高中数学必修2测试卷
- 格式:doc
- 大小:1.31 MB
- 文档页数:7
直线的方程测试(二)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分).1.经过点),2(m P -和)4,(m Q 的直线的斜率等于1,则m 的值是( B ) A .4B .1C .1或3D .1或4 2.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足 ( C . )A .0≠mB .23-≠mC .1≠mD .1≠m ,23-≠m ,0≠m 3.直线l 与两直线y =1和x -y -7=0分别交于A ,B 两点,若线段AB 的中点为 M (1,-1),则直线l 的斜率为 ( D )A .23B .32C .-23D . -32 4.△ABC 中,点A(4,-1),AB 的中点为M(3,2),重心为P(4,2),则边BC 的长为( A )A .5B .4C .10D .85.直线kx -y +1=3k ,当k 变动时,所有直线都通过定点 ( C )A .(0,0)B .(0,1)C .(3,1)D .(2,1)6.如果AC <0且BC <0,那么直线Ax +By +C =0不通过 ( C )A .第一象限B .第二象限C .第三象限D .第四象限7.下列说法的正确的是 ( D )A .经过定点()P x y 000,的直线都可以用方程()y y k x x -=-00表示B .经过定点()b A ,0的直线都可以用方程y kx b =+表示C .不经过原点的直线都可以用方程x a y b +=1表示D .经过任意两个不同的点()()222111y x P y x P ,、,的直线都可以用方程 ()()()()121121y y x x x x y y --=--表示8.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是DA ab 21B ||21abC ab21 D 9. ||21ab 如果直线l 沿x 轴负方向平移3个单位再沿y 轴正方向平移1个单位后,又回到原来的位 置,那么直线l 的斜率是( A ) A .-13 B .-3 C .13D .3 10.若()()P a b Q c d ,、,都在直线y mx k =+上,则PQ 用a c m 、、表示为 ( D )A .()a c m ++12B .()m a c -C .a cm -+12 D . a c m -+12二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.△OAB 三个顶点O(0,0),A(-3,0),B(0,6),则过点O 将△OAB 的面积分为1:2的直线l 的方程是______ x+y=0或4x+y=0_______;12.与直线2x-y+4=0的夹角为450,且与这直线的交点恰好在x 轴上的直线方程为3x+y+6=0 或x-3y+2=013.与直线2x+3y+5=0平行,且在两坐标轴上截距之和为10/3的直线的方程为_____2x+3y-4=0; ___;14.经过点A(-2,2)且在第二象限与两坐标轴围成的三角形的面积最小时的直线方程为____ x-y+4=0___。
第一章 空间几何体一、选择题1.有一个几何体的三视图如下图所示,这个几何体可能是一个( ).主视图 左视图 俯视图 (第1题) A .棱台 B .棱锥 C .棱柱 D .正八面体2.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ).A .2+2B .221+C .22+2 D .2+13.棱长都是1的三棱锥的表面积为( ).A .3B .23C .33D .434.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ).A .25πB .50πC .125πD .都不对 5.正方体的棱长和外接球的半径之比为( ). A .3∶1 B .3∶2 C .2∶3 D .3∶36.在△ABC 中,AB =2,BC =1.5,∠ABC =120°,若使△ABC 绕直线BC 旋转一周,则所形成的几何体的体积是( ).A .29πB .27πC .25πD .23π7.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ).A .130B .140C .150D .1608.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,EF ∥AB ,EF =23,且EF 与平面ABCD 的距离为2,则该多面体的体积为( ).A .29 B .5 C .6 D .2159.下列关于用斜二测画法画直观图的说法中,错误..的是( ). A .用斜二测画法画出的直观图是在平行投影下画出的空间图形B .几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同C .水平放置的矩形的直观图是平行四边形D .水平放置的圆的直观图是椭圆10.如图是一个物体的三视图,则此物体的直观图是( ).(第8题)(第10题)二、填空题11.一个棱柱至少有______个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱.12.若三个球的表面积之比是1∶2∶3,则它们的体积之比是_____________.13.正方体ABCD-A1B1C1D1 中,O是上底面ABCD的中心,若正方体的棱长为a,则三棱锥O-AB1D1的体积为_____________.14.如图,E,F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是___________.(第14题)15.已知一个长方体共一顶点的三个面的面积分别是2、3、6,则这个长方体的对角线长是___________,它的体积为___________.16.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米.三、解答题17.有一个正四棱台形状的油槽,可以装油190 L,假如它的两底面边长分别等于60 cm 和40 cm,求它的深度.18 *.已知半球内有一个内接正方体,求这个半球的体积与正方体的体积之比.[提示:过正方体的对角面作截面]19.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=22,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.(第19题)20.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m,高4 m,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积;(3)哪个方案更经济些?第一章 空间几何体参考答案A 组一、选择题 1.A解析:从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断可能是棱台.2.A解析:原图形为一直角梯形,其面积S =21(1+2+1)×2=2+2.3.A解析:因为四个面是全等的正三角形,则S 表面=4×43=3. 4.B解析:长方体的对角线是球的直径, l =2225+4+3=52,2R =52,R =225,S =4πR 2=50π. 5.C解析:正方体的对角线是外接球的直径. 6.D解析:V =V 大-V 小=31πr 2(1+1.5-1)=23π.7.D解析:设底面边长是a ,底面的两条对角线分别为l 1,l 2,而21l =152-52,22l =92-52,而21l +22l =4a 2,即152-52+92-52=4a 2,a =8,S 侧面=4×8×5=160. 8.D解析:过点E ,F 作底面的垂面,得两个体积相等的四棱锥和一个三棱柱,V =2×31×43×3×2+21×3×2×23=215.9.B解析:斜二测画法的规则中,已知图形中平行于 x 轴的线段,在直观图中保持原长度不变;平行于 y 轴的线段,长度为原来的一半.平行于 z 轴的线段的平行性和长度都不变.10.D解析:从三视图看底面为圆,且为组合体,所以选D. 二、填空题11.参考答案:5,4,3.解析:符合条件的几何体分别是:三棱柱,三棱锥,三棱台.12.参考答案:1∶22∶33.r 1∶r 2∶r 3=1∶2∶3,31r ∶32r ∶33r =13∶(2)3∶(3)3=1∶22∶33.13.参考答案:361a .解析:画出正方体,平面AB 1D 1与对角线A 1C 的交点是对角线的三等分点, 三棱锥O -AB 1D 1的高h =33a ,V =31Sh =31×43×2a 2×33a =61a 3. 另法:三棱锥O -AB 1D 1也可以看成三棱锥A -OB 1D 1,它的高为AO ,等腰三角形OB 1D 1为底面.14.参考答案:平行四边形或线段.15.参考答案:6,6.解析:设ab =2,bc =3,ac =6,则V = abc =6,c =3,a =2,b =1, l =1+2+3=6. 16.参考答案:12.解析:V =Sh =πr 2h =34πR 3,R =32764×=12. 三、解答题 17.参考答案:V =31(S +S S ′+S )h ,h =S S S S V ′+′+3=6001+4002+60030001903×=75.18.参考答案:如图是过正方体对角面作的截面.设半球的半径为R ,正方体的棱长为a ,则CC'=a ,OC =22a ,OC'=R .(第18题)在Rt △C'CO 中,由勾股定理,得CC' 2+OC 2=OC' 2,即 a 2+(22a )2=R 2. ∴R =26a ,∴V 半球=26πa 3,V 正方体=a 3. ∴V 半球 ∶V 正方体=6π∶2. 19.参考答案:S 表面=S 下底面+S 台侧面+S 锥侧面=π×52+π×(2+5)×5+π×2×22 =(60+42)π. V =V 台-V 锥 =31π(21r +r 1r 2+22r )h -31πr 2h 1 =3148π.20.解:(1) 参考答案:如果按方案一,仓库的底面直径变成16 m ,则仓库的体积V 1=31Sh =31×π×(216)2×4=3256π(m 3).如果按方案二,仓库的高变成8 m ,则仓库的体积COAV 2=31Sh =31×π×(212)2×8=3288π(m 3).(2) 参考答案:如果按方案一,仓库的底面直径变成16 m ,半径为8 m . 棱锥的母线长为l =224+8=45, 仓库的表面积S 1=π×8×45=325π(m 2). 如果按方案二,仓库的高变成8 m .棱锥的母线长为l =226+8=10,仓库的表面积S 2=π×6×10=60π(m 2).(3) 参考答案:∵V 2>V 1,S 2<S 1,∴方案二比方案一更加经济些.。
