B 2.4 C 5 D 64.如图,在三角形纸片ABC 中,AC=6,∠A=30º,∠C=90º,将∠A 沿DE 折叠,使点A 与点B 重合,则折痕DE 的长为( ) A .1 B .2 C .3 D .25.△ABC 的三边长分别为a 、b 、c ,下列条件:①∠A=∠B -∠C ;②∠A :∠B :∠C=3:4:5;③))((2c b c b a -+=;④13:12:5::=c b a ,其中能判断△ABC 是直角三角形的个数有( )A .1个B .2个C .3个D .4个6.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则所有正方形的面积的和是( )cm 2(A) 28 (B) 49 (C) 98 (D) 1477.如图是一块长1、宽、高分别是6cm 、4cm 和3cm 的长方体木块,一只蚂蚁要从顶点A 出发,沿长方体的表面爬到和A 相对的顶点B 处吃食物,那么它需要爬行的最短路线的长是( )A 、cm 61B 、cm 85C 、cm 97D 、cm 1098.如图,四边形ABCD 是四个角都是直角,四条边都相等的正方形,点E 在BC 上, 且CE =41BC ,点F 是CD 的中点,延长AF 与BC 的延长线交于点M .以下结论: ①AB =CM ;②AE =AB +CE ;③S △AEF =13ABCF S 四边形;④∠AFE =90°,其中正确的结论的个数有( )A 1个B 2个C 3个D 4个 9.下面正确的命题中,其逆命题不成立的是( ) A.同旁内角互补,两直线平行 B.全等三角形的对应边相等B. C.角平分线上的点到这个角的两边的距离相等 D.对顶角相等 10.已知△ABC 的各边长都是整数,且周长是8,则△ABC 的面积为 。
初中数学期末复习勾股定理重点题型分类+解析初中数学期末复习勾股定理重点题型分类+解析!_梯子_正方形_的底部题型一:利用勾股定理进行线段计算如果单独考查勾股定理,通常是给我们送分的,非常简单,我们只有熟记勾股定理的公式、常见的勾股数,以及常见的特殊rt△的三边比例,即可以轻松解出题目。
【例1】一驾2.5米长的梯子靠在一座建筑物上,梯子的底部离建筑物0.7米,如果梯子的顶部滑下0.4米,梯子的底部向外滑出多远(其中梯子从ab位置滑到cd位置)?【分析】本题是常见的梯子滑动问题,是勾股定理结合实际问题产生的题型。
英对实际问题,我们需要实际问题抽象成简单的几何图形,再利用勾股定理解答。
题目要求梯子的底部滑出多远,就要求梯子原先顶部的高度ao,且三角形aob,三角形cod均为直角三角形.可以运用勾股定理求解.解:在直角三角形aob中,根据勾股定理ab 2=ao 2+ob 2,可以求得:oa= =2.4米,现梯子的顶部滑下0.4米,即oc=2.4-0.4=2米,且cd=ab=2.5米,所以在直角三角形cod中,即do= =1.5米,所以梯子的底部向外滑出的距离为1.5米-0.7米=0.8米.答:梯子的底部向外滑出的距离为0.8米.题型二:勾股定理的证明过程勾股定理的证明过程同样是勾股定理的一个常考点。
因此我们同样要熟知勾股定的常见证明过程。
这个需要同学们查看课本,回忆整个证明过程。
下面给出常见的考题类型。
【例2】《勾股圆方图》是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图(1)).设每个直角三角形中较短直角边为a,较长直角边为b,斜边为c。
(1)利用图(1)面积的不同表示方法验证勾股定理.(2)实际上还有很多代数恒等式也可用这种方法说明其正确性.试写出图(2)所表示的代数恒等式:();(3)如果图(1)大正方形的面积是13,小正方形的面积是1,求(a+b)2的值.【分析】(1)如图(1),根据四个全等的直角三角形的面积+阴影部分小正方形的面积=大正方形的面积,代入数值,即可证明;(2)5个矩形,长宽分别为x,y;两个边长分别为y的正方形和两个边长为x的正方形,可以看成一个长宽为x+2y,2x+y的矩形;(3)利用(1)的结论进行解答.解:(1)图(1)中的大正方形的面积可以表示为c 2,也可表示为(b-a)2+4× ab∴(b-a)2+4× ab=c 2化简得b 2-2ab+b 2+2ab=c 2∴当∠c=90°时,a 2+b 2=c 2;(2)(x+y)(x+2y)=x 2+3xy+2y 2(3)依题意得 a2+ b2= c2=13 ( b− a) 2=1 则2ab=12∴(a+b) 2=a 2+b 2+2ab=13+12=25,即(a+b) 2=25.中考数学答题要点归纳,考前看这一篇就够了!中考数学复习9种题型答题模板+易错题练习,含答案!初中数学7-9年级,21个逢考必出的知识点,初中三年都适用!初中数学7-9年级,必考应用题分类+数量关系大全!初中数学复习,整式运算的几何背景与应用,常考题型解析!。
