【优质部编】2019-2020学年高二数学9月月考试题 理 人教 目标版
- 格式:doc
- 大小:316.89 KB
- 文档页数:8
姓名,年级:时间:数学(理科)试题第Ⅰ卷(选择题 共60分)一、选择题(每小题5分,共60分) 1、iiz ++=13,则z =( ) A. 1+2i B 。
1−2i C. 2+iD. 2−i2、下列三句话按三段论的模式排列顺序正确的是( )① 2018能被2整除;②一切偶数都能被2整除;③ 2018是偶数; A. ①②③ B. ②①③ C. ②③①D. ③②① 3、不等式的解集是( ) A. 或B.C 。
或D.4、用反证法证明“已知x ,y ∈R ,x 2+y 2=0,求证:x =y =0.”时,应假设( )A. x ≠y ≠0B. x =y ≠0 C 。
x ≠0且y ≠0 D. x ≠0或 y ≠05、把红、黄、蓝3张卡片随机分给甲、乙、丙三人, 每人1张, 事件A:“甲得红卡”与事件B :“乙得红卡”是( ) A.不可能事件 B.必然事件C 。
对立事件 D.互斥且不对立事件 6、下列函数求导运算正确的个数为( )①,②,③(,且),④A 。
0个 B.1个 C 。
2个 D.3个 7、不等式的解集为( )A .B .C .D . 8、我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为'1(2)2x x x -=⋅'(sin 2)cos2x x ='(log )ln x a x a a =0a >1a ≠'1(ln 2)2=2112x x -++>2(,0)(,)3-∞+∞2(,)3+∞2(,1)(,)3-∞-+∞(,0)-∞两个素数(注:素数又叫质数)的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A. 112 B. 114 C.115D. 1189、若不等式对一切实数都成立,则实数的取值范围为( )A .B .C .D .10、若P =√a +√a +5,Q =√a +2+√a +3(a ≥0),则P ,Q 的大小关系是( )A 。
2019-2020年高二上学期9月月考数学试题含答案考试范围:必修5第一、二章考试时间:120分钟 满分:150分一、选择题:(本大题共10小题,每小题5分,共50分) 1、数列1,-3,5,-7,9,…的一个通项公式为A 12-=n a nB )21()1(n a n n --=C )12()1(--=n a n n D)12()1(+-=n a n n2.已知{}n a 是等比数列,41252==a a ,,则公比q =A .21-B .2-C .2D .21 3.若∆ABC 中,sin A :sin B :sin C =2:3:4,那么cos C =A. 14-B. 14C. 23-D. 234.设数}{n a 是单调递增的等差数列,前三项的和为12,前三项的积为48,则它的首项是A .1B .2C .2±D .45.在各项均为正数的等比数列{}n b 中,若783b b ⋅=,则3132l o g l o g b b ++……314log b +等于A. 5B. 6C. 7D.86.在ABC ∆中,根据下列条件解三角形,其中有两个解的是( )A. b=10, A=450, C=600B. a=6, c=5, B=600C. a=7, b=5, A=600D. a=14, b=16, A=450 7.在ABC ∆中,若cos cos a B b A =,则ABC ∆的形状一定是( )A .锐角三角形B .钝角三角形C .直角三角形D .等腰三角形 8.在200m 高的山顶上,测得山下一塔顶与塔底的俯角分别是30°,60°,则塔高为( ) Am 3400Bm 33400 Cm 33200 Dm 32009.等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,且132+=n nT S n n ,则55b a ( ) A32 B 149 C 3120 D 9710.已知数列{}n a 中,11,a =前n 项和为n S ,且点*1(,)()n n P a a n N +∈在直线10x y -+=上,则1231111nS S S S ++++=( ) A.(1)2n n + B.2(1)n n + C.21n n + D.2(1)n n +二、填空题:(本大题共5小题,每小题5分,共25分) 11.已知{}n a 为等差数列,3822a a +=,67a =,则5a =____________ 12. 已知数列{a n }的前n 项和是21n S n n =++, 则数列的通项a n =__ 13.在△ABC 中,若a 2+b 2<c 2,且sin C =23,则∠C = 14.△ABC 中,a 、b 、c 成等差数列,∠B=30°,ABC S ∆=23,那么b = 15.在钝角△ABC 中,已知a=1,b=2,则最大边c 的取值范围是____________ 。
2019-2020年高二上学期9月月考数学(文)试卷含解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合要求.1.若x∈R,则x=2”是“(x﹣2)(x﹣1)=0”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分又不必要条件2.椭圆x2+my2=1的焦点在y轴上,焦距是短轴长的两倍,则m的值为()A. B. C. D. 43.椭圆的一个顶点与两个焦点构成等边三角形,则椭圆的离心率是()A. B. C. D.4.若圆x2+y2=4上每个点的横坐标不变.纵坐标缩短为原来的,则所得曲线的方程是()A. B. C. D.5.以双曲线﹣=1的右顶点为焦点的抛物线的标准方程是()A. y2=4x B. y2=16x C. y2=8x D. y2=﹣8x6.方程mx+ny2=0与mx2+ny2=1(|m|>|n|>0)的曲线在同一坐标系中的示意图应是()A. B. C. D.7.已知命题p:若实数x,y满足x2+y2=0,则x,y全为0;命题q:若,下列为真命题的是()A. p∧q B. p∨q C.¬p D.(¬p)∧(¬q)8.已知椭圆+=1(a>b>0)的左焦点为F,右顶点为A,点B在椭圆上,且BF⊥x轴,直线AB交y轴于点P.若=2,则椭圆的离心率是()A. B. C. D.9.若双曲线的顶点为椭圆长轴的端点,且双曲线的离心率与该椭圆的离心率的积为1,则双曲线的方程是()A. x2﹣y2=1 B. y2﹣x2=1 C. x2﹣y2=2 D. y2﹣x2=210.已知命题p:存在实数m使m+1≤0,命题q:对任意x∈R都有x2+mx+1>0,若p且q 为假命题,则实数m的取值范围为()A.(﹣∞,﹣2] B. [2,+∞) C.(﹣∞,﹣2]∪(﹣1,+∞) D. [﹣2,2]11.正三角形的一个顶点位于原点,另外两个顶点在抛物线y2=4x上,则这个正三角形的边长为()A. B. C. 8 D. 1612.