人教版高中数学必修第二册第九章统计单元测试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.从某地区中小学生中抽取部分学生,进行肺活量调查.经了解,该地区小学、初中、高中三个学段学生的肺活量有较大差异,而同一学段男女生的肺活量差异不大.在下面的抽样方法中,最合理的抽样方法是()A.抽签法B.按性别分层随机抽样C.按学段分层随机抽样D.随机数法2.从某小学随机抽取100名学生,将他们的身高(单位:厘米)分布情况汇总如下表:身高[100,110)[110,120)[120,130)[130,140)[140,150]频数535302010由此表估计这100名学生身高的中位数为(结果保留4位有效数字)()A.119.3B.119.7C.123.3D.126.73.高二(1)班某宿舍有7人,他们的身高(单位:cm)分别为170,168,172,172,175,176,180,则这7个数据的第60百分位数为()A.168B.175C.172D.1764.在抽查产品尺寸的过程中,将其尺寸分成若干组,[a,b]是其中的一组.已知该组的频率为m,该组上的频率分布直方图的高为h,则|a-b|等于()A.mhB.C.D.m+h5.2020年2月8日,在韩国首尔举行的四大洲花样滑冰锦标赛双人自由滑比赛中,中国组合隋文静、韩聪以总分217.51分拿下四大洲赛冠军,这也是他们第六次获得四大洲冠军.中国另一对组合彭程、金杨以213.29分摘得银牌.花样滑冰锦标赛有9位评委进行评分,首先这9位评委给出某对选手的原始分数,评定该对选手的成绩时从9个原始成绩中去掉一个最高分、一个最低分,得到7个有效评分,7个有效评分与9个原始评分相比,不变的数字特征是()A.中位数B.平均数C.方差D.极差6.为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到如图C4-1所示的频率分布直方图,由于不慎将部分数据丢失,但知道后5组频数之和为62,设视力在4.6到4.8之间的学生数为a,最大频率为0.32,则a的值为()图C4-1A.64B.54C.48D.277.某商场一年中各月份的收入、支出情况的统计如图C4-2所示,则下列说法中正确的是()图C4-2A.支出最高值与支出最低值的比是8∶1B.4至6月份收入的平均数为50万元C.利润最高的月份是2月份D.2至3月份的收入的变化率与11至12月份的收入的变化率相同8.为了研究一种新药的疗效,选100名患者随机分成两组,每组50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成图C4-3,其中“*”表示服药者,“+”表示未服药者.则下列说法中,错误的是()图C4-3A.服药组的指标x的平均数和方差比未服药组的都小B.未服药组的指标y的平均数和方差比服药组的都大C.以统计的频率作为概率,估计患者服药一段时间后指标x低于100的概率为0.94D.这种疾病的患者的生理指标y基本都大于1.5二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,至少有两项是符合题目要求的)9.“悦跑圈”是一款基于社交型的跑步应用,用户通过该平台可查看自己某时间段的运动情况.某人根据2019年1月至2019年11月期间每月跑步的里程(单位:十公里)的数据绘制了如图C4-4所示的折线图,根据该折线图,下列结论正确的是()图C4-4A.月跑步里程逐月增加B.月跑步里程的最大值出现在9月C.月跑步里程的中位数为8月份对应的里程D.1月至5月的月跑步里程相对于6月至11月波动性更小,变化比较平稳10.某学校为了调查学生在一周生活方面的支出(单位:元)情况,抽取了一个容量为n的样本,将样本数据按[20,30),[30,40),[40,50),[50,60]分组后所得频率分布直方图如图C4-5所示,其中支出在[50,60]内的学生有60人,则下列说法正确的是()图C4-5A.样本中支出在[50,60]内的频率为0.03B.样本中支出不少于40元的人数有132C.n的值为200D.若该校有2000名学生,则一定有600人支出在[50,60]内11.统计某校n名学生某次数学同步练习的成绩(单位:分,满分150分),根据成绩依次分成六组[90,100),[100,110),[110,120),[120,130),[130,140),[140,150],得到频率分布直方图如图C4-6所示,若不低于140分的人数为110,则下列说法正确的是()图C4-6A.m=0.031B.n=800C.100分以下的人数为60D.成绩在区间[120,140)内的人数超过50%12.某市12月17日至21日期间空气质量呈现重度及以上污染水平,经市政府批准,该市启动了空气重污染红色预警,期间实行机动车“单双号”限行等措施.某社会调查中心联合问卷网,对2400人进行问卷调查,并根据调查结果得到如图C4-7所示的扇形图,则下列结论正确的是()图C4-7A.“不支持”部分所占的比例是10%B.“一般”部分对应的人数是800C.扇形图中如果圆的半径为2,则“非常支持”部分对应扇形的面积是65πD.“支持”部分对应的人数是1080请将选择题答案填入下表:题号12345678总分答案题号9101112答案第Ⅱ卷(非选择题共90分)三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.一组数据按从小到大的顺序排列为10,12,13,x,17,19,21,24,其中位数为16,则x=.14.某校为了了解学生收看“空中课堂”的方式,对该校500名学生进行了调查,并把结果绘制成如图C4-8所示的扇形图,那么该校通过手机收看“空中课堂”的学生人数是.图C4-815.国家禁毒办于2019年11月5日至12月15日在全国青少年毒品预防教育数字化网络平台上开展2019年全国青少年禁毒知识答题活动,活动期间进入答题专区,点击“开始答题”按钮后,系统自动生成20道题.已知某校高二年级有甲、乙、丙、丁、戊五位同学在这次活动中答对的题数分别是17,20,16,18,19,则这五位同学答对题数的方差是.16.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图C4-9所示).由图中数据可知a=.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用比例分配的分层随机抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为.图C4-9四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)将一组数据按从小到大的顺序排列,得到-1,0,4,x,7,14,已知这组数据的中位数为5,求这组数据的平均数与方差.18.(12分)某车站在春运期间为了了解旅客的购票情况,随机调查了100名旅客从开始在售票窗口排队到购到车票所用的时间t(以下简称为购票用时,单位为min).下面是对所得数据进行统计分析后得到的频率分布表和频率分布直方图.频率分组频数[5,10)100.10[10,15)10②[15,20)①0.50[20,25]300.30合计1001.00解答下列问题:(1)在表中填写出缺失的数据并补全频率分布直方图(如图C4-10所示);(2)估计旅客购票用时的平均数.图C4-1019.(12分)某班主任利用周末时间对该班2019年最后一次月考的语文作文分数进行了统计,发现分数都位于20~55之间,现将分数情况按[20,25),[25,30),[30,35),[35,40),[40,45),[45,50),[50,55]分成七组后,作出频率分布直方图如图C4-11所示,已知m=2n.(1)求频率分布直方图中m,n的值;(2)求该班这次月考语文作文分数的平均数和中位数.(每组数据用该组区间的中点值作为代表)图C4-1120.(12分)已知甲、乙两人在相同条件下各射靶10次,每次射击的命中环数如图C4-12所示.(1)求甲、乙两人射击命中环数的平均数和方差;(2)请根据甲、乙两人射击命中环数的平均数和方差,分析谁的射击水平高.图C4-1221.(12分)某地区100位居民的人均月用水量(单位:t)的分组及各组的频数分别为[0,0.5],4;(0.5,1],8;(1,1.5],15;(1.5,2],22;(2,2.5],25;(2.5,3],14;(3,3.5],6;(3.5,4],4;( 4,4.5],2.(1)列出样本的频率分布表.(2)画出频率分布直方图,并根据直方图估计这组数据的平均数、中位数、众数.(3)当地政府制定了人均月用水量不超过3t的标准,若超过3t则加倍收费,当地政府说,85%以上的居民不超过这个标准,这个解释对吗?为什么?22.(12分)我国是世界上严重缺水的国家之一,某市为了制定合理的节水方案,对家庭用水情况进行了调查,通过抽样,获得了某年100户家庭的月均用水量(单位:t),将数据按照[0,2),[2,4),[4,6),[6,8),[8,10]分成5组,制成了如图C4-13所示的频率分布直方图.(1)假设同组中的每个数据都用该组区间的中点值代替,求全市家庭月均用水量平均数的估计值(精确到0.01);(2)求全市家庭月均用水量的25%分位数的估计值(精确到0.01).图C4-13参考答案与解析1.C[解析]由题意得,最合理的抽样方法是按学段分层随机抽样,故选C.2.C[解析]设中位数为t,则有5100+35100+30100× -12010=0.5,解得t≈123.3.故选C.3.B[解析]将这7人的身高从小到大排序,可得168,170,172,172,175,176,180.∵7×60%=4.2,∴第5个数据为所求的第60百分位数,即这7个数据的第60百分位数为175.