期末复习(二)——勾股定理知识点1勾股定理及其相关计算1.在Rt△ABC中,BC=1,AC=2,∠B=90°,则AB的长是()A.5B.2 C.1 D.32.如图1,在Rt△ABC中,∠ACB=90°,AC=8 cm,AB=10 cm,以BC为边向外作正方形BCDE,则正方形BCDE的面积为__________cm2.图13.如图2,在四边形ABCD中,AB=BC=22,AD=2,∠B=∠D=90°,则CD=__________.图24.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C所对的边.(1)若b=2,c=3,求a的值;(2)若a∶c=3∶5,b=16,求△ABC的面积.5.如图3,在△ABC中,AD⊥BC于点D,AB=13,BD=12,CD=3.(1)求AD的长;(2)求△ABC的周长.图3知识点2勾股定理的实际应用6.为了迎接新年的到来,同学们做了许多拉花布置教室.大林搬来一架高为2.6米的木梯,准备把拉花挂到2.4米的墙上,开始梯脚与墙角的距离为1.5米,但高度不够.要想正好挂好拉花,梯脚应向墙角移动________米.(人的高度忽略不计)7.如图4,台风过后某中学的旗杆在B处断裂,旗杆顶部A落在离旗杆底部C点6米处,已知旗杆总长15米,则旗杆是在距底部__________米处断裂.图48.如图5,某人从点A处划船横渡一条河,由于水流的影响,实际上岸地点C偏离目标点B 25 m,已知在河中实际划行65 m,求该河流的宽度.图59.如图6,某电信公司计划在A,B两乡镇间的E处修建一座5G信号塔,且使C,D 两个村庄到E处的距离相等.已知AD⊥AB于点A,BC⊥AB于点B,AB=80 km,AD=50 km,BC=30 km,求5G信号塔E应该建在离A乡镇多远的地方.图6知识点3勾股定理的逆定理及其应用10.下列各组长度的线段中,能构成直角三角形的是()A.7,20,24 B.4,5,6 C.3,4,5D.3,4,511.如图7,在一次夏令营活动中,小明从营地点A出发,沿北偏西30°的方向走了5003米到达点B,然后再沿一定方向走了500米到达目的地点C,此时点A与点C之间的距离为1 000米,则点C在点B的()图7A.北偏东30°方向B.北偏东60°方向C.南偏西30°方向D.南偏西60°方向12.已知三角形的三边长分别为a,b,c,且满足(a+b)2-c2=2ab,则此三角形是______三角形.13.如图8,在△ABC中,AB=4,AC=3,BC=5,AD是△ABC的角平分线,DE⊥AB于点E,求DE的长.图814.某校数学兴趣小组参加社会实践活动,他们途中发现一块如图9所示的四边形草地ABCD,借助所带工具测得AB=4米,BC=12米,CD=13米,AD=3米,∠A=90°.请求出四边形草地ABCD的面积.图9知识点4勾股定理及其逆定理的综合应用15.如图10,在Rt△OBC中,OC=1,OB=2,∠COB=90°,以点B为圆心,BC的长为半径画弧,交数轴于点A,若点A所表示的数为a,则a的值是()图10A.-5-2 B.-5C.5-2 D.-5+216.如图11,在正方形网格中,每个小正方形的边长均为1,则在△ABC中,边长为无理数的边有()图11A.3条B.2条C.1条D.0条17.若△ABC的三边a,b,c满足a-1+|b-2|+(c-3)2=0,则△ABC是__________三角形.18.如图12,在△ABC中,∠C=90°,点D在AC上,点E在AB上,把△ABC沿直线DE折叠,使点A与点B重合.(1)若∠A=35°,求∠CBD的度数;(2)若AC=8,BC=6,求AD的长.图12常考训练基础题19.已知点A 的坐标为(2,-1),则点A 到原点的距离为( )A .3B .3C .5D .1 20.如图13,在Rt △ABC 中,∠ACB =90°,BC =9,AC =12,过点C 作CD ⊥AB 于点D ,则CD 的长为( )图13A .365B .1225C .94D .3421.在Rt △ABC 中,∠C =90°,a ,b ,c 分别为∠A ,∠B ,∠C 所对的边,若a +b =14,c =10,则△ABC 的面积是( )A .24B .36C .48D .6022.满足a 2+b 2=c 2的三个正整数a ,b ,c 称为勾股数,如3,4,5是一组勾股数.请写出一组勾股数(不是3,4,5的整数倍):______________.23.如图14,在四边形ABCD 中,AB =5,BC =3,CD =6,AD =25 .若AC ⊥BC ,求证:AD ∥BC .图14提升题24.由下列条件不能判定△ABC为直角三角形的是()A.∠A∶∠B∶∠C=3∶4∶5B.∠A-∠B=∠CC.a=1,b=2,c=5D.(b+c)(b-c)=a225.