如图所示,F为双曲线C:﹣=1的左焦点,双曲线C上的点P i与P7﹣i(i=1,2,3)关于y轴对称,则|P1F|+|P2F|+|P3F|﹣|P4F|﹣|P5F|﹣|P6F|的值是()A. 9 B. 16 C. 18 D. 27二、填空题:本大题共4小题,每小题5分,共20分.把正确答案填在答题纸的横线上,填在试卷上的答案无效.13.命题“存在x∈R,x2﹣2x+1≤0”的否定是.14.椭圆x2+ny2=1与直线y=1﹣x交于M,N两点,过原点与线段MN中点所在直线的斜率为,则n的值是.15.过抛物线y2=4x的焦点作直线l,交抛物线于A,B两点,若线段AB中点的横坐标为3,则|AB|等于.16.已知三个数2,m,8构成一个等比数列,则圆锥曲线+=1离心率为.三、解答题:共70分,解答应写出必要的文字说明、证明过程或演算步骤.17.已知双曲线方程是9x2﹣y2=﹣81.求它的实轴和虚轴的长、焦点坐标、离心率和渐近线方程.18.求下列各曲线的标准方程.(1)已知椭圆的两个焦点分别是(﹣2,0),(2,0),并且经过点(,﹣).(2)已知抛物线焦点在x轴上,焦点到准线的距离为6.19.已知a>0,命题p:函数y=a x为减函数.命题q:当x∈[,2]时,函数f(x)=x+>恒成立,如果p或q为真命题,p且q为假命题,求a的取值范围.20.已知p:x2﹣7x+10≤0,q:m≤x≤m+1,若q是p的充分条件,求m的取值范围.21.已知△ABC的顶点A,B的坐标分别为(﹣4,0),(4,0),C 为动点,且满足,求点C的轨迹方程,并说明它是什么曲线.22.已知圆C方程为(x﹣3)2+y2=12,定点A(﹣3,0),P是圆上任意一点,线段AP的垂直平分线l和直线CP相交于点Q.(Ⅰ)当点P在圆上运动时,求点Q的轨迹E的方程.(Ⅱ)过点C倾斜角为30°的直线交曲线E于A、B两点,求|AB|.2014-2015学年吉林省松原市扶余一中高二(上)9月月考数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合要求.1.若x∈R,则x=2”是“(x﹣2)(x﹣1)=0”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分又不必要条件考点:必要条件、充分条件与充要条件的判断.专题:函数的性质及应用.分析:根据充分必要条件的定义进行判断.解答:解:∵x=2⇒(x﹣2)(x﹣1)=0,(x﹣2)(x﹣1)=0推不出x=2,∴x=2是(x﹣2)(x﹣1)=0的充分不必要条件,故选:A.点评:本题考查了充分必要条件,是一道基础题.2.椭圆x2+my2=1的焦点在y轴上,焦距是短轴长的两倍,则m的值为()A. B. C. D. 4考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:根据椭圆的方程求解,a,b,c的值,即可得到答案.解答:解:∵椭圆x2+my2=1的焦点在y轴上,∴椭圆x2+=1的焦点在y轴上,>1,2a=2,2b=2,2c=2,∵焦距是短轴长的两倍,∴2=4,m=,故选:A点评:本题综合考查了椭圆的几何性质,计算较容易.3.椭圆的一个顶点与两个焦点构成等边三角形,则椭圆的离心率是()A. B. C. D.考点:椭圆的简单性质.专题:计算题.分析:由题意可得 cos60°==,从而得到椭圆的离心率的值.解答:解:由题意可得 cos60°==,∴椭圆的离心率是=,故选 B.点评:本题考查椭圆的标准方程,以及简单性质的应用,得到 cos60°=,是解题的关键.4.若圆x2+y2=4上每个点的横坐标不变.纵坐标缩短为原来的,则所得曲线的方程是()A. B. C. D.考点:伸缩变换;椭圆的标准方程.专题:计算题.分析:在曲线C上任取一个动点P(x,y),根据图象的变换可知点(x,3y)在圆x2+y2=4上.代入圆方程即可求得x和y的关系式,即曲线的方程.解答:解:在曲线C上任取一个动点P(x,y),根据图象的变换可知点(x,3y)在圆x2+y2=4上,∴x2+9y2=4,即则所得曲线为.故选C.点评:本题主要考查变换法求解曲线的方程,理解变换前后坐标的变化是关键考查了学生分析问题的能力及数学化归思想.5.以双曲线﹣=1的右顶点为焦点的抛物线的标准方程是()A. y2=4x B. y2=16x C. y2=8x D. y2=﹣8x考点:抛物线的标准方程;双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:根据双曲线方程,算出它的右顶点为F(2,0),也是抛物线的焦点.由此设出抛物线方程为y2=2px,(p>0),结合抛物线焦点坐标的公式,可得p=4,从而得出该抛物线的标准方程.解答:解:∵双曲线的方程为﹣=1,∴a2=4,得a=2,∴抛物线的焦点为F(2,0),设抛物线方程为y2=2px,(p>0),则=2,得2p=8∴抛物线方程是y2=8x.故选:C.点评:本题给出抛物线焦点与已知双曲线的右焦点重合,求抛物线的标准方程,着重考查了双曲线、抛物线的标准方程与简单几何性质等知识,属于基础题.6.方程mx+ny2=0与mx2+ny2=1(|m|>|n|>0)的曲线在同一坐标系中的示意图应是()A. B. C. D.考点:曲线与方程.专题:作图题;分类讨论.分析:当 m和n同号时,抛物线开口向左,方程mx2+ny2=1(|m|>|n|>0)表示焦点在y 轴上的椭圆,当m和n异号时,抛物线 y2=﹣开口向右,方程mx2+ny2=1(|m|>|n|>0)表示双曲线.解答:解:方程mx+ny2=0 即 y2=﹣,表示抛物线,方程mx2+ny2=1(|m|>|n|>0)表示椭圆或双曲线.当 m和n同号时,抛物线开口向左,方程mx2+ny2=1(|m|>|n|>0)表示焦点在y轴上的椭圆,无符合条件的选项.当m和n异号时,抛物线 y2=﹣开口向右,方程mx2+ny2=1(|m|>|n|>0)表示双曲线,故选 A.点评:本题考查根据曲线的方程判断曲线的形状,体现了分类头论的数学思想,分类讨论是解题的关键.7.已知命题p:若实数x,y满足x2+y2=0,则x,y全为0;命题q:若,下列为真命题的是()A. p∧q B. p∨q C.¬p D.(¬p)∧(¬q)考点:复合命题的真假.专题:规律型.分析:分别判断命题p,q的真假,利用复合命题与简单命题真假之间的关系进行判断即可.解答:解:若实数x,y满足x2+y2=0,则x,y全为0,∴p为真命题.当a=1,b=﹣1时,满足a>b,但不成立,∴q为假命题.∴p∧q为假命题,p∨q为真命题,¬p为假命题,(¬p)∧(¬q)为假命题,故选:B.点评:本题主要考查复合命题与简单命题真假之间的关系,先判断简单命题p,q的真假是解决本题的关键.8.已知椭圆+=1(a>b>0)的左焦点为F,右顶点为A,点B在椭圆上,且BF⊥x轴,直线AB交y轴于点P.若=2,则椭圆的离心率是()A. B. C. D.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:先求出点B的坐标,设出点P的坐标,利用=2,得到a与c的关系,从而求出离心率.解答:解:如图,由于BF⊥x轴,故x B=﹣c,y B =,设P(0,t),∵=2,∴(﹣a,t)=2(﹣c,﹣t).∴a=2c,∴e==,故选 D.