故选B.,所以h= | - |,则|a-b|= ,故选C.4.C[解析]在频率分布直方图中小长方形的高等于频率组距5.A[解析]根据题意可知,不变的数字特征是中位数.故选A.6.B[解析]前两组的频数为100×(0.05+0.11)=16.因为后五组的频数之和为62,所以前三组的频数之和为38,所以第三组的频数为38-16=22.又最大频率为0.32,故第四组的频数为0.32×100=32.所以a=22+32=54.故选B.7.D[解析]由图可知,支出最高值为60万元,支出最低值为10万元,其比是6∶1,故A错误;4至6月份的平均收入为13×(50+30+40)=40(万元),故B错误;利润最高的月份为3月份和10月份,故C 错误;由图可知2至3月份的收入的变化率与11至12月份的收入的变化率相同,故D正确.故选D.8.B[解析]服药组的指标x的取值相对集中,方差较小,且服药组的指标x的平均数小于未服药组的指标x的平均数,故选项A中说法正确;未服药组的指标y的取值相对集中,方差较小,故选项B 中说法错误;服药组的指标x值有3个大于100,所以估计患者服药一段时间后指标x低于100的概率为0.94,故选项C中说法正确;未服药组的指标y值只有1个数据比1.5小,则这种疾病的患者的生理指标y基本都大于1.5,故选项D中说法正确.故选B.9.BCD[解析]2月跑步里程比1月的小,故A错误;月跑步里程9月最大,故B正确;月跑步里程从小到大对应的月份依次为2月、7月、3月、4月、1月、8月、5月、6月、11月、10月、9月,故月跑步里程的中位数为8月份对应的里程,故C正确;1月至5月的月跑步里程相对于6月至11月,波动性更小,变化比较平稳,故D正确.故选BCD.10.BC[解析]由频率分布直方图得,样本中支出在[50,60]内的频率为1-(0.01+0.024+0.036)×10=0.3,故A错误;样本中支出不少于40元的人数为0.0360.3×60+60=132,故B正确;n=600.3=200,故C正确;在D中,若该校有2000名学生,则大约有600人支出在[50,60]内,故D错误.故选BC.11.AC[解析]由图可知10×(m+0.020+0.016+0.016+0.011+0.006)=1,解得m=0.031,故A正确;因为不低于140分的频率为0.011×10=0.11,所以n=1100.11=1000,故B错误;因为100分以下的频率为0.006×10=0.06,所以100分以下的人数为1000×0.06=60,故C正确;对选项D,成绩在区间[120,140)内的频率为0.031×10+0.016×10=0.47<0.5,人数不超过50%,故D错误.故选AC.12.ACD[解析]“不支持”部分所占的比例是1-45%-30%-15%=10%,A正确;“一般”部分对应的人数是2400×15%=360,B不正确;“非常支持”部分对应扇形的面积是π×22×30%=65π,C正确;“支持”部分对应的人数为2400×45%=1080,D正确.故选ACD.13.15[解析]由中位数的定义知 +172=16,∴x=15.14.25[解析]∵该校通过手机收看“空中课堂”的学生人数所占的百分比为1-(25%+70%)=5%,∴该校通过手机收看“空中课堂”的学生人数是500×5%=25.15.2[解析]这五位同学答对题数的平均数 =17+20+16+18+195=18,则方差s2=15×[(17-18)2+(20-18)2+(16-18)2+(18-18)2+(19-18)2]=2.16.0.0303[解析]因为10×(0.035+0.020+0.010+0.005+a)=1,所以a=0.030.身高在[120,130),[130,140),[140,150]三组内的学生人数为100×(0.030+0.020+0.010)×10=60,其中身高在[140,150]内的学生中人数为100×0.010×10=10,所以从身高在[140,150]内的学生中选取的人数应为1060×18=3.17.解:因为数据-1,0,4,x,7,14的中位数为5,所以4+ 2=5,解得x=6.设这组数据的平均数为 ,方差为s2,则 =16×(-1+0+4+6+7+14)=5,s2=16×[(-1-5)2+(0-5)2+(4-5)2+(6-5)2+(7-5)2+(14-5)2]=743.18.解:(1)表中缺失的数据分别为①50,②0.10.补全后的频率分布直方图如图所示.(2)估计旅客购票用时的平均数为7.5×0.10+12.5×0.10+17.5×0.50+22.5×0.30=17.5(min).19.解:(1)由频率分布直方图,得=2 ,(0.01+0.03+0.06+ +0.03+ +0.01)×5=1,解得 =0.04, =0.02.(2)该班这次月考语文作文分数的平均数为22.5×0.05+27.5×0.15+32.5×0.3+37.5×0.2+42.5×0.15+47.5×0.1+52.5×0.05=36.25.因为(0.01+0.03+0.06)×5=0.5,所以该班这次月考语文作文分数的中位数为35.20.解:(1)由折线图可知甲射击10次命中的环数分别为9,5,7,8,7,6,8,6,7,7.乙射击10次命中的环数分别为2,4,6,8,7,7,8,9,9,10.则x 甲=110×(9+5+7+8+7+6+8+6+7+7)=7(环).x 乙=110×(2+4+6+8+7+7+8+9+9+10)=7(环),甲2=110×[(9-7)2+(5-7)2+(7-7)2×4+(6-7)2×2+(8-7)2×2]=1.2,乙2=110×[(2-7)2+(4-7)2+(6-7)2+(7-7)2×2+(8-7)2×2+(9-7)2×2+(10-7)2]=5.4.(2)因为x 甲=x 乙, 甲2< 乙2,所以甲的射击稳定性比乙好,故甲的射击水平高.21.解:(1)作出频数分布表,如下.分组频数频率[0,0.5]40.04(0.5,1]80.08(1,1.5]150.15(1.5,2]220.22(2,2.5]250.25(2.5,3]140.14(3,3.5]60.06(3.5,4]40.04(4,4.5]20.02合计1001.00(2)由频率分布表画出频率分布直方图,如图所示.由频率分布直方图得这组数据的平均数=0.25×0.04+0.75×0.08+1.25×0.15+1.75×0.22+2.25×0.25+2.75×0.14+3.25×0.06+3.75×0.04+4.25×0.02=2.02.∵人均月用水量在[0,2]内的频率为0.04+0.08+0.15+0.22=0.49,在(2,2.5]内的频率为0.25,∴中位数为2+0.5−0.490.25×0.5=2.02.众数为2+2.52=2.25.(3)月用水量在3t以上的居民的比例为6%+4%+2%=12%,即大约有12%的居民月用水量在3t以上,88%的居民月用水量不超过3t,因此政府的解释是正确的.22.解:(1)因为0.06×2×1+0.11×2×3+0.18×2×5+0.09×2×7+0.06×2×9=4.92.因此全市家庭月均用水量平均数的估计值为4.92t.(2)频率分布直方图中,用水量低于2t的频率为0.06×2=0.12.用水量低于4t的频率为0.06×2+0.11×2=0.34.故全市家庭月均用水量的25%分位数的估计值为2+0.25−0.120.11≈3.18(t).。
人教版高中数学必修第二册第九章统计单元检测说明:本试卷满分100分,分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
考试时间45分钟。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列抽样方法是简单随机抽样的是A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方法确定号码的后四位是2709的为三等奖B.某车间包装一种产品,在自动包装传送带上,每隔30分钟抽一包产品,称其重量是否合格C.从8台电脑中逐个不放回地随机抽取2台,进行质量检验,假设8台电脑已编好号,对编号随机抽取D.从20个零件中一次性抽出3个进行质量检查2.对于考试成绩的统计,如果你的成绩处在第95的百分位数上,以下说法正确的是A.你得了95分B.你答对了95%的试题C.95%的参加考试者得到了和你一样的考分或还要低的分数D.你排名在第95名3.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A.中位数B.平均数C.方差D.极差4.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用比例分配的分层随机抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=A.9B.10C.12D.135.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5B.0.6C.0.7D.0.86.设样本数据x1,x2,…,x2020的方差为4,若y i=2x i+4(i=1,2,…,2020),则y1,y2,…,y2020的方差为A.13B.14C.15D.167.已知一组数据:125,121,123,125,127,129,125,128,130,129,126,124,125,127,126.则这组数据的第25百分位数和第80百分位数分别是A.125128B.124128C.125129D.125128.58.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳二、多项选择题:本题共2小题,每小题5分,共10分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.为了了解参加运动会的2000名运动员的年龄情况,从中抽取20名运动员的年龄进行统计分析.就这个问题,下列说法中正确的有________.①2000名运动员是总体;②每个运动员是个体;③所抽取的20名运动员是一个样本;④样本容量为20;⑤这个抽样方法可采用随机数法抽样;A.④B.①②C.②③D.⑤10.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半三、填空题:本题共4小题,每小题5分,共20分.11.某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的第50%位数_________(米).12.