如图15,在4×5的正方形网格中,每个小正方形的边长都是1,A,B是格点,则网格中满足以A,B,C为顶点的三角形是等腰三角形的格点C有()图15A.2个B.3个C.4个D.5个26.如图16,在一次测绘活动中,某同学站在点A的位置观测停放于B,C两处的小船,测得船B在点A北偏东75°方向900米处,船C在点A南偏东15°方向1 200米处,则船B与船C之间的距离为__________米.图1627.如图17(1),在矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作,将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A,H两点间的距离为__________.图1728.如图18,在平面直角坐标系中,网格中每个小正方形边长都为1,△ABC的顶点都在格点上.(1)直接写出点A,B,C的坐标;(2)试判断△ABC的形状,并说明理由.图1829.如图19,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上点A处距点O处240米.如果火车行驶时,周围200米以内会受到噪音的影响,那么火车在铁路MN 上从点O处出发沿ON方向以72千米/时的速度行驶时,点A处受噪音影响的时间为多少秒?图191.D 2.36 3.234.解:(1)在Rt △ABC 中,∠C =90°,b =2,c =3, ∴a =c 2-b 2 =5 .(2)∵a ∶c =3∶5,∴设a =3x ,则c =5x . ∵a 2+b 2=c 2,b =16,∴9x 2+162=25x 2.解得x =4(负值已舍去). ∴a =12.∴S △ABC =12 ab =12×12×16=96.5.解:(1)在Rt △ABD 中,∠ADB =90°,AB =13,BD =12, ∴AD =AB 2-BD 2 =5.(2)在Rt △ADC 中,∠ADC =90°,AD =5,CD =3 , ∴AC =AD 2+CD 2 =27 .∴△ABC 的周长为AB +BC +AC =AB +BD +CD +AC=13+12+3 +27 =25+3 +27 .6.0.5 7.6.38.解:根据题意,得AC =65 m ,BC =25 m. 在Rt △ABC 中,∠B =90°,由勾股定理,得AB =AC 2-BC 2 =652-252 =60(米). 答:该河流的宽度为60米.9.解:设AE =x km ,则BE =(80-x )km.∵AD ⊥AB ,BC ⊥AB ,∴△ADE 和△BCE 都是直角三角形. ∴DE 2=AD 2+AE 2,CE 2=BE 2+BC 2. ∵AD =50 km ,BC =30 km ,DE =CE ,∴AD 2+AE 2=BE 2+BC 2,即502+x 2=(80-x )2+302,解得x =30. 答:5G 信号塔E 应该建在离A 乡镇30 km 远的地方. 10.D 11.D 12.直角13.解:如图1,过点D 作DH ⊥AC 于点H .图1∵AD 是△ABC 的角平分线,DE ⊥AB , ∴DH =DE .∵AB =4,AC =3,BC =5, ∴AB 2+AC 2=BC 2.∴△ABC 为直角三角形. ∵S △ABC =S △ABD +S △ADC , ∴12 AB ·AC =12 DE ·AB +12 DH ·AC . ∴12 ×4×3=12 DE ×4+12 DH ×3=12×(4DE +3DH ). 又DE =DH ,∴DE =127.14.解:(1)如图2,连接BD .图2在Rt △ABD 中,∠A =90°,AB =4米,AD =3米,根据勾股定理,得BD =AB 2+AD 2 =42+32 =5(米). 在△BCD 中,BD =5米,BC =12米,CD =13米, ∴BD 2+BC 2=CD 2.∴△BCD 是直角三角形,∠CBD =90°. ∴S 四边形ABCD =S △ABD +S △BCD=12 AD ·AB +12 BD ·BC =12 ×3×4+12 ×5×12 =36(平方米).答:四边形草地ABCD 的面积是36平方米. 15.D 16.B 17.直角18.解:(1)由折叠的性质,得∠ABD =∠A =35°. ∵∠C =90°,∴∠ABC =180°-90°-35°=55°.∴∠CBD =∠ABC -∠ABD =55°-35°=20°. (2)由折叠的性质,得AD =BD . 设CD =x ,则AD =BD =8-x .在Rt △CDB 中,CD 2+BC 2=BD 2,即x 2+62=(8-x )2.解得x =74.∴AD =8-74 =254 .19.C 20.A 21.A 22.5,12,13(答案不唯一)23.证明:∵AC ⊥BC ,∴∠ACB =90°.