点评:本题考查椭圆的简单性质以及向量坐标形式的运算法则的应用,体现了数形结合的数学思想.9.若双曲线的顶点为椭圆长轴的端点,且双曲线的离心率与该椭圆的离心率的积为1,则双曲线的方程是()A. x2﹣y2=1 B. y2﹣x2=1 C. x2﹣y2=2 D. y2﹣x2=2考点:椭圆的简单性质;双曲线的标准方程.专题:计算题.分析:根据椭圆方程求得其长轴的端点坐标和离心率,进而可得双曲线的顶点和离心率,求得双曲线的实半轴和虚半轴的长,进而可得双曲线的方程.解答:解:由题意设双曲线方程为,离心率为e椭圆长轴的端点是(0,),所以a=.∵椭圆的离心率为∴双曲线的离心率e=,⇒c=2,∴b=,则双曲线的方程是y2﹣x2=2.故选D.点评:本题主要考查了双曲线的性质和椭圆的标准方程.要记住双曲线和椭圆的定义和性质.10.已知命题p:存在实数m使m+1≤0,命题q:对任意x∈R都有x2+mx+1>0,若p且q 为假命题,则实数m的取值范围为()A.(﹣∞,﹣2] B. [2,+∞) C.(﹣∞,﹣2]∪(﹣1,+∞) D. [﹣2,2]考点:复合命题的真假.专题:规律型.分析:先求出命题p,q为真命题的等价条件,利用p且q为假命题,即可求实数m的取值范围.解答:解:若存在实数m使m+1≤0,则m≤﹣1,∴p:m≤﹣1.若对任意x∈R都有x2+mx+1>0,则对应的判别式△=m2﹣4<0,解得﹣2<m<2,即q:﹣2<m<2,∴p且q为真时,有,即﹣2<m≤﹣1.∴若p且q为假命题,则m>﹣1或m≤﹣2,即实数m的取值范围为(﹣∞,﹣2]∪(﹣1,+∞).故选:C.点评:本题主要考查复合命题与简单命题真假之间的关系,先求出p且q为真时的等价条件是解决本题的关键.11.正三角形的一个顶点位于原点,另外两个顶点在抛物线y2=4x上,则这个正三角形的边长为()A. B. C. 8 D. 16考点:抛物线的简单性质.专题:计算题.分析:根据抛物线方程先设其中一个顶点是(x,2 ),根据正三角形的性质=tan30°=求得x,进而可得另两个顶点坐标,最后求得这个正三角形的边长.解答:解:设其中一个顶点是(x,2 )因为是正三角形所以=tan30°=即解得x=12所以另外两个顶点是(12,4 )与(12,﹣4 )则这个正三角形的边长为故选B.点评:本题主要考查抛物线的应用.利用抛物线性质解决解三角形问题的关键.12.如图所示,F为双曲线C:﹣=1的左焦点,双曲线C上的点P i与P7﹣i(i=1,2,3)关于y轴对称,则|P1F|+|P2F|+|P3F|﹣|P4F|﹣|P5F|﹣|P6F|的值是()A. 9 B. 16 C. 18 D. 27考点:双曲线的简单性质.专题:计算题.分析:首先设右焦点为F′,由点P i与P7﹣i(i=1,2,3)关于y轴对称以及双曲线的对称性得出|FP1|=|F′P6|,|FP2|=|F′P5|,|FP3|=|F′P4|,然后根据双曲线的定义得出|F′P6|﹣|P6F|=2a=6,|F′P5|﹣|P5F|=2a=6,|F′P4|﹣|P4F|=2a=6,进而求出结果.解答:解:设右焦点为F′,∵双曲线C上的点P i与P7﹣i(i=1,2,3)关于y轴对称∴P1和P6,P2和P5,P3和P4分别关于y轴对称∴|FP1|=|F′P6|,|FP2|=|F′P5|,|FP3|=|F′P4|,∵|F′P6|﹣|P6F|=2a=6,|F′P5|﹣|P5F|=2a=6,|F′P4|﹣|P4F|=2a=6,∴|P1F|+|P2F|+|P3F|﹣|P4F|﹣|P5F|﹣|P6F|=(|F′P6|﹣|P6F|)+(|F′P5|﹣|P5F|)+(|F′P4|﹣|P4F|)=18故选C.点评:本题考查了双曲线的性质,灵活运用双曲线的定义,正确运用对称性是解题的关键,属于中档题.二、填空题:本大题共4小题,每小题5分,共20分.把正确答案填在答题纸的横线上,填在试卷上的答案无效.13.命题“存在x∈R,x2﹣2x+1≤0”的否定是∀x∈R,x2﹣2x+1>0 .考点:特称命题.专题:简易逻辑.分析:特称命题的否定是全称命题结果即可.解答:解:∵特称命题的否定是全称命题,∴命题“存在x∈R,x2﹣2x+1≤0”的否定是:∀x∈R,x2﹣2x+1>0.故答案为:∀x∈R,x2﹣2x+1>0.点评:本题考查特称命题与全称命题的否定关系,注意否定的形式.14.椭圆x2+ny2=1与直线y=1﹣x交于M,N两点,过原点与线段MN中点所在直线的斜率为,则n的值是.考点:直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:联立方程组,转化为二次方程,借助韦达定理,求出中点坐标,再利用斜率得到等式,即可求出答案.解答:解:设M(x1,y1),N(x2,y2),中点(x,y),椭圆x2+ny2=1与直线y=1﹣x交于M,N两点化简可得:(1+n)x2﹣2nx﹣n﹣1=0所以x1+x2=,x=,y=,因为过原点与线段MN中点所在直线的斜率为,所以=,即n=,故答案为:点评:本题综合考查了直线与圆锥曲线位置关系,二次方程的系数的运用.15.过抛物线y2=4x的焦点作直线l,交抛物线于A,B两点,若线段AB中点的横坐标为3,则|AB|等于8 .考点:抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:根据抛物线方程得它的准线为l:x=﹣1,从而得到线段AB中点M到准线的距离等于4.过A、B分别作AC、BD与l垂直,垂足分别为C、D,根据梯形中位线定理算出|AC|+|BD|=2|MN|=8,结合抛物线的定义即可算出AB的长.解答:解:∵抛物线方程为y2=4x,∴抛物线的焦点为F(1,0),准线为l:x=﹣1设线段AB的中点为M(3,y0),则M到准线的距离为:|MN|=3﹣(﹣1)=4,过A、B分别作AC、BD与l垂直,垂足分别为C、D根据梯形中位线定理,可得|AC|+|BD|=2|MN|=8再由抛物线的定义知:|AF|=|AC|,|BF|=|BD|∴|AB|=|AF|+|BF||AC|+|BD|=8.故答案为:8点评:本题给出过抛物线y2=4x焦点的一条弦中点的横坐标,求该弦的长度.着重考查了抛物线的标准方程和简单几何性质等知识,属于基础题.16.已知三个数2,m,8构成一个等比数列,则圆锥曲线+=1离心率为或.考点:双曲线的简单性质;椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由1,m,9构成一个等比数列,得到m=±3.当m=3时,圆锥曲线是椭圆;当m=﹣3时,圆锥曲线是双曲线,由此入手能求出离心率.解答:解:∵2,m,8构成一个等比数列,∴m=±4.当m=4时,圆锥曲线+=1是椭圆,它的离心率是;当m=﹣4时,圆锥曲线+=1是双曲线,它的离心率是.故答案为:或.点评:本题考查圆锥曲线的离心率的求法,解题时要注意等比数列的性质的合理运用,注意分类讨论思想的灵活运用.三、解答题:共70分,解答应写出必要的文字说明、证明过程或演算步骤.17.已知双曲线方程是9x2﹣y2=﹣81.求它的实轴和虚轴的长、焦点坐标、离心率和渐近线方程.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:把方程化简为:,求出a,b,c 再根据几何性质写出答案.