某学校高一年级1802人,高二年级1600人,高三年级1499人,先采用分层抽样的方法从中抽取98名学生参加全国中学生禁毒知识竞赛,则在高一、高二、高三三个年级中抽取的人数分别为_________13.若40个数据的平方和是56,平均数是22,则这组数据的标准差是________14.在高一年级学生身高的调查中,采用分层随机抽样,如果不知道样本数据,只知道抽取男生23人,其平均数和方差分别为170.6和12.59,女生27人,其平均数和方差分别为160.6和38.62.用这些数据对高一年级全体学生的身高平均值为_______,方差________四、解答题:本题共3小题,每小题10分,共30分.解答应写出文字说明、证明过程或演算步骤.15.对甲、乙两名同学的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下:(1)甲、乙的平均成绩谁最好.(2)谁的各门功课发展较平衡16.有1个容量为100的样本,数据的分组及各组的频数如下:[12.5,15.5),6;[15.5,18.5),16;[18.5,21.5),18;[21.5,24.5),22;[24.5,27.5),20;[27.5,30.5),10;[30.5,33.5],8.(1)列出样本的频率分布表(含累计频率).(2)画出频率分布直方图.(3)根据频率分布表的累计频率估计样本的90%分位数.甲6080709070乙806070807517.我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准,用水量不超过a的部分按照平价收费,超过a的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了100位居民某年的月均用水量(单位:t),制作了频率分布直方图.(1)由于某种原因频率分布直方图部分数据丢失,请在图中将其补充完整;(2)用样本估计总体,如果希望80%的居民每月的用水量不超过标准,则月均用水量的最低标准定为多少吨?并说明理由;(3)从频率分布直方图中估计该100位居民月均用水量的平均数.(同一组中的数据用该区间的中点值代表)人教版高中数学必修第二册第九章统计单元检测答案解析说明:本试卷满分100分,分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
普通高中课程标准必修数学②测试题测试题一、单选题1. 若a,b,c均是正数,且a,b,c满足a+b+c=1,则a²+b²+c²不小于:A.1/2B.1/3C.1/4D.1/62. 若x²+2x-3=0,y²-6y+13=0,求x²+y²的值为:A.20B.22C.24D.263. 已知抛物线y=ax²+bx+c的顶点坐标为(2,-5),则a,b,c的值为:A.a=1/2, b=-2, c=-3B.a=1/2, b=2, c=-3C.a=-1/2, b=-2, c=-3D.a=-1/2, b=2, c=-34. 若∠A:∠B:∠C=2:3:5,则∠A,∠B,∠C的大小依次为:A.40°,60°,80°B.80°,120°,200°C.20°,30°,50°D.60°,90°,150°5. 已知点A(3,4),B(-1,-6),点P在线段AB上且AP:PB=2:3,则点P的坐标为:A.(-3,-10)B.(1,-2)C.(2,-2)D.(5,-2)二、填空题6. 已知函数y=x³+ax²+bx+c,当x=1时,y=0;当x=-1时,y=4,则a,b,c的值分别为________。
7. 下列哪个数是3的倍数,又是4的倍数,又是5的倍数:________。
8. 整式4x³-3x²+2x-1÷2x-1=(________)x²+(-________)x+(________)。
三、解答题9.(6分)已知等差数列{a_n}的首项为a_1,公差为d,若a_5+a_7=12,且a_1+a_2+a_3=6,则求a_4。
10.(8分)已知正方形ABCD的边长为2,点P在AB上,点Q在线段CD上,且AP:PB=1:2,DQ:CQ=1:3,线段PQ与AC交于点M,求AM:MC的长度比。
(人教版)高中数学必修二(全册)同步练习+单元检测卷汇总课后提升作业一棱柱、棱锥、棱台的结构特征(45分钟70分)一、选择题(每小题5分,共40分)1.下列说法中正确的是( )A.棱柱的面中,至少有两个面互相平行B.棱柱中两个互相平行的平面一定是棱柱的底面C.棱柱中一条侧棱的长就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形【解析】选A.棱柱的两底面互相平行,故A正确;棱柱的侧面也可能有平行的面(如正方体),故B错;立在一起的一摞书可以看成一个四棱柱,当把这摞书推倾斜时,它的侧棱就不是棱柱的高,故C错;由棱柱的定义知,棱柱的侧面一定是平行四边形,但它的底面可以是平行四边形,也可以是其他多边形,故D错.2.四棱柱有几条侧棱,几个顶点( )A.四条侧棱、四个顶点B.八条侧棱、四个顶点C.四条侧棱、八个顶点D.六条侧棱、八个顶点【解析】选C.结合正方体可知,四棱柱有四条侧棱,八个顶点.3.下列说法错误的是( )A.多面体至少有四个面B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形【解析】选D.三棱柱的侧面是平行四边形,故D错误.4.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是( )A.棱柱B.棱台C.由一个棱柱与一个棱锥构成D.不能确定【解析】选 A.根据棱柱的结构特征,当倾斜后水槽中的水形成了以左右(或前后)两个侧面为底面的四棱柱.5.(2016·郑州高一检测)如图都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是( )A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)【解题指南】让其中一个正方形不动,其余各面沿这个正方形的各边折起,进行想象后判断.【解析】选B.在图(2)(3)中,⑤不动,把图形折起,则②⑤为对面,①④为对面,③⑥为对面,故图(2)(3)完全一样,而(1)(4)则不同. 【补偿训练】下列图形经过折叠可以围成一个棱柱的是( )【解析】选D.A,B,C中底面多边形的边数与侧面数不相等.6.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是( )A.1∶2B.1∶4C.2∶1D.4∶1【解析】选 B.由棱台的概念知,上、下两底面是相似的多边形,故它们的面积之比等于对应边长之比的平方,故为1∶4.7.(2016·温州高一检测)在五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱的对角线的条数共有( )A.20条B.15条C.12条D.10条【解析】选 D.因为棱柱的侧棱都是平行的,所以过任意不相邻的两条侧棱的截面为一个平行四边形,共可得5个截面,每个平行四边形可得到五棱柱的两条对角线,故共有10条对角线.8.(2015·广东高考)若空间中n个不同的点两两距离都相等,则正整数n的取值( )A.大于5B.等于5C.至多等于4D.至多等于3【解析】选 C.正四面体的四个顶点是两两距离相等的,即空间中n 个不同的点两两距离都相等,则正整数n的取值至多等于4.二、填空题(每小题5分,共10分)9.在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是________.(写出所有正确结论的编号)①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.【解析】如图:①正确,如图四边形A1D1CB为矩形;②错误,任意选择4个顶点,若组成一个平面图形,则必为矩形或正方形,如四边形ABCD为正方形,四边形A1BCD1为矩形;③正确,如四面体A1ABD;④正确,如四面体A1C1BD;⑤正确,如四面体B1ABD;则正确的说法是①③④⑤.答案:①③④⑤10.(2016·天津高一检测)一个棱柱有10个顶点,所有的侧棱长的和为60cm,则每条侧棱长为________cm.【解析】因为n棱柱有2n个顶点,又此棱柱有10个顶点,所以它是五棱柱,又棱柱的侧棱都相等,五条棱长的和为60cm,可知每条侧棱长为12cm.答案:12三、解答题(每小题10分,共20分)11.根据下面对几何体结构特征的描述,说出几何体的名称.(1)由8个面围成,其中2个面是互相平行且全等的六边形,其他各面都是平行四边形.(2)由5个面围成,其中一个是正方形,其他各面都是有1个公共顶点的三角形.【解析】(1)根据棱柱的结构特征可知,该几何体为六棱柱.(2)根据棱锥的结构特征可知,该几何体为四棱锥.12.已知三棱柱ABC-A′B′C′,底面是边长为1的正三角形,侧面为全等的矩形且高为8,求一点自A点出发沿着三棱柱的侧面绕行一周后到达A′点的最短路线长.【解析】将三棱柱侧面沿侧棱AA′剪开,展成平面图形如图,则AA″即为所求的最短路线.在Rt△AA1A″中,AA1=3,A1A″=8,所以AA″==.【延伸探究】本题条件不变,求一点自A点出发沿着三棱柱的侧面绕行两周后到达A′点的最短路线长.【解析】将两个相同的题目中的三棱柱的侧面都沿AA′剪开,然后展开并拼接成如图所示,则AA″即为所求的最短路线.在Rt△AA1A″中,AA1=6,A1A″=8,所以AA″===10.【能力挑战题】如图,在边长为2a的正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面,每个面的三角形有何特点?(3)每个面的三角形面积为多少?【解析】(1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF为等腰三角形,△PEF为等腰直角三角形,△DPE和△DPF均为直角三角形.(3)S△PEF=a2,S△DPF=S△DPE=×2a×a=a2,S△DEF=S正方形ABCD-S△PEF-S△DPF-S△DPE=(2a)2-a2-a2-a2=a2.关闭Word文档返回原板块温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