在Rt △ABC 中,根据勾股定理,得AC 2=AB 2-BC 2=52-32=16. 在△ACD 中,AC 2+AD 2=16+(25 )2=36,CD 2=36, ∴AC 2+AD 2=CD 2.∴△ACD 为直角三角形,且∠CAD =90°. ∴AC ⊥CD . 又AC ⊥BC , ∴AD ∥BC .24.A 25.B 26.1 500 27.1028.解:(1)A (-1,5),B (-5,2),C (-3,1). (2)△ABC 是直角三角形.理由:∵AB 2=32+42=25,BC 2=12+22=5,AC 2=22+42=20, ∴AC 2+BC 2=20+5=25=AB 2. ∴△ABC 是直角三角形.29.解:如图3,过点A 作AC ⊥ON 于点C .图3在Rt △AOC 中,∠AOC =30°,OA =240米,∴AC=120米.设当火车到点B时对A处开始产生噪音影响,当火车到点D时对A处结束噪声影响,则AB=AD=200米.∴BC=CD.在Rt△ABC中,∠ACB=90°,AB=200米,AC=120米,∴BC=AB2-AC2=2002-1202=160(米).∴CD=BC=160米.∴BD=320米.∵72千米/小时=20米/秒,∴影响时间为320÷20=16(秒).答:点A处受噪音影响的时间为16秒.。
2022-2023学年苏科版八年级数学上册《第3章勾股定理》期末综合复习题(附答案)一.选择题1.下列各组数,可以作为直角三角形的三边长的是()A.2,3,4B.7,24,25C.8,12,20D.5,13,15 2.在平面直角坐标系中,点P(3,4)到原点的距离是()A.3B.4C.5D.±53.一直角三角形的两边长分别为3和4.则第三边的长为()A.5B.C.D.5或4.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣6,0),(0,8),以点A为圆心,以AB长为半径画弧,交x轴正半轴于点C,则点C的坐标为()A.(10,0)B.(0,4)C.(4,0)D.(2,0)5.已知,如图,一轮船以20海里/时的速度从港口A出发向东北方向航行,另一轮船以15海里/时的速度同时从港口A出发向东南方向航行,则2小时后,两船相距()A.35海里B.40海里C.45海里D.50海里6.如图,将一个边长分别为4,8的长方形纸片ABCD折叠,使C点与A点重合,则BE 的长是()A.3B.4C.5D.67.如图,数轴上的点A表示的数是﹣2,点B表示的数是1,CB⊥AB于点B,且BC=2,以点A为圆心,AC为半径画弧交数轴于点D,则点D表示的数为()A.B.+2C.﹣2D.28.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤139.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米10.如图,在矩形纸片ABCD中,已知AD=8,折叠纸片,使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A.3B.4C.5D.6二.填空题11.在“寻找滨河最美,拒绝不文明行为”系列活动中,细心的董明同学发现:学校六号楼前有一块长方形花圃(如图所示),有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,请你计算,他们仅仅少走了步路(假设2步为1米),却踩伤了花草.12.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为cm2.13.如图,已知在Rt△ABC中,∠ACB=90°,AB=8,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于.14.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.15.如图所示,圆柱的高AB=15cm,底面周长为40cm,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是.16.某小区楼梯如图所示,欲在楼梯上铺设红色地毯,已知这种地毯每平方米售价为20元,楼梯宽为2m,则购买这种地毯至少需要元.17.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=.三.解答题18.如图,铁路上A,B两点相距25km,C,D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=16km,CB=11km,现在要在铁路AB上建一个土特产品收购站E,使得C,D 两村到E站的距离相等,则E站应建在离A站多少km处?19.