解答:解:∵双曲线方程是9x2﹣y2=﹣81,∴双曲线标准方程为:,实轴长:18,虚轴长为6,a=9,b=3,c=3,焦点坐标(0,±3),离心率:e=,渐近线方程为:y=±3x.点评:本题主要考察了双曲线的方程,几何性质,属于比较简单的计算题.18.求下列各曲线的标准方程.(1)已知椭圆的两个焦点分别是(﹣2,0),(2,0),并且经过点(,﹣).(2)已知抛物线焦点在x轴上,焦点到准线的距离为6.考点:椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(1)由题意可设椭圆的标准方程为(a>b>0),设焦点为F1(﹣2,0),F2(2,0),因为椭圆经过点P(,﹣),利用椭圆的定义可得2a=|PF1|+|PF2|,再利用b2=a2﹣c2即可得出.(2)抛物线焦点在x轴上,可设标准方程为y2=±2px(p>0).根据焦点到准线的距离为6,可得p=6,即可得到抛物线的标准方程.解答:解:(1)由题意可设椭圆的标准方程为(a>b>0),∵椭圆经过点(,﹣).∴.∴.∵c=2,∴b2=a2﹣c2=10﹣4=6.所求椭圆的标准方程为.(2)∵抛物线焦点在x轴上,可设标准方程为y2=±2px(p>0).∵焦点到准线的距离为6,∴p=6.∴抛物线的标准方程为y2=±12x.点评:本题考查了圆锥曲线的定义、标准方程及其性质,属于基础题.19.已知a>0,命题p:函数y=a x为减函数.命题q:当x∈[,2]时,函数f(x)=x+>恒成立,如果p或q为真命题,p且q为假命题,求a的取值范围.考点:复合命题的真假.专题:简易逻辑.分析:由a>0,命题p:函数y=a x为减函数.可得0<a<1.命题q:当x∈[,2]时,函数f(x)=x+>恒成立,可得,利用基本不等式即可得出.由p或q为真命题,p且q为假命题,可得p,q中必然一个真命题一个为假命题.解出即可.解答:解:由a>0,命题p:函数y=a x为减函数.∴0<a<1.命题q:当x∈[,2]时,函数f(x)=x+>恒成立,∴,∵x∈[,2]时,函数f(x)=x+=2,当且仅当x=1时取等号.∴,又a>0,∴.∵p或q为真命题,p且q为假命题,∴p,q中必然一个真命题一个为假命题.①当p真q假时,,解得,a的取值范围是.②当q真p假时,,解得a≥1,a的取值范围是[1,+∞).点评:本题考查了指数函数的单调性、基本不等式、不等式组的解法、“或”“且”“非”命题的真假的判断等基础知识,考查了分类讨论的思想方法,考查了推理能力和计算能力,属于难题.20.已知p:x2﹣7x+10≤0,q:m≤x≤m+1,若q是p的充分条件,求m的取值范围.考点:必要条件、充分条件与充要条件的判断.专题:规律型.分析:求出p的等价条件,利用q是p的充分条件,确定m的取值范围.解答:解:由x2﹣7x+10≤0,解得2≤x≤5,即p:2≤x≤5.,设A={x|2≤x≤5}∵命题q可知:m≤x≤m+1,设B={x|m≤x≤m+1},∵q是p的充分条件,∴B⊆A,,解得:2≤m≤4.∴m的取值范围是2≤m≤4.点评:本题主要考查充分条件和必要条件的应用,比较基础.21.已知△ABC的顶点A,B的坐标分别为(﹣4,0),(4,0),C 为动点,且满足,求点C的轨迹方程,并说明它是什么曲线.考点:椭圆的标准方程;正弦定理.专题:圆锥曲线的定义、性质与方程.分析:由,可知,即|AC|+|BC|=10>|AB|=8,根据椭圆的定义可知:点C的轨迹是椭圆(去掉左右顶点).解答:解:由,可知,即|AC|+|BC|=10>|AB|=8,满足椭圆的定义.设椭圆方程为,则a′=5,c′=4,∴=3,则轨迹方程为(x≠±5),图形为椭圆(不含左,右顶点).点评:本题考查了椭圆的定义,属于基础题.22.已知圆C方程为(x﹣3)2+y2=12,定点A(﹣3,0),P是圆上任意一点,线段AP的垂直平分线l和直线CP相交于点Q.(Ⅰ)当点P在圆上运动时,求点Q的轨迹E的方程.(Ⅱ)过点C倾斜角为30°的直线交曲线E于A、B两点,求|AB|.考点:轨迹方程;直线与圆锥曲线的关系.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:(Ⅰ)由题意可得点Q满足双曲线的定义,且求得a,c的值,再由b2=c2﹣a2求得b,则点Q的轨迹E的方程可求;(Ⅱ)由题意得到直线AB的方程,和双曲线方程联立后利用弦长公式得答案.解答:解:(Ⅰ)由点Q是线段AP垂直平分线上的点,∴|AQ|=|PQ|,又∵,满足双曲线的定义.设E的方程为,则,,则轨迹E方程为;(Ⅱ)直线AB的倾斜角为30°,且直线过C(3,0),∴直线AB的方程为,由,消去y得5x2+6x﹣27=0,设A(x1,y1),B(x2,y2),∴有,.则|AB|=.点评:本题考查了轨迹方程的求法,考查了直线与圆锥曲线的关系,涉及直线与圆锥曲线的关系问题,常用根与系数的关系解决,是压轴题.参与本试卷答题和审题的老师有:1619495736;sdpyqzh;caoqz;minqi5;刘长柏;maths;ywg2058;qiss;孙佑中;sxs123(排名不分先后)菁优网2015年9月15日。
2019-2020年高二9月月考数学(理)试题 含答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“若A ⊆B ,则A =B ”与其逆命题、否命题、逆否命题这四个命题中,真命题的个数是( )A .0B .2C .3D .42.已知向量a ,b ,则“a ∥b ”是“a +b =0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 3.若p 是真命题,q 是假命题,则( ) A .p ∧q 是真命题 B .p ∨q 是假命题 C .¬p 是真命题D .¬q 是真命题4.命题“∃x 0∈(0,+∞),ln x 0=x 0-1”的否定是( )A .∃x 0∈(0,+∞),ln x 0≠x 0-1B .∃x 0∉(0,+∞),ln x 0=x 0-1C .∀x ∈(0,+∞),ln x ≠x -1D .∀x ∉(0,+∞),ln x =x -15.设m ∈R ,命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是( ) A .若方程x 2+x -m =0有实根,则m >0 B .若方程x 2+x -m =0有实根,则m ≤0 C .若方程x 2+x -m =0没有实根,则m >0 D .若方程x 2+x -m =0没有实根,则m ≤0 6.“x <0”是“ln(x +1)<0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件7.给出下列命题,其中真命题为( ) A .对任意x ∈R ,x 是无理数B .对任意x ,y ∈R ,若xy ≠0,则x ,y 至少有一个不为0C .存在实数既能被3整除又能被19整除D .x >1是1x<1的充要条件8.