2022年高中数学选择性必修第二册综合测评(满分:150分;时间:120分钟)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知等差数列{a n}的公差d≠0,且a3+a6+a9=18,若a n=6,则n为()A.12B.8C.6D.42.已知函数f(x)=aln x+2,f'(e)=2,则a的值为()A.-1B.1C.2eD.e23.在等比数列{a n}中,a2+a3=1,a4+a5=2,则a6+a7=()A.2B.2√2C.4D.4√24.我国古代数学名著《九章算术》中有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织出的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上述已知条件,该女子第3天所织布的尺数为()A.1031B.2031C.54D.525.在等差数列{a n}中,首项a1>0,公差d≠0,前n项和为S n(n∈N*),且满足S3=S15,则S n 的最大项为()A.S7B.S8C.S9D.S106.已知函数f(x)=e-x(cos x+sin x),记f'(x)是f(x)的导函数,将满足f'(x)=0的所有正数x从小到大排成数列{x n},n∈N*,则f(x n)=()A.(-1)n e-(n+1)πB.(-1)n+1e-nπC.(-1)n e-nπD.(-1)n+1e-(n+1)π7.设奇函数f(x)在R 上存在导函数f'(x),且在(0,+∞)上f'(x)<x 2,若f(1-m)-f(m)≥13[(1-m)3-m 3],则实数m 的取值范围为( )A.[-12,12]B.(-∞,-12]∪[12,+∞)C.(-∞,-12]D.[12,+∞)8.已知定义在R 上的函数y=f(x)满足:函数y=f(x-1)的图象关于直线x=1对称,且当x ∈(-∞,0)时,有f(x)+xf'(x)<0(f'(x)是函数f(x)的导函数)成立.若a=(sin 12)·f (sin 12),b=(ln 2)·f(ln 2),c=(log 1214)·f (log 1214),则a,b,c 的大小关系是(深度解析)A.a>b>cB.b>a>cC.c>a>bD.a>c>b二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.设等差数列{a n }的首项为a 1,公差为d,其前n 项和为S n ,已知S 16>0,S 17<0,则下列结论正确的是( ) A.a 1>0,d<0 B.a 8+a 9>0C.S 8与S 9均为S n 的最大值D.a 9<010.已知函数f(x)=e x -ln x-2,则下列说法正确的是( ) A. f(x)有且仅有一个极值点 B. f(x)有零点C.若f(x)的极小值点为x 0,则0< f(x 0)<12D.若f(x)的极小值点为x 0,则12< f(x 0)<111.已知数列{a n}为等差数列,a1=1,且a2,a4,a8是一个等比数列中的相邻三项,记b n=a n q a n(q≠0,1),则{b n}的前n项和S n可以是()A.nB.nqC.q+nq n+1-nq n-q n(1-q)D.q+nq n+2-nq n+1-q n+1 (1-q)212.已知f(x)=e x·x3,则下列结论正确的是()A.f(x)在R上单调递增B.f(log52)<f(e-12)<f(lnπ)C.方程f(x)=-1有实数根D.存在实数k,使得方程f(x)=kx有4个实数根三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上)13.在等差数列{a n}中,已知a3=4,a6=10,则a10-a7=.14.已知数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n∈N*),则a6=.15.已知函数f(x)=xg(x),曲线y=f(x)在点(1,f(1))处的切线方程是x-y-1=0,则曲线y=g(x)在点(1,g(1))处的切线方程是.16.已知函数f(x)=(4-x2)(x2+ax+b)的图象关于直线x=1对称,则a+b=,f(x)的最大值为.(第一空2分,第二空3分)四、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)在等差数列{a n}中,a2=3,a5=6.(1)求数列{a n}的通项公式;(2)设b n=1,求数列{b n}的前n项和S n.a n a n+118.(本小题满分12分)已知函数f(x)=e x(x-1)-1e a x2,a<0.2(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)的极小值;(3)求函数f(x)的零点个数.}的前n项19.(本小题满分12分)已知数列{a n}是首项为正数的等差数列,数列{1a n a n+1.和为n2n+1(1)求数列{a n}的通项公式;(2)设b n=(a n+1)·2a n,求数列{b n}的前n项和T n.20.(本小题满分12分)某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d万元,并将剩余资金全部投入下一年生产.设第n年年底企业上缴资金后的剩余资金为a n 万元.(1)用d表示a1,a2,并写出a n+1与a n的关系式;(2)若公司希望经过m(m≥3)年使企业的剩余资金为4000万元,试确定企业每年上缴资金d的值(用m表示).21.(本小题满分12分)如图,有一块半径为20米,圆心角∠AOB=2π3的扇形展示台,该展示台分为四个区域:三角形OCD,弓形CMD,扇形AOC 和扇形BOD(其中∠AOC=∠BOD).某次菊花展依次在这四个区域摆放:泥金香、紫龙卧雪、朱砂红霜、朱砂红霜.预计这三种菊花展示带来的日效益分别是:泥金香50元/米2,紫龙卧雪30元/米2,朱砂红霜40元/米2.(1)设∠COD=θ,试建立日效益总量y 关于θ的函数关系式; (2)试探求θ为何值时,日效益总量达到最大值.22.(本小题满分12分)已知函数f(x)=ln(2x+a)(x>0,a>0),曲线y=f(x)在点(1,f(1))处的切线在y 轴上的截距为ln 3-23.(1)求a 的值;(2)讨论函数g(x)=f(x)-2x(x>0)和h(x)=f(x)-2x 2x+1(x>0)的单调性;(3)设a 1=25,a n+1=f(a n ),求证:5−2n+12<1a n-2<0(n ≥2).答案全解全析一、单项选择题1.C 由a 3+a 6+a 9=18,得3a 6=18,∴a 6=6,又a n =6,∴a n =a 6,又d ≠0,∴{a n }为单调数列,∴n=6.故选C. 2.C 由f(x)=aln x+2得, f'(x)=ax ,∴f'(e)=ae=2,解得a=2e.故选C.3.C 设等比数列{a n }的公比为q,则a 4+a 5a 2+a 3=a 2q 2+a 3q 2a 2+a 3=q 2=2, ∴a 6+a 7=a 4q 2+a 5q 2=(a 4+a 5)q 2=2×2=4. 故选C.4.B 设该女子每天分别织布的尺数构成数列{a n },则数列{a n }为等比数列,设其首项为a 1,公比为q,前n 项和为S n .则q=2,S 5=5, ∴5=a 1(1-25)1−2,解得a 1=531,∴a 3=531×22=2031.故选B.5.C 由S 3=S 15得,a 4+a 5+…+a 15=0, ∴6(a 9+a 10)=0,即a 9+a 10=0. 又a 1>0,∴a 9>0,a 10<0, ∴S n 的最大项为S 9.故选C.6.C f'(x)=-e -x (cos x+sin x)+e -x (-sin x+cos x)=-2e -x sin x.令f'(x)=0,得-2e -x sin x=0,解得x=kπ,k ∈Z,从而x n =nπ,n ∈N *, f(x n )=(-1)n e -nπ.因为f(x n+1)f(x n )=-e -π,所以数列{f(x n )}是公比为-e -π的等比数列,其首项f(x 1)=(-1)1e -π=-e -π.其通项公式为f(x n )=(-1)n e -nπ,故选C.7.D 由f(1-m)-f(m)≥13[(1-m)3-m 3]得, f(1-m)-13(1-m)3≥f(m)-13m 3,构造函数g(x)=f(x)-13x 3,则g'(x)=f'(x)-x 2<0.故g(x)在(0,+∞)上单调递减,由函数f(x)为奇函数可得g(x)为奇函数,故g(x)在R 上单调递减, 因此原不等式可化为1-m ≤m,解得m ≥12,故选D.8.A 由函数y=f(x-1)的图象关于直线x=1对称知,f(x)是偶函数,设g(x)=x ·f(x),则g(x)是奇函数,且当x<0时,g'(x)=f(x)+x ·f'(x)<0,即g(x)是减函数,∴当x>0时,g(x)也是减函数.又0<sin 12<12<ln 2<lo g 1214=2,∴g (sin 12)>g(ln 2)>g (log 1214).即(sin 12)f (sin 12)>(ln 2)f(ln 2)>(log 1214)f (log 1214). ∴a>b>c. 故选A.解题模板 构造函数,利用单调性解决比较大小的问题中,掌握一些基本的大小关系可帮助解题,如本题中,当0<x<π2时,sin x<x,ln 2>ln √e =12等.二、多项选择题 9.ABD ∵S 16=16(a 1+a 16)2>0,∴a 8+a 9=a 1+a 16>0,∴B 正确. 又S 17=17(a 1+a 17)2=17a 9<0,∴a 9<0,∴a 8>0,∴d=a 9-a 8<0,∴a 1>0,∴A 、D 正确.易知S 8是S n 的最大值,S 9不是S n 的最大值,∴C 错误.故选ABD.10.AC 由题意得, f(x)的定义域为(0,+∞),且f'(x)=e x -1x,设h(x)=f'(x),则h'(x)=e x +1x>0,∴h(x)在(0,+∞)上单调递增, 又h (12)=e 12-2=√e -2<0,h(1)=e 1-1>0,∴h(x)存在唯一零点,设为x 0, 当0<x<x 0时, f'(x)<0, f(x)单调递减, 当x>x 0时, f'(x)>0, f(x)单调递增, ∴f(x)有唯一极小值点x 0,∴A 正确. 令f'(x 0)=e x 0-1x 0=0,得e x 0=1x 0,∴x 0=ln 1x 0=-ln x 0.