在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?20.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)21.在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为500米,与公路上另一停靠站B的距离为1200米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径400米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否需要暂时封锁?请通过计算进行说明.22.如图,在Rt△ABC中,∠BCA=90°,AC=12,AB=13,点D是Rt△ABC外一点,连接DC,DB,且CD=4,BD=3.(1)求BC的长;(2)求证:△BCD是直角三角形.23.如图(1)所示,一个梯子AB长2.5米,顶端A靠在墙AC上(墙与地面垂直),这时梯子下端B与墙角C距离为1.5米.(1)求梯子顶端A与地面的距离AC的长;(2)若梯子滑动后停在DE位置上,如图(2)所示,测得BD=0.5米,求梯子顶端A 下滑了多少米?24.如图,正方形网格中有△ABC.若每个小方格边长均为1,请你根据所学的知识解答下列问题:(1)判断△ABC的形状,并说明理由;(2)求△ABC中BC边上的高.25.我国大部分东部地区属于亚热带季风气候,夏季炎热多雨.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?参考答案一.选择题1.解:A、∵22+32≠42,∴不能构成直角三角形;B、∵72+242=252,∴能构成直角三角形;C、∵82+122≠202,∴不能构成直角三角形;D、∵52+132≠152,∴不能构成直角三角形.故选:B.2.解:∵点P(3,4),∴点P到原点的距离是=5.故选:C.3.解:(1)当两边均为直角边时,由勾股定理得,第三边为5,(2)当4为斜边时,由勾股定理得,第三边为,故选:D.4.解:∵点A,B的坐标分别为(﹣6,0),(0,8),∴OA=6,OB=8,在Rt△AOB中,由勾股定理得:AB==10,∴AC=AB=10,∴OC=10﹣6=4,∴点C的坐标为(4,0),故选:C.5.解:∵两船行驶的方向是东北方向和东南方向,∴∠BAC=90°,两小时后,两艘船分别行驶了20×2=40海里,15×2=30海里,根据勾股定理得:=50(海里).故选:D.6.解:根据翻折的性质得,AE=CE,设BE=x,∵长方形ABCD的长为8,∴AE=CE=8﹣x,在Rt△ABE中,根据勾股定理,AE2=AB2+BE2,即(8﹣x)2=42+x2,解得x=3,所以,BE的长为3.故选:A.7.解:由题意可得,AB=3,BC=2,AB⊥BC,∴AC===,∴AD=.∴点D表示数为﹣2.故选:C.8.解:a的最小长度显然是圆柱的高12,最大长度根据勾股定理,得:=13.即a的取值范围是12≤a≤13.故选:A.9.解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,在Rt△AEC中,AC==10m,故选:B.10.解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8﹣3=5,在Rt△CEF中,CF===4,设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,故选:D.二.填空题11.解:根据勾股定理可得斜边长是=5m.则少走的距离是3+4﹣5=2m,∵2步为1米,∴少走了4步,故答案为:4.12.解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.13.解:S1=π()2=πAC2,S2=πBC2,所以S1+S2=π(AC2+BC2)=πAB2=8π.故答案为:8π.14.解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故答案为:10.15.解:把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在Rt△ADC中,∠ADC=90°,CD=AB=15,AD为底面半圆弧长,AD=40=20,所以AC===25,故答案为:25cm.16.解:已知直角三角形的一条直角边是3m,斜边是5m,根据勾股定理得到:水平的直角边是4m,地毯水平的部分的和是水平边的长,竖直的部分的和是竖直边的长,则购买这种地毯的长是3m+4m=7m,则面积是14m2,价格是14×20=280(元).17.