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c 则“a ≤b ”是 “sin A ≤sin B ”的( )A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件 9.已知p :1x +1>0;q :lg(x +1+1-x 2)有意义,则¬p 是¬q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.已知命题p :若x >y ,则-x <-y :命题q :若x >y ,则x 2>y 2,在命题①p ∧q ;②p ∨q ;③p ∧(¬q );④(¬p )∨q 中,真命题是( )A .①③B .①④C .②③D .②④11.已知命题p :∀x >0,总有(x +1)e x >1,则¬p 为 ( )A .∃x 0≤0,使得(x 0+1)e x 0≤1B .∃x 0>0,使得(x 0+1)e x 0≤1C .∀x >0,总有(x +1)e x ≤1D .∀x ≤0,总有(x +1)e x ≤112.不等式组⎩⎪⎨⎪⎧x +y ≥1,x -2y ≤4的解集记为D .有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2; p 2:∃(x ,y )∈D ,x +2y ≥2; p 3:∀(x ,y )∈D ,x +2y ≤3; p 4:∃(x ,y )∈D ,x +2y ≤-1. 其中真命题是( ) A .p 2,p 3 B .p 1,p 4 C .p 1,p 2D .p 1,p 3二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上) 13.命题“到圆心的距离不等于半径的直线不是圆的切线”的逆否命题是____________.14.设命题p :∀x ∈R ,x 2+1>0,则¬p 是____________.15.若不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则a 的取值范围是________. 16.已知命题p :|x 2-x |≠6,q :x ∈N ,且“p ∧q ”与“¬q ”都是假命题,则x 的值为________.三、解答题(本大题共6小题,共74分.解答题应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)(1)写出命题:“若x 2-3x +2=0,则x =1或x =2”的逆命题、否命题和逆否命题,并判断它们的真假.(2)已知集合P ={x |-1<x <3},S ={x |x 2+(a +1)x +a <0},且x ∈P 的充要条件是x ∈S ,求实数a 的值.18.判断下列命题是全称命题还是特称命题,并判断其真假. (1)至少有一个整数,它既能被11整除,又能被9整除. (2) ∀x ∈{x |x >0},x +1x ≥2.(3)∃ x 0∈{x |x ∈Z },log 2x 0>2.19.设p:关于x的不等式a x>1(a>0且a≠1)的解集为{x|x<0},q:函数y=lg(ax2-x +a)的定义域为R.如果p和q有且仅有一个正确,求a的取值范围.20.已知命题p:x2-8x-20>0,q:x2-2x+1-m2>0(m>0),若p是q的充分不必要条件,求实数m的取值范围.21.已知命题p:方程x2-2mx+m=0没有实数根;命题q:∀x∈R,x2+mx+1≥0.(1)写出命题q的否定“¬q”.(2)如果“p∨q”为真命题,“p∧q”为假命题,求实数m的取值范围.22.已知函数f(x)=x2+(a+1)x+lg|a+2|(a∈R,且a≠-2).(1)若f(x)能表示成一个奇函数g(x)和一个偶函数h(x)的和,求g(x)与h(x)的解析式.(2)命题p:函数f(x)在区间[(a+1)2,+∞)上是增函数;命题q:函数g(x)是减函数.如果命题p,q有且只有一个是真命题,求a的取值范围.参考答案: 一、选择题1.B2.B3.D4.C5.D6.B7.C8.A9.A10.C11.B12.C 二、填空题13.圆的切线到圆心的距离等于半径 14.∃x 0∈R ,x 20+1≤0 15.(-2,2] 16.3 三、解答题17.逆命题:若x =1或x =2,则x 2-3x +2=0,是真命题; 否命题:若x 2-3x +2≠0,则x ≠1且x ≠2,是真命题; 逆否命题:若x ≠1且x ≠2,则x 2-3x +2≠0,是真命题.(2)因为S ={x |x 2+(a +1)x +a <0}={x |(x +1)(x +a )<0},P ={x |-1<x <3}={x |(x +1)(x -3)<0},因为x ∈P 的充要条件是x ∈S ,所以a =-3.18.(1)命题中含有存在量词“至少有一个”,因此是特称命题,真命题. (2)命题中含有全称量词“∀”,是全称命题,真命题. (3)命题中含有存在量词“∃”,是特称命题,真命题. 19.a ∈⎝⎛⎦⎤0,12∪(1,+∞). 20.m 的取值范围是(0,3]. 21.(1)¬q :∃x 0∈R ,x 20+mx 0+1<0. (2)-2≤m ≤0或1≤m ≤2.22.p ,q 有且只有一个是真命题时,实数a 的取值范围是⎝⎛⎭⎫-32,+∞.。
黑龙江省哈尔滨市延寿县第二中学2020-2021学年高二数学9月月考试题一、选择题(本题共12小题,每小题5分,共60分)1.下面对算法描述正确的一项是()A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一个问题可以有不同的算法D.同一问题的算法不同,结果必然不同2.图示程序的功能是()错误!A.求1×2×3×4×…×10 000的值B.求2×4×6×8×…×10 000的值C.求3×5×7×9×…×10 001的值D.求满足1×3×5×…×n>10 000的最小正整数n3.下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0 B.2C.4 D.144.用秦九韶算法求多项式f(x)=208+9x2+6x4+x6当x =-4时的值时,v2的值为()A.-4 B.1C.17 D.225.(2018·全国卷Ⅱ)为计算S=1-错误!+错误!-错误!+…+错误!-错误!,设计了下面的程序框图,则在空白框中应填入()A.i=i+1 B.i=i+2C.i=i+3 D.i=i+46.在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民,对其该天的阅读时间进行统计分析.在这个问题中,5 000名居民的阅读时间是() A.总体B.个体C.样本的容量D.从总体中抽取的一个样本7.2012年6月16日“神舟”九号载人飞船顺利发射升空,某校开展了“观‘神九’飞天燃爱国激情”系列主题教育活动.该学校高一年级有学生300人,高二年级有学生300人,高三年级有学生400人,通过分层抽样从中抽取40人调查“神舟”九号载人飞船的发射对自己学习态度的影响,则高三年级抽取的人数比高一年级抽取的人数多()A.5 B.4C.3 D.28.要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,将它们编号为001,002,…,800,利用随机数表法抽取样本,从第7行第1个数8开始,依次向右,再到下一行,继续从左到右.请问选出的第七袋牛奶的标号是()(为了便于说明,下面摘取了随机数表的第6行至第10行)1622779439495443548217379323788735209643 84263491648442175331572455068877047447672176335025 8392120676630163783916955567199810507175128673580744395238793321123429786456078252420744381551001342 99660279545760863244094727965449174609629052847727 0802734328A.425 B.506C.704 D.7449。