∴f(x 0)=e x 0-ln x 0-2=1x 0+x 0-2≥2√1x 0·x 0-2=0(当且仅当x 0=1时等号成立),又12<x 0<1,∴f(x 0)>0,即[f(x)]min >0, ∴f(x)无零点,∴B 错误. 由f(x 0)=1x 0+x 0-2,12<x 0<1,可设g(x)=1x+x-2,则g'(x)=-1x+1.当12<x<1时,g'(x)<0,∴g(x)在(12,1)上单调递减.∴g(1)<g(x)<g (12),即0<f(x 0)<12, ∴C 正确,D 错误.故选AC.11.BD 设等差数列{a n }的公差为d,由题意得a 42=a 2a 8,即(1+3d)2=(1+d)(1+7d),∴d 2-d=0,解得d=0或d=1. 当d=0时,a n =a 1=1, ∴b n =a n q a n =q,∴{b n }的前n 项和为nq,B 正确. 当d=1时,a n =n, ∴b n =n ·q n (q ≠0,1). ∴S n =1×q+2×q 2+…+nq n ,∴qS n =1×q 2+…+(n-1)q n +n ·q n+1, ∴(1-q)S n =q+q 2+…+q n-nq n+1=q(1-q n)1−q-nqn+1=q -qn+1+nq n+2-nq n+11−q.又q ≠1,∴S n =q+nq n+2-nq n+1-q n+1(1-q)2,D 正确.故选BD.12.BCD f(x)=e x ·x 3, ∴f'(x)=e x (x 3+3x 2). 令f'(x)=0,得x=0或x=-3. 当x<-3时, f'(x)<0, f(x)单调递减, 当x>-3时, f'(x)≥0, f(x)单调递增,A 错误. 又0<log 52<12<e -12<1<ln π,∴f(log 52)< f(e -12)< f(ln π),B 正确. ∵f(0)=0, f(-3)=e -3·(-3)3=-(3e)3<-1,∴f(x)=-1有实数根,C 正确. 设f(x)=kx,显然x=0是方程的根, 当x ≠0时,k=f(x)x=e x ·x 2,设g(x)=e x ·x 2,则g'(x)=x(x+2)e x ,令g'(x)=0,得x=0或x=-2.当x 发生变化时,g'(x),g(x)的变化情况如下表:x (-∞,-2) -2 (-2,0) 0 (0,+∞) g'(x) + 0 - 0 + g(x)↗4e 2↘↗画出y=g(x)的大致图象,如图,∴当0<k<4e2时,g(x)=k 有3个实数根,∴D 正确.故选BCD.三、填空题 13.答案 6解析 设等差数列{a n }的公差为d.则3d=a 6-a 3=6,解得d=2. 所以a 10-a 7=3d=6. 14.答案 768解析 由a n+1=3S n ,得S n+1-S n =3S n ,即S n+1=4S n ,又S 1=a 1=1,所以数列{S n }是首项为1,公比为4的等比数列,所以S n =4n -1,所以a 6=S 6-S 5=45-44=3×44=768. 15.答案 x-y-1=0解析 ∵f(x)=xg(x),∴f'(x)=g(x)+xg'(x).∵曲线y=f(x)在(1, f(1))处的切线方程是x-y-1=0, ∴{1−f(1)-1=0,f'(1)=1,∴{f(1)=0,f'(1)=1.∴{f(1)=1×g(1)=0,f'(1)=g(1)+1×g'(1)=1,解得{g(1)=0,g'(1)=1.则曲线y=g(x)在(1,g(1))处的切线方程为y-0=1×(x-1),即x-y-1=0, 即切线方程为x-y-1=0. 16.答案 -4;16解析 由4-x 2=0可得x=2或x=-2,即2,-2是函数f(x)的零点,∵f(x)=(4-x 2)(x 2+ax+b)的图象关于直线x=1对称,且(2,0),(-2,0)关于x=1对称的点分别为(0,0),(4,0),∴0,4也是函数f(x)的零点, ∴0,4是x 2+ax+b=0的根,∴b=0,a=-4,∴a+b=-4, ∴f(x)=(4-x 2)(x 2-4x),∴f'(x)=-4(x-1)(x 2-2x-4), 令f'(x)=0,得x=1或x=1-√5或x=1+√5.当x>1+√5或1-√5<x<1, f'(x)<0, f(x)单调递减, 当1<x<1+√5或x<1-√5时, f'(x)>0, f(x)单调递增.又当x →∞时, f(x)<0, f(1+√5)=f(1-√5)=16,∴f(x)的最大值为16. 四、解答题17.解析 (1)设等差数列{a n }的首项为a 1,公差为d. ∵a 2=3,a 5=6,∴{a 1+d =3,a 1+4d =6,解得{a 1=2,d =1,(2分) ∴a n =a 1+(n-1)d=n+1.(4分) (2)由(1)知a n =n+1,∴b n =1a n a n+1=1(n+1)(n+2)=1n+1-1n+2,(6分)∴S n =b 1+b 2+…+b n =12-13+13-14+…+1n+1-1n+2(8分)=12-1n+2=n2(n+2).(10分)18.解析 (1)由已知得, f(x)的定义域为R, f'(x)=e x (x-1)+e x -e a x=x(e x -e a ), f'(0)=0. 又f(0)=-1,∴切点坐标为(0,-1).∴曲线y=f(x)在点(0,-1)处的切线方程为y=-1.(4分) (2)由(1)知f'(x)=x(e x -e a ). 令f'(x)=0,得x=0或x=a(a<0).当x 发生变化时, f'(x), f(x)的变化情况如下表:x (-∞,a) a (a,0) 0 (0,+∞) f'(x) + 0 - 0 + f(x)↗极大值↘极小值↗∴f(x)在(-∞,a),(0,+∞)上单调递增,在(a,0)上单调递减.∴f(x)在x=0处取得极小值,且极小值为f(0)=-1.(8分)(3)由(2)知f(x)的极大值为f(a)=e a (a-1)-12e a a 2=(a -1-12a 2)e a <0(a<0),f(0)=-1<0, f(2)=e 2-2e a . ∵a<0,∴0<e a <1,∴f(2)>0. ∴函数f(x)的零点个数为1.(12分)19.解析 (1)设等差数列{a n }的首项为a 1,公差为d, 令n=1,得1a 1a 2=13,所以a 1a 2=3.①(1分) 令n=2,得1a 1a 2+1a 2a 3=25,所以a 2a 3=15.②(3分)由①②得a 1=1,d=2,所以a n =2n-1.(5分) (2)由(1)知b n =2n ·22n-1=n ·4n , 所以T n =1·41+2·42+…+n ·4n ,所以4T n =1·42+…+(n-1)·4n +n ·4n+1,(7分) 两式相减,得-3T n =41+42+…+4n -n ·4n+1(9分) =4(1−4n )1−4-n ·4n+1=1−3n 3·4n+1-43,(11分)所以T n =3n -19·4n+1+49=4+(3n -1)·4n+19.(12分)20.解析 (1)由题意得a 1=2 000(1+50%)-d=3 000-d,a 2=a 1(1+50%)-d=32a 1-d=4 500-52d,(2分)a n+1=a n (1+50%)-d=32a n -d.(5分)(2)由(1)得a n =32a n-1-d=32·(32a n -2-d)-d=(32)2·a n-2-32d-d=…=(32)n -1a 1-d1+32+(32)2+…+(32)n -2,(7分)整理得a n =(32)n -1(3 000-d)-2d ·[(32)n -1-1]=(32)n -1(3 000-3d)+2d.(9分)由题意知a m =4 000,所以(32)m -1(3 000-3d)+2d=4 000,解得d=[(32)m -2]×1 000(32)m -1=1 000(3m -2m+1)3m -2m.(11分)故该企业每年上缴资金d 的值为1 000(3m -2m+1)3m -2m万元时,经过m(m ≥3)年企业的剩余资金为4 000万元.(12分) 21.解析 (1)依题意得,∠AOC=2π3-θ2=π3-θ2,(2分)则y=12×(π3-θ2)×202×40×2+12×202×sin θ×50+12×θ×202-12×202×sin θ×30 =16 000×(π3-θ2)+10 000sin θ+6 000θ-6 000sin θ =16 000π3+4 000sin θ-2 000θ,0<θ<2π3.(6分)(2)由(1)得,y'=4 000cos θ-2 000, 令y'=0,得cos θ=12,又0<θ<2π3,所以θ=π3,(8分)当0<θ<π3时,y'>0,当π3<θ<2π3时,y'<0,(10分)所以θ=π3是函数的极大值点,且唯一;所以当θ=π3时,日效益总量达到最大值.(12分)22.解析 (1)由f(x)=ln(2x+a), 得f'(x)=22x+a,因此f'(1)=22+a.(1分)又因为f(1)=ln(2+a),所以曲线y=f(x)在点(1, f(1)处的切线方程为y-ln(2+a)=22+a(x-1),即y=22+ax+ln(2+a)-22+a.(2分)由题意得,ln(2+a)-22+a=ln 3-23,易得a=1,符合上式.(3分) 令φ(a)=ln(2+a)-22+a(a>0),则φ'(a)=12+a +2(2+a)>0,所以φ(a)为单调递增函数,故a=1是唯一解.(4分) (2)由(1)可知,g(x)=ln(2x+1)-2x(x>0),h(x)=ln(2x+1)-2x 2x+1(x>0),则g'(x)=22x+1-2=-4x2x+1<0,所以g(x)=f(x)-2x(x>0)为单调递减函数.(6分) 因为h'(x)=22x+1-2(2x+1)=4x(2x+1)>0,所以h(x)=f(x)-2x 2x+1(x>0)为单调递增函数.(8分)(3)证明:由a 1=25,a n+1=f(a n )=ln(2a n +1),易得a n >0.所以5−2n+12<1a n-2等价于a n <2n5.(9分)由(2)可知,g(x)=f(x)-2x=ln(2x+1)-2x 在(0,+∞)上为单调递减函数. 因此,当x>0时,g(x)<g(0)=0,即f(x)<2x. 令x=a n-1(n ≥2),得f(a n-1)<2a n-1, 即a n <2a n-1.因此,当n ≥2时,a n <2a n-1<22a n-2<…<2n-1·a 1=2n5.所以5−2n+12<1a n-2成立.(10分)下面证明:1a n-2<0.由(2)可知,h(x)=f(x)-2x2x+1=ln(2x+1)-2x2x+1在(0,+∞)上为单调递增函数,因此,当x>0时,h(x)>h(0)=0, 即f(x)>2x 2x+1>0.因此1f(x)<12x+1,即1f(x)-2<12(1x-2). 令x=a n-1(n ≥2), 得1f(a n -1)-2<12(1an -1-2),即1a n-2<12(1an -1-2).当n=2时,1a n-2=1a 2-2=1f(a 1)-2=1f(25)-2=1ln1.8-2.因为ln 1.8>ln √3>ln √e =12,所以1ln1.8-2<0,所以1a 2-2<0.(11分)所以,当n ≥3时,1a n-2<12(1an -1-2)<12(1an -2-2)<…<12(1a 2-2)<0.所以,当n ≥2时,1a n-2<0成立. 综上所述,当n ≥2时,5−2n+12n<1a n-2<0成立.(12分)。