解:观察发现,∵AB=BE,∠ACB=∠BDE=90°,∴∠ABC+∠BAC=90°,∠ABC+∠EBD=90°,∴∠BAC=∠EBD,∴△ABC≌△BDE(AAS),∴BC=ED,∵AB2=AC2+BC2,∴AB2=AC2+ED2=S1+S2,即S1+S2=1,同理S3+S4=3.则S1+S2+S3+S4=1+3=4.故答案为:4.三.解答题18.解:设AE=xkm,∵C、D两村到E站的距离相等,∴DE=CE,即DE2=CE2,由勾股定理,得x2+162=112+(25﹣x)2,解得x=9.8,∴E站应建在离A站9.8 km处.19.解:设水池的深度为x尺,由题意得:x2+52=(x+1)2,解得:x=12,则x+1=13,答:水深12尺,芦苇长13尺.20.解:在Rt△ABC中,AC=30m,AB=50m;根据勾股定理可得:(m)∴小汽车的速度为v==20(m/s)=20×3.6(km/h)=72(km/h);∵72(km/h)>70(km/h);∴这辆小汽车超速行驶.答:这辆小汽车超速了.21.解:公路AB不需要暂时封锁.理由如下:如图,过C作CD⊥AB于D.∵CA⊥CB,∴∠ACB=90°,因为BC=1200米,AC=500米,所以,根据勾股定理有AB==1300(米).因为S△ABC=AB•CD=BC•AC所以CD===(米).由于400米<米,故没有危险,因此AB段公路不需要暂时封锁.22.(1)解:∵Rt△ABC中,∠BCA=90°,AC=12,AB=13,∴BC===5;(2)证明:∵在△BCD中,CD=4,BD=3,BC=5,∴CD2+BD2=42+32=52=BC2,∴△BCD是直角三角形.23.解:(1)在Rt△ABC中,∠C=90°根据勾股定理,得:AC===2(米)∴梯子顶端A与地面的距离AC为2米;(2)依题意,得:CD=BC+BD=1.5+0.5=2(米)在Rt△CDE中,∠C=90°,根据勾股定理,得:∴AE=AC﹣CE=2﹣1.5=0.5(米)∴梯子顶端A下滑了0.5米.24.解:(1)∵由勾股定理得:AB2=12+22=5,AC2=22+42=20,BC2=32+42=25,∴AB2+AC2=BC2,∴△ABC是直角三角形;(2)∵AB2=12+22=5,AC2=22+42=20,BC2=32+42=25,∴AB=,AC=2,BC=5,设△ABC的边BC上的高为h,则AB×AC=×h,∴×2=5h,h=2,即△ABC中BC边上的高是2.25.解:(1)由A点向BF作垂线,垂足为C,在Rt△ABC中,∠ABC=30°,AB=320km,则AC=160km,因为160<200,所以A城要受台风影响;(2)设BF上点D,G,使AD=AG=200千米,∴△ADG是等腰三角形,∵AC⊥BF,∴AC是DG的垂直平分线,∴CD=GC,在Rt△ADC中,DA=200千米,AC=160千米,由勾股定理得,CD===120(千米),则DG=2DC=240千米,遭受台风影响的时间是:t=240÷40=6(小时).。
第十八章勾股定理总复习:1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCB A方法二:bacbac cabcab四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a bcc baE D CBA3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =- ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数) 2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:ABC30°D CB A ADB CCB DACA B D人教版八年级下册勾股定理全章类题总结类型一:等面积法求高【例题】如图,△ABC 中,∠ACB=900,AC=7,BC=24,C D ⊥AB 于D 。
专题复习一 勾股定理本章常用知识点:1、勾股定理:直角三角形两直角边的 等于斜边的 。
如果用字母a,b,c 分别表示直角三角形的两直角边和斜边,那么勾股定理可以表示为: 。
2、勾股数:满足a 2+b 2=c 2的三个 ,称为勾股数。
常见勾股数如下:3、常见平方数:121112=; 144122=; 169132=; 196142=; 225152=;256162=289172=; 324182=; 361192=; 400202=;441212=; 484222= 529232=; 576242=; 625252=; 676262=;729272=专题归类:专题一、勾股定理与面积1、、在Rt ▲ABC 中,∠C=︒90,a=5,c=3.,则Rt ▲ABC 的面积S= 。
2、一个直角三角形周长为12米,斜边长为5米,则这个三角形的面积为: 。