2019学年高二(下)第三次月考数学(理科)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. “”是“复数为纯虚数”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C【解析】分析:由于复数为纯虚数,则其实部为零,虚部不为零,故可得关于x的条件,再与“”比较范围大小即可求得结果.详解:由于复数为纯虚数,则,解得,故“”是“复数为纯虚数”的充要条件,故选C.点睛:该题考查的是有关复数是纯虚数的条件,根据题意列出相应的式子,从而求得结果,属于简单题目.2. 圆的圆心的直角坐标为()A. B. C. D.【答案】A【解析】分析:先把圆的极坐标方程化为直角坐标方程,得出圆心坐标.详解:ρ=8sinθ化为ρ2=8ρsinθ,∴x2+y2=8y,配方为x2+(y-4)2=16,圆心坐标为(0,4),故选A.点睛:本题考查了圆的极坐标方程与直角坐标方程互化,属于基础题.3. 已知集合,,现从这两个集合中各取出一个元素组成一个新的双元素集合,则可以组成这样的新集合的个数为()A. B. C. D.【答案】C【解析】分析:根据解元素的特征可将其分类为:集合中有5和没有5两类进行分析即可.详解:第一类:当集合中无元素5:种,第二类:当集合中有元素5:种,故一共有14种,选C 点睛:本题考查了分类分步计数原理,要做到分类不遗漏,分步不重叠是解题关键.4. 的展开式的中间项为()A. B. C. D.【答案】D【解析】分析:原式张开一共有5项,故只需求出第三项即可.详解:由题可得展开式的中中间项为第3项,故:,选D.点睛:本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题.5. 某地区一次联考的数学成绩近似地服从正态分布,已知,现随机从这次考试的成绩中抽取个样本,则成绩小于分的样本个数大约为()A. B. C. D.【答案】A【解析】分析:根据正态分布的意义可得即可得出结论.详解:由题可得:又对称轴为85,故,故成绩小于分的样本个数大约为100x0.04=4故选A.点睛:本题考查正态曲线的特点及曲线所表示的意义,是一个基础题,解题关键是要知道.6. 已知复数,若,则在复平面内对应的点位于()A. 第一或第二象限B. 第二或第三象限C. 第一或第三象限D. 第二或第四象限【答案】C【解析】分析:首先根据复数模的计算公式,结合题中的条件,得出实数所满足的等量关系式,从而求得的值,进一步求得复数,根据其在复平面内对应的点的坐标,从而确定其所在的象限,得到结果.详解:根据题意可知,化简得,解得或,当时,,当时,,所以对应的点的坐标为或,所以对应的点在第一象限或第三象限,故选C.点睛:该题考查的是有关复数的问题,涉及到的知识点有复数模的计算公式,复数在复平面内对应的点,属于简单题目.7. 参数方程(为参数)所表示的曲线是()A. B. C. D.【答案】B【解析】分析:消去参数t,得所求曲线方程为:x2+y2=1,x≠0,由此能求出曲线图形.详解:因为参数方程(为参数)所以消去参数得x2+y2=1,x≠0,且,故所表示的图像为B.点睛:本题考查曲线图形的判断,涉及到参数方程与普通方程的互化、圆等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想,是中档题.8. 在极坐标系中,为极点,曲线与射线的交点为,则()A. B. C. D.【答案】B【解析】分析:将两方程联立求出,再根据的几何意义即可得到OA的值.详解:由题可得:,由的几何意义可得,故选B.点睛:考查极坐标的定义和的几何意义:表示原点到A的距离,属于基础题.9. 设是复数的共轭复数,若,则()A. B. C. 或 D. 或【答案】C【解析】分析:先求出z的表达式,在代入问题计算即可.详解:由题可设,则,所以,故,则或,选C.点睛:考查复数和共轭复数的关系,复数的除法运算,属于基础题.10. 已知函数的图象在处的切线方程为,若关于的方程有四个不同的实数解,则的取值范围为()A. B. C. D.【答案】A【解析】分析:先求导,然后将x=0代入得斜率为2可求出a值,再由切点既在曲线上也在切线上看的b值,再令t=,则,要使有四个不同的实数解,即要使由两个不同的正根即可.详解:,,所以切点为(0,-b)代入切线方程可得b=2,所以,令可得f(x)在(-2,1)单调递增,在递减,故令t=,则,要使有四个不同的实数解,即要使由两个不同的正根即可,故,f(0)=-2,f(1)=,故答案为选A.点睛:考查导函数对零点的分析,其中认识到为符合方程,令t=,则,要使有四个不同的实数解,即要使由两个不同的正根的转化思维为此题关键,属于中档题.11. 随机变量的概率分布为,其中是常数,则()A. B. C. D.【答案】B【解析】分析:由已知得可得a值,在求出期望算方差即可.详解:因为随机变量的概率分布为,故得,故E(X)=,又,而,故= ,选B点睛:考查分布列的性质和期望、方差的计算,熟悉公式即可,属于基础题.12. 已知定义在上的奇函数满足,则()A. B.C. D.【答案】D【解析】分析:构造函数,利用导数以及已知条件判断函数的单调性,然后转化求解即可.详解:设g(x)=,定义在R上的奇函数f(x),所以g(x)是奇函数,x>0时,g′(x)=,,因为函数f(x)满足2f(x)-xf'(x)>0(x>0),所以g′(x)>0,所以g(x)是增函数,可得:故选:D.点睛:本题考查函数的导数的应用,构造法的应用,考查转化思想以及计算能力.第Ⅱ卷二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡中的横线上.13. 在直角坐标系中,若直线:(为参数)过椭圆:(为参数)的左顶点,则__________.【答案】【解析】分析:直接化参数方程为普通方程,得到直线和椭圆的普通方程,求出椭圆的左顶点,代入直线的方程,即可求得的值.详解:由已知可得圆(为参数)化为普通方程,可得,故左顶点为,直线(为参数)化为普通方程,可得,又点在直线上,故,解得,故答案是.点睛:该题考查的是有关直线的参数方程与椭圆的参数方程的问题,在解题的过程中,需要将参数方程化为普通方程,所以就需要掌握参数方程向普通方程的转化-----消参,之后要明确椭圆的左顶点的坐标,以及点在直线上的条件,从而求得参数的值.14. 