(人教版)高中数学必修二(全册)单元测试卷汇总、阶段通关训练(一)(60分钟 100分)一、选择题(每小题5分,共3。
分)1・已知某几何体的三视图如图所示,那么这个几何体是□ □便視囲A. 长方体 C.匹棱锥【解析】选A.该几何体是长方体,如图所示» 入城商中目字必零二01 :酚俭1王训停 爺人椒版為中教学宕偌2!; &馈通关训号 信,奴薮版快9E 必偌二好:阶段遑关训澤 司:人馭艇苣中数猝偌二桂測:跻蜀■美训遂 琼人板版毫中gtl 修二窗I ;樓埃蜃量怦估 S 人会版毎中數⑴ C 2) Word 版言眾忻 Word 版合解忻 W 。
招版含解忻 (AS ) Word 板合樹ff (B 卷)WordB.圆性 D.四棱台正視图悟视图2.以钝角三角形旳较小边所在的直线为轴,其他两边旋转一周所得到的几何体是()A .两个圆锥拼桜而成的组合体B.一个圖台C.一个圆锥D . 一个圆锥挖去一个同底的小圆维【解析】选D.如图以AB为轴所得的几何体是一个大圆锥挖去一个同底的小圆锥.3.已知AAB攏边长为2a的正三角形,那么△ABCE勺平面直观图△ A'B‘ C'的面积为()D.\Ga~【鮮析】选C.直观图面积S与原图面积S具有关系:S' Mfs.因为S 好芸12a)所以S …c 三•X\/3a'=^a .4- 4 4【补偿训练】某三角形的直观图是斜边长为2的等腰直角三角形,如图所示,则原三信形的面积是【解析】根据宜观图和原图形的关系可知原图形的面积为X 2vl X 2二2卮 答案:2^24. 某三梭锥的三视图如图所示,则该三検锥的体积是【解析】选B .由三视图可判断该三棱锥底面为等腰直角三角形,三 棱锥旳高为 2. RI V=x x 1 x 1 x 2=.^【补偿洲练】已知正三棱镣V-ABC 的正视图、侧视图和帽视图如图所 示,则该正三枝锥侧视图的面积是A.B. C. D.1A.v39B.6\,r 3D.6俯视C.即3【解析】选D .如图,根据三视图间的关系可得BCM3,所以侧视图 中VA 二\|铲一任X ? X 2妁七整,所以三橙锥侧视图面积S- 海=x 2V 3X 2\顶二6,故选 D.5.(2016 •蚌瑋高二检测)若一个回锥的侧面展开图是面积为 2工的半圆面,则该圆锥的体积为B.V3 X C .拓x【解析】选A.设园锥的母线长为I,底面半径为r,由题意|7苗2 = 211,vnl = 2TTT ,解得'所以圆锥的高为 h=\F —尸=寸3 , V= * r 2h= r x 12x r = L . 6.(2016 •雅安高二检测)设正方体的全面积为 24,邪么其内切球的体积是A .扼KB.兀32 D.—【解析】 选B.正方体的全面积为24,所以,设正方体的棱长为a.6 宀 24, a 二2,正方体的内切球的直径就是正方体的校长,所以球的半径为1,内切球旳体积:V = 7t . ID RC乙 第*已回刮寻詠回王曲>=s '哥USS 甲'里蛔国皿【果到】&&価91实逐刘t ¥豈我到国丑屬T 風濕&一天喔宰邕€好日-6肝里N 二縛:毒虽•*+£,W=M*£Axl X >t=S rft凰峯4 Z^A^Ax^ x=A '風刘"坦 NN 八一醇E3HI 诳乙 弟学段皿期一旧耳闻1/峯'皓也乎书屋絶三零净【爆蜴】醇車回1/溟【四'(国⑰)国隴三阳财回廿必日(脈玛二堆※困• 9L0S1-8LL :孝晶U=x 韧 N 刮’壽」三三)阜尚‘X 興覃毋号密祺[菓到】 麹*辛矣廚留丄壬至藏乌去廖犯讪目丄竺羽诲同争宙【睾里區墙】^实些阳号屛醇斟濯施*09实邊回回淮即回通士互士 .乙屿%邊国基’9L 实雙団驚勢N(G&详‘&9鲤W 辱)谴乏帯 '二=M 媛苴'務nD所以AQ=\吃,A O=R^/6.所以S丼二4兀F<=24T.答案:24 x10•圖台的底面半径分别为1和2,母线长为3,则此圖台的体积为【解析】圆台的高h= 732 - (2 - I)2 =2 <1 ,所以体积71 2 aV=y(R+Rr4-r )h=^^i(. 答案:學三、解答题(共4小题,共50分)11.(12分)如區几何体上半部分是母线长为5,底面圆半径为3的圆锥,下半部分是下底面圆半径为2,母线长为2的圆台,计算该几何体的表面枳和体枳【韻析】圖锥侧面积为S = X rl=15r ,圖台的侧面积为缶冗(r+r ' )1二10冗,圖台的底面宜积为订’』牝,所以表面积为:S=S+S+S s=15i +10兀+4H=29X;圆锥的体积V-xr2hi=12x ,圆台的体积V:= r h2(r :+rr , +「’ 2)=^y^r ,所以体积为:V=V+U=12i------ X .312.(12分)如图是一个几何体的正视图和俯视图(1)试判断该几何体是什么几何体?(2)画出其侧视图,并求该平面图形的面积.(3)求出该几何体的体积.【解析】(1)由该几何体的正视图和俯视图可知该几何体是一个正六棱锥.(2)该几何体的側视图如图.其中AB=AC AD^BC,且BC的长是俯视图正六边形对边的距离,即BC=v3a, AD是正六棱锥的高,即AD十3a,所以该平面图形的面积(3)没这个正六棱锥的底面积是S,体积为V,则S=6< —a=—a\4 2所以V=x三歯x JJa=a°.13.(13分)如图所示,在四边形ABC畔,Z DAB=90 , ZADCF35 ,AB二5 CD二不臣,AD二2求四边形ABC说AD旋转一周所成几何体的表面积及体积.【鮮析】S 表面二S SOFB +S Bo ma +S 四部面=it x 5~+ i x (2+5) x 5+ r X 2X 2V2=(4 克+60) x .V=V H&-V B*=z (4-r if z+Fj )h- x h148=I (25+10+4) X 4- Jt X 4X 2. x .14.(13分)(2016 ,湖北实验中学高一检测 )如图,△ ABC中,ZACB=90 , Z ABC=30* , BC%3 在三角形内挖去一个半圆(圆心。
驻市一高2009~2010学年度暑假作业高一数学必修二(直线与圆)第I 卷(选择题60分)一、选择题(下列各题都有四个选择项,其中一项正确,请选出,每题5分,共60分)1.若A (3,5)、B (a ,7)、C (-1,-3)三点共线,则a 值为()A .2B .3C .4D .52.已知 a c > 0 ,b c < 0,那么直线 a x +b y + c =0不通过()A .第一象限B .第二象限C .第三象限D .第四象限3.直线kx -y + 1-3 k = 0,当k 变化时,所有直线都通过点()A .(0,0)B .(0,1)C .( 2 ,1)D .( 3 ,1)4.点A ( a ,6 )到直线3 x -4 y = 2的距离不小于4,则 a 的取值范围是()A .a ≥346B .a ≤-2C .a ≥346或a ≤2 D .a ≤-2或a ≥3465.直线012ay x和直线01)13(ayx a平行则()A .61aB .0aC .32aD .61a或0a 6.过原点O 作直线L 的垂线,垂足为A (2,3),则L 的方程是A .2x -3y -13=0B .2x +3y -13=0C .2x -3y +13=0D .2x +3y +13=0 7.过点P( 2 , 3)并且在两轴上截距的绝对值相等的直线有()条。
A .3B .2C .1D .08.经过点)1,2(M 作圆522yx的切线,则切线的方程为:A .52yx B .52y xC .052y xD .250xy 9.圆C :1)3()1(22y x 关于直线x -y -1=0对称的曲线方程为()A .1)4(22y x B .1)4(22y x C .1)4(22yxD .1)4(22yx10.设直线过点(0,a),其斜率为1,且与圆x 2+y 2=2相切,则 a 的值为()A .±2B .±2B .±2 2D .±411.直线1xy与圆2220(0)xyay a 没有公共点,则a 的取值范围是A.(0,21) B.(21,21) C.(21,21) D.(0,21)12.如果把直线x -2 y + =0按向量a=(-1,-2)平移后所得直线与圆(x +1)2 + ( y -2)2=5相切,则实数的值是()A.13或-3 B.13或3 C.-13 或3 D.-13或-3一、选择题(60分)题号 1 2 3 4 5 6 7 8 9 10 11 12选项第Ⅱ卷(选择题90分)二、填空题(每题5分,共20分)13.已知点A(7 ,-4)、B(-5 ,6)关于直线L对称,则L的方程是14.曲线y = ︳x ︳与圆x 2+ y 2=4所围成的最大区域的面积是15.两圆x 2+ y 2-10 x -10 y=0 ,x 2+ y 2+6 x +2 y -40 = 0公共弦的长是16.已知直线 a x + y + 2 = 0与点 A (-2 ,1),点B(3 ,2),当直线与线段AB总相交时,实数a的取值范围是三、解答题(共6大题,共70分)17.(12分)已知圆过点P (2,-1),和直线x -y=1相切,且它的圆心在直线y=-2x上,求这个圆的方程。
x y O x y O x y O x
y
O
高中数学必修2测试试卷
一、选择题
1. 已知直线经过点A(0,4)和点B (1,2),则直线AB 的斜率为( )
A.3
B.-2
C. 2
D. 不存在 2.过点(1,3)-且平行于直线032=+-y x 的直线方程为( )
A .072=+-y x
B .012=-+y x
C .250x y --=
D .052=-+y x 3. 下列说法不正确的....