3、直线l 上有三个正方形a 、b 、c ,若a 和c 的面积分别为5和11,则b 的面积为4、在直线l 上依次摆放着七个正方形(如图所示)。
已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4, 则S 1+S 2+S 3+S 4等于 。
5、三条边分别是5,12,13的三角形的面积是 。
6、如果一个三角形的三边长分别为a,b,c 且满足:a 2+b 2+c 2+50=6a+8b+10c,则这个三角形的面积为 。
7、如图1,︒=∠90ACB ,BC=8,AB=10,CD 是斜边的高,求CD 的长?7、如下图,在∆ABC 中,︒=∠90ABC ,AB=8cm ,BC=15cm ,P 是到∆ABC 三边距离相等的点,求点P 到∆ABC 三边的距离。
8、有一块土地形状如图3所示,︒=∠=∠90D B ,AB=20米,BC=15米,CD=7米,请计算这块土地的面积。
(添加辅助线构造直角三角形)9、如右图:在四边形ABCD 中,AB=2,CD=1,∠A=60°,求四边形ABCD 的面积。
勾股定理期末复习讲义提要:本节内容的重点是勾股定理及其应用.勾股定理是解几何中有关线段计算问题的重要依据,也是以后学习解直角三角形的主要依据之一,在生产生活实际中用途很大,它不仅在数学中,而且在其他自然科学中也被广泛地应用.本节内容的难点是勾股定理的证明.勾股定理的证明方法有多种,课本是通过构造图形,利用面积相等来证明的这里还涉及到了解决几何问题的方法之一:面积法。
割补(……陌生的名词么,但是我们用过)的思想也要值得我们去注意.【知识结构】1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 2.勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.3.勾股数能够成为直角三角形三条边长的三个正整数,称为勾股数.你记得几组勾股数?显然,若(a,b,c)为一组基本勾股数,则(ka,kb,kc)也为勾股数,其中k为正整数.4.利用尺规画出长度是无理数的线段.了,知道画吧5.勾股定理及其逆定理的应用.蚂蚁怎样走最近【注意】1.勾股定理的证明,是利用图形的割补变化,通过有关面积的数量关系进行证明的方法.2.在应用勾股定理时,要注意在直角三角形的前提条件,分清直角三角形的直角边和斜边.3. 在应用勾股定理逆定理时,先要确定最长边,再计算两条较短边的平方和是否等于最长边的平方,最后确定三角形是不是直角三角形.4. 本章关联的知识点:实数的运算,三角形,四边形,图形变换,解方程等【基础训练A】1.三角形三边之比分别为①1:2:3,②3:4:5;③1.5:2:2.5,④4:5:6,其中可以构成直角三角形的有()A.1个 B.2个 C.3个 D.4个2.若线段a、b、c能构成直角三角形,则它们的比为()A.2:3:4 B.3:4:6 C.5:12:13 D.4:6:73.下面四组数中是勾股数的有()(1)1.5,2.5,2 (2,2(3)12,16,20 (4)0.5,1.2,1.3A.1组B.2组C.3组D.4组4. △ABC中,∠C=90°,c=10,a:b=3:4,则a=______,b=_______.5. 在△ABC中∠C=90°,AB=10,AC=6,则另一边BC=________,面积为______,• AB边上的高为________;6.如图,△ABC中,AB=13,BC=14,AC=15,求BC边上的高AD.B C A D B C A D7. 如图,已知CD=3m ,AD=4m , ∠ADC=90°, AB=13m ,BC=12m ,(1)求AC 边的长。
勾股定理1.勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。
2.勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,即三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
(C为斜边最长,c>a,c>b )注释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系。
(2)勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角形。
(3)理解勾股定理的一些变式: c2=a2+b2,a2=c2-b2, b2=c2-a23.图形解释:4.勾股数:满足a2+b2=c2的三个正整数成为勾股数.例如:(3,4,5),(6,8,10),(5,12,13),(7,24,25)注释:勾股数的每一项的整数倍的组合也是勾股数,例如(3,4,5)的二倍(6,8,10)同样也为勾股数。