设复数满足,则的虚部为__________.【答案】【解析】分析:把题中给出的式子,两边同时乘以,之后利用复数的除法运算法则,求得结果,从而确定出其虚部的值.详解:由得,所以的虚部为2,故答案是2.点睛:该题考查的是有关复数的问题,涉及到的知识点有复数的除法运算,复数的虚部,这就要求对运算法则要掌握并能熟练的应用,再者就是对有关概念要明确.15. 某商品的售价和销售量之间的一组数据如下表所示:(元)(件)销售量与价格之间有较好的线性相关关系,且回归直线方程是,则__________.【答案】【解析】分析:根据回归直线过样本中心点,求出平均数,代入回归直线方程,求出,从而得到答案.详解:根据题意得,,因为回归直线过样本中心点,所以有,解得,所以答案是.点睛:该题考查的就是回归直线的特征:回归直线过样本中心点,即均值点,所以在求解的过程中,需要分别算出样本点的横纵坐标,代入回归直线方程中,求得对应的参数的值.16. 若函数在上单调递增,则的取值范围是__________.【答案】.【解析】分析:(I)先求出函数的导数,f(x)在R上单调等价于x2+(-a+2)x-a+2≥0恒成立,下面只要二次函数的根的判别式△≤0即可求得a的取值范围;详解:f′(x)=e x[x2+(-a+2)x-a+2],考虑到e x>0恒成立且x2系数为正,∴f(x)在R上单调等价于x2+(-a+2)x-a+2≥0恒成立.∴(-a+2)2-4(-a+2)≤0,∴-2≤a≤2,即a的取值范围是[-2,2] .点睛:本小题主要考查利用导数研究函数的单调性,考查运算求解能力.属于基础题.17. 在如图所示的坐标系中,阴影部分由曲线与矩形围成.从图中的矩形区域内随机依次选取两点,则这两点中至少有一点落在阴影部分的概率为__________(取).【答案】【解析】分析:先用定积分求出阴影部分的面积,再根据几何概率计算公式即可得.详解:由题得阴影部分的面积:,矩形面积为:2,所以这两点中都不落在阴影部分的概率为:,故这两点中至少有一点落在阴影部分的概率为1-0.09=0.91,故答案为:0.91点睛:本题考查几何概型,明确测度比为面积比的关键,是基础题18. 现有个大人,个小孩站一排进行合影.若每个小孩旁边不能没有大人,则不同的合影方法有__________种.(用数字作答)【答案】【解析】分析:根据题意可得可以小孩为对象进行分类讨论:第一类:2个小孩在一起,第二类小孩都不相邻.分别计算求和即可得出结论。
2019-2020学年高二数学9月月考试题(含解析)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)一、单选题(本题共12小题,每小题5分,共60分)1.已知集合,则下列结论正确的是()A. B. C. D.【答案】C【解析】集合,所以错误错误,,所以正确,错误故答案选2.已知向量,,,,如果,那么实数()A. 4B. 3C. 2D. 1【答案】A【解析】,,故答案选3.执行如图所示的程序框图,若输入的a,b的值分别为1,1,则输出的是()A. 29B. 17C. 12D. 5【答案】B【解析】【分析】根据程序框图依次计算得到答案.【详解】结束,输出故答案选B【点睛】本题考查了程序框图的计算,属于常考题型.4.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间的人数为()A. 12B. 11C. 14D. 13【答案】A【解析】分析】由抽取的样本人数,确定每组样本的容量,计算出编号落入区间与各自的人数再相减.【详解】由于抽取的样本为42人,所以840人要分成42组,每组的样本容量为20人,所以在区间共抽24人,在共抽36人,所以编号落入区间的人数为人.【点睛】本题考查系统抽样抽取样本的基础知识,考查基本数据处理能力.5.如图画出的是某几何体的三视图,网格纸上小正方形的边长为1,则该几何体的体积为()A. B.C. D.【答案】A【解析】【分析】由三视图还原原几何体,可知原几何体为球的组合体,是半径为2的球的与半径为的球的,再由球的体积公式计算即可.【详解】由三视图还原原几何体,如图所示,可知原几何体为组合体,是半径为2的球的与半径为的球的,其球的组合体的体积 .故选:A.【点睛】本题考查了三视图还原原几何体的图形,求球的组合体的体积,属于中档题.6.已知,,,则的大小关系为A. B.C. D.【答案】A【解析】【分析】利用利用等中间值区分各个数值的大小。
2019-2020学年高二数学9月月考试题理(含解析)一、单选题(共12小题,每小题5分,共60分)1.若,,则两点间的距离为()A. B. 25 C. 5 D.【答案】C【解析】A(1,3,-2)、B(-2,3,2),则A、B两点间的距离为故选C2.直线的方程为,则直线的倾斜角为()A. B. C. D.【答案】A【解析】由直线l的方程为,可得直线的斜率为k=,设直线的倾斜角为α(0°≤α<180°),则tanα=,,∴α=150°.故选:A.3.直线在轴上的截距为( )A. B. C. D.【答案】B【解析】【分析】令=0,求出的值即为所求.【详解】直线,令=0,解得=﹣,∴直线在轴上的截距为﹣.故选:B.【点睛】本题考查直线方程的纵截距的求法,注意直线性质的合理运用,属于基础题.4.已知直线与直线平行,则它们之间的距离是( )A. 1B.C. 3D. 4【答案】B【解析】【分析】由题意两直线平行,得,由直线可化为,再由两直线之间的距离公式,即可求解.【详解】由题意直线与直线平行,则,即,则直线可化为,所以两直线之间的距离为,故选B.【点睛】本题主要考查了两条平行线的距离的求解,其中解答中根据两直线的平行关系,求得的值,再利用两平行线间的距离公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.5.点关于直线的对称点的坐标是( )A. B. C. D.【答案】B【解析】【分析】设点P(2,5)关于直线x+y=1的对称点Q的坐标为(m,n),利用垂直及中点在轴上这两个条件求出m、n的值,可得结论.【详解】设点P(2,5)关于直线x+y=1的对称点Q的坐标为(m,n),则由题意可得故答案为:B.【点睛】(1)本题主要考查点关于直线对称的点的坐标的求法,意在考查学生对该知识的掌握水平和分析推理计算能力.(2) 求点关于直线l:对称的点的坐标,可以根据直线l垂直平分得到方程组,解方程组即得对称点的坐标.6.已知点,直线方程为,且直线与线段相交,求直线的斜率k的取值范围为()A. 或B. 或C. D.【答案】A【解析】【分析】先求出线段的方程,得出,在直线的方程中得到,将代入的表达式,利用不等式的性质求出的取值范围。
2019-2020学年高二数学9月月考试题理(含解析)一、选择题(每题5分,共12题)1.设命题,则为( )A. ∀x∈(0,+∞),≥log2xB. ∀x∈(0,+∞),<log2xC. ∃x0∈(0,+∞),=log2x0D. ∃x0∈(0,+∞),<log2x0【答案】B【解析】【分析】根据全称命题与存在性命题的关系,即可得到命题的否定,得到答案。