是( ) A. 空间中,一组对边平行且相等的四边形是一定是平行四边形;
B .同一平面的两条垂线一定共面;
C. 过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;
D. 过一条直线有且只有一个平面与已知平面垂直.
4.已知点(1,2)A 、(3,1)B ,则线段AB 的垂直平分线的方程是( )
A .524=+y x
B .524=-y x
C .52=+y x
D .52=-y x
5. 在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( )
A .
B .
C .
D . 6. 已知a 、b 是两条异面直线,c ∥a ,那么c 与b 的位置关系( )
A.一定是异面
B.一定是相交
C.不可能平行
D.不可能相交 7. 设m 、n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个命题:
①若m ⊥α,n //α,则mn ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ ③若m //α,n //α,则m n
// ④若αγ⊥,βγ⊥,则//αβ 其中正确命题的序号是 ( )(A )①和② (B )②和③ (C )③和④ (D )①和④ 8. 圆2
2
(1)1x y -+=
与直线3
y x =
的位置关系是( ) A .相交 B. 相切 C.相离 D.直线过圆心
9. 两圆相交于点A (1,3)、B (m ,-1),两圆的圆心均在直线x -y +c=0上,则m+c 的值为( ) A .-1
B .2
C .3
D .0
10. 在空间四边形ABCD 各边AB 、BC 、CD 、DA 上分别取E 、F 、G 、H 四点,如果EF 、GH 相交于点P ,那么( ) A .点P 必在直线AC 上 B.点P 必在直线BD 上 C .点P 必在平面DBC 内 D.点P 必在平面ABC 外 11. 若M 、N 分别是△ABC 边AB 、AC 的中点,MN 与过直线BC 的平面β的位置关系是( ) A.MN ∥β B.MN 与β相交或MN ⊂≠β
C. MN ∥β或MN ⊂≠β
D. MN ∥β或MN 与β相交或MN ⊂≠β
12. 已知A 、B 、C 、D 是空间不共面的四个点,且AB ⊥CD ,AD ⊥BC ,则直线BD 与AC ( ) A.垂直 B.平行 C.相交 D.位置关系不确定 二 填空题
13.已知A (1,-2,1),B (2,2,2),点P 在z 轴上,且|PA|=|PB|,则点P 的坐标为 ; 14.已知正方形ABCD 的边长为1,AP ⊥平面ABCD ,且AP=2,则PC = ; 15. 过点(1,2)且在两坐标轴上的截距相等的直线的方程 __;
16.圆心在直线270x y --=上的圆C 与y 轴交于两点(0,4)A -,(0,2)B -,圆C 的方程为 . 三 解答题
17(12分) 已知△ABC 三边所在直线方程为AB :3x +4y +12=0,BC :4x -3y +16=0,CA :2x +y -2=0,求AC 边上的高所在的直线方程.
18(12分) 如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE 的中点,求证:(1) FD∥平面ABC; (2) AF⊥平面EDB.
19.(12分)如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点,
(1)求证:平面A B1D1∥平面EFG; (2)求证:平面AA1C⊥面EFG.
20.(12分) 已知圆C同时满足下列三个条件:①与y轴相切;②在直线y=x上截得弦长为27;③圆心在直线x-3y=0上. 求圆C的方程.
21.(12分) 设有半径为3km的圆形村落,A、B两人同时从村落中心出发,B向北直行,A先向东直行,出村后不久,改变前进方向,沿着与村落周界相切的直线前进,后来恰与B相遇.设A、B两人速度一定,其速度比为3:1,问两人在何处相遇?
22.(14分)已知圆C :()2
2
19x y -+=内有一点P (2,2),过点P 作直线l 交圆C 于A 、B 两点.
(1) 当l 经过圆心C 时,求直线l 的方程;
(2) 当弦AB 被点P 平分时,写出直线l 的方程; (3) 当直线l 的倾斜角为45º时,求弦AB 的长.
题号 1 2 3 4 5 6 7 8 9 10 11 12 答案
B
A
D
B
C
C
A
A
C
A
C
A
二、填空题:(4’×4=16’)
13. (0,0,3) 14. 6 15 y=2x 或x+y-3=0 16. (x-2)2
+(y+3)2
=5
三 解答题 .
17.由⎩⎨
⎧=+-=++0
16364012463x x 解得交点B (-4,0),211,=-=∴⊥AC BD k k AC BD Θ. ∴AC 边上的高线BD 的方程
为042),4(2
1=+-+=y x x y 即.
18 ∵ F 、M 分别是BE 、BA 的中点 ∴ FM ∥EA, FM=12
EA ∵ EA 、CD 都垂直于平面ABC ∴ CD ∥EA ∴ CD ∥FM 又 DC=a, ∴ FM=DC ∴四边形FMCD 是平行四边形 ∴ FD ∥MC FD ∥平面ABC
(2) 因M 是AB 的中点,△ABC 是正三角形,所以CM ⊥AB 又 CM ⊥AE,所以CM ⊥面EAB, CM ⊥AF, FD ⊥AF, 因F 是BE 的中点, EA=AB 所以AF ⊥EB.
19(12分)如图,在正方体ABCD-A 1B 1C 1D 1中,E 、F 、G 分别是CB 、CD 、CC 1的中点,
(2) 求证:平面A B 1D 1∥平面EFG; (2) 求证:平面AA 1C ⊥面EFG.
20设所求的圆C 与y 轴相切,又与直线交于AB ,
∵圆心C 在直线03=-y x 上,∴圆心C (3a ,a ),又
圆 与y 轴相切,∴R=3|a |. 又圆心C 到直线y -x =0的距
离
7||,72||.||22
|
3|||===-=BD AB a a a CD Θ
在Rt △CBD 中,33,1,1.729,)7(||2
22222±=±===-∴=-a a a a a CD R .
∴圆心的坐标C 分别为(3,1)和(-3,-1),故所求圆的方程为9)1()3(22=-+-y x 或9)1()3(22=+++y x .
21解:如图建立平面直角坐标系,由题意
可设A 、B 两人速度分别为3v 千米/小时 , v 千米/小时,再设出发x 0小时,在点P 改变 方向,又经过y 0小时,在点Q 处与B 相遇.
F
G
E
C1D1A1
B1
D
C
A
B
F E
D C
B
A
M
则P 、Q 两点坐标为(3vx 0, 0),(0,vx 0+vy 0).
由|OP|2+|OQ|2=|PQ|2
知,………………3分
(3vx 0)2+(vx 0+vy 0)2=(3vy 0)2
, 即0)45)((0000=-+y x y x .
000045,
0y x y x =∴>+Θ……①………………6分
将①代入.4
3
,3000-=+-
=PQ PQ k x y x k 得……………8分 又已知PQ 与圆O 相切,直线PQ 在y 轴上的截距就是两个相遇的位置.
设直线9:43
22=++-
=y x O b x y 与圆相切, 则有
.415
,343|4|2
2=∴=+b b ……………………11分 答:A 、B 相遇点在离村中心正北4
3
3千米处………………12分 22.
(1) 已知圆C :()2
2
19x y -+=的圆心为C (1,0),因直线过点P 、C ,所以直线l 的斜率为2,
直线l 的方程为y=2(x-1),即 2x-y-20.
(2) 当弦AB 被点P 平分时,l ⊥PC, 直线l 的方程为1
2(2)2
y x -=-
-, 即 x+2y-6=0 (3) 当直线l 的倾斜角为45º时,斜率为1,直线l 的方程为y-2=x-2 ,即 x-y=0
圆心C 到直线l
,圆的半径为3,
弦AB。