知识点一:已知两边求第三边1.在△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边①若a=5,b=12,则c=________;②若c=41,a=40,则b=________;③若∠A=45°,a=1.则b=________,c=________ ,a:b:c= .2. 在直角三角形中,若两直角边的长分别为1cm,2cm ,则斜边长为_____________.3. 已知直角三角形的两边长为3、2,则另一条边长是________________.4.如图,在△ABC中,AB=AC,∠BAC的角平分线交BC边于点D,AB=5,BC=6,则AD= 。
5. 如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?总结:在应用勾股定理进行计算时,一定要分清哪条是直角边哪条是斜边。
【同步训练一】1. 在Rt△ABC中,∠C=90°(1)已知a=6, c=10,求b;(2)已知a=40,b=9,求c;(3)若∠A=30°,a=1,则c=________,b=_________;(4)若∠A=45°,a=1,则c=________,b=_________2.在直角三角形中,若两直角边的长分别为1cm,2cm ,则斜边长为_____________.3.已知直角三角形的两边长为6、8,则另一条边长是________________.4.如图,在Rt△ABC中,∠C=90°,若BC=3,AC=4,则AB= 。
八(下)数学期末复习试题 第19章 勾股定理
班级 姓名 成绩
一、精心选一选(每小题5分,共40分)
1、在△ABC 中,∠C=90°,c=1,则a 2
+b 2
+c 2
的值是( ) A .2 B .4 C .6 D .8
2、一架4.1m 长的梯子斜靠在一竖直的墙上,这时梯足距墙脚0.9m .那么梯子的顶端与地面的距离是( )
A .3.2m
B .4.0m
C .4.1m
D .5.0m
3、直角三角形的两直角边分别为5厘米、12厘米,则斜边上的高是( ) A .6厘米 B .8厘米 C .
8013厘米 D .60
13
厘米 4、如图,AB ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,
那么AC 的长为( ).
A .12
B .7
C .5
D .13
5、将直角三角形的三条边长同时扩大同一倍数,得到的三角形是( ) A .钝角三角形 B .锐角三角形 C .直角三角形 D .等腰三角形
6、下列各组数中以a ,b ,c 为边的三角形不是直角三角形的是( ) A .a=2,b=3,c=4 B .a=7,b=24,c=25
C .a=6,b=8,c=10
D .a=3,b=4,c=5
7、小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m ,当它把绳子的下端拉开5m 后,发现下端刚好接触地面,则旗杆的高为 ( )
A .8cm
B .10cm
C .12cm
D .14cm
8、 已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )
A .3cm 2
B .4cm 2
C .6cm 2
D .12cm 2
二、耐心填一填(每小题5分,共20分)
9、在△ABC 中,∠C =90°,若 a =5,b =12,则 c = .
10、等腰△ABC 的腰长AB =10cm ,底BC 为16cm ,则底边上的高为 . 11、一棵大树在离地9米处断裂,树顶部落在离树底部12米处,大树折断之前的高为_________.
E
A
B C
D
第4
题图
第8题图
12、小明准备测量一段河水的深度,他把一根竹竿竖直插到离岸边1.5m 远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为 m .
三、细心解一解(每小题10分,共20分) 13、如图,∠FAC=∠ABC=90°, BC 长为3,AB 长为4,AF 长为12,求正方形的面积.
14、已知,如图,折叠长方形(四个角都是直角,对边相等)的一边AD 使点D 落在BC 边的点F 处,已知AB = 8cm ,BC = 10 cm ,求EC 的长.
四、专心做一做(每小题10分,共20分)
15、如图,等腰△ABC 中,底边BC =20,D 为AB 上一点,CD =16,BD =12.
求:(1) △ABC 的周长; (2) △ABC 的面积.
16、数学老师在一次“探究性学习”课中,给出如下数表:
(1)请你分别认真观察线段a 、b 、c 的长与n 之间的关系,用含n (n 为自然数,且n>1)的代数式表示: a= ,b= ,c= . (2)猜想:以线段a 、b 、c 为边的三角形是否是直角三角形?并说明你的结论.
D
E
C
A F E
D。