【详解】由题意,根据全称命题与存在性命题的关系,可得命题“”的否定“”,故选B。
【点睛】本题主要考查了全称命题与存在性命题的关系,其中解答中熟记全称命题与存在性命题的关系,正确书写是解答的关键,着重考查了推理与运算能力,属于基础题。
2.A,B两名同学在5次数学考试中的成绩统计如下面的茎叶图所示,若A,B两人的平均成绩分别是,,观察茎叶图,下列结论正确的是A. ,B比A成绩稳定B. ,B比A成绩稳定C. ,A比B成绩稳定D. ,A比B成绩稳定【答案】A【解析】【分析】根据茎叶图看出和的五次成绩离散程度,计算出和的平均数,比较大小即可【详解】的成绩为,的平均数为的成绩为的平均数为从茎叶图上看出的数据比的数据集中,比成绩稳定故选【点睛】本题考查了茎叶图的应用问题,考查了平均数的求法,解题时应该观察茎叶图中的数据,根据数据解答问题,属于基础题。
3.把黑、红、白3张纸牌分给甲、乙、丙三人,则事件“甲分得红牌”与“乙分得红牌”是( )A. 对立事件B. 互斥但不对立事件C. 不可能事件D. 必然事件【答案】B【解析】试题分析:把黑、红、白3张纸牌分给甲、乙、丙三人,事件“甲分得红牌”与“乙分得红牌”不可能同时发生,是互斥事件,但除了事件“甲分得红牌”与“乙分得红牌”还有“丙分得红牌”,所以这两者不是对立事件,答案为B.考点:互斥与对立事件.4.某程序框图如图所示,该程序运行后输出的的值是()A. 4B. 5C. 6D. 7【答案】A【解析】【分析】根据框图,模拟计算即可得出结果.【详解】程序执行第一次,,,第二次,,第三次,,第四次,,跳出循环,输出,故选A.【点睛】本题主要考查了程序框图,循环结构,属于中档题.5.若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-1的标准差为( )A. 8B. 15C. 16D. 32【答案】C【解析】【分析】根据标准差与方差的关系,先求出样本数据对应的方差,然后结合变量之间的方差关系,即可求解,得到答案。
2019-2020学年高二数学9月月考试题本试卷共150分,考试时间120分钟。
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,集合,则图中的阴影部分表示的集合是A.[1, 3]B.(1, 3]C.{-1,2,3}D.{-1,0,2,3}2.函数在闭区间上有最大值3,最小值为2,的取值范围是A. B.C.D.3.已知, ,, 则的大小关系是A.a<b<c B.c<a<bC.a<c<b D.c<b<a4.已知函数其中,若的图像如图所示,则函数的图像大致为A. B. C. D.5.在下列条件中,可判定平面与平面平行的是A.,都平行于直线B.内存不共线的三点到的距离相等C., 是内的两条直线,且,D., 是两条异面直线,且, , ,6.点, 是圆上的不同两点,且点,关于直对称,则该圆的半径等于A.B.C.D.7.某学校为了调查高一年级的200名学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机抽取20名同学进行抽查;第二种由教务处对该年级的学生进行编号,从001到200,抽取学号最后一位为2的同学进行调查,则这两种抽样的方法依次是A.分层抽样,简单随机抽样B.简单随机抽样,分层抽样C.分层抽样,系统抽样D.简单随机抽样,系统抽样8.函数是A.奇函数 B.非奇非偶函数 C.常数函数 D.偶函数9.一个口袋中装有大小和形状都相同的一个白球和一个黑球,那么“从中任意摸一个球得到白球”,这个事件是A.随机事件B.必然事件C.不可能事件D.不能确定10.已知函数,则下列结论错误的是A.的一个周期为B.的图像关于直线对称C.的一个零点为D.在区间上单调递减11.设是所在平面内一点,且,则A.B.C.D.12.已知角的终边过点,则A.B.C.3D.-3二.填空题:本大题共4小题,每小题5分,共20分.13.设集合,,则________.14.设公比为的等比数列的前项和为, 若,则________ .15.已知函数为常数在区间上的最大值为1,则________.16. 如图,在中,已知为边的中点.若,垂足为,则的值为________.三、解答题:解答应写出文字说明、证明过程或推演步骤.(70分)17. (10分)如图:某快递小哥从地出发,沿小路以平均时速20公里/小时,送快件到处,已知(公里),,是等腰三角形,.(1) 试问,快递小哥能否在50分钟内将快件送到处?(2) 快递小哥出发15分钟后,快递公司发现快件有重大问题,由于通讯不畅,公司只能派车沿大路追赶,若汽车平均时速60公里/小时,问,汽车能否先到达处?18. (12分)已知二次函数满足,且.(1)求函数的解析式;(2)求在区间上的最大值和最小值;(3)当时, 恒成立,求的取值范围.19(12分)已知圆和.(1)求证:圆和圆相交;(2)求圆和圆的公共弦所在直线的方程和公共弦长.20. (12分)已知函数.(1) 求函数的最小正周期及在区间上的最大值和最小值;(2) 若,求的值.21. (12分) 某中学团委组织了“弘扬奥运精神,爱我中华”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[40,50],[50,60],…,[90,100]后画出如下部分频率分布直方图.观察图形给出的信息,回答下列问题.(1)求第四小组的频率,并补全这个频率分布直方图;(2)估计这次考试的及格率(60分及以上为及格)和平均分;(3)从成绩是[40,50]和[90,100]的学生中选两人,求他们在同一分数段的概率.22(12分)在数列中,,.(1)求证:数列是等差数列;(2)求数列的前项和.2019-2020学年高二数学9月月考试题本试卷共150分,考试时间120分钟。
2019-2020年高二(下)4月月考数学(理)试题解析版含解析一.选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)下列说法正确的是()A.类比推理是由特殊到一般的推理B.演绎推理是特殊到一般的推理C.归纳推理是个别到一般的推理D.合情推理可以作为证明的步骤考点:演绎推理的意义;进行简单的合情推理.专题:概率与统计.分析:根据归纳推理、类比推理、演绎推理、合情推理的定义,即可得到结论.解答:解:因为归纳推理是由部分到整体的推理;类比推理是由特殊到特殊的推理;演绎推理是由一般到特殊的推理;合情推理的结论不一定正确,不可以作为证明的步骤,故选C.点评:本题考查合情推理与演绎推理,考查学生分析解决问题的能力,属于基础题.2.(5分)黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案,则第n个图案中有白色地面砖的块数是()A.4n+2 B.4n﹣2 C.2n+4 D.3n+3考点:归纳推理;等差数列的通项公式.分析:本题考查的是归纳推理,处理的方法是,由已知的图案中分析出白色地面砖的块数与图形序号n之间的关系,并由此猜想数列的通项公式,解答问题.解答:解:方法一:(归纳猜想法)观察可知:除第一个以外,每增加一个黑色地板砖,相应的白地板砖就增加四个,因此第n个图案中有白色地面砖的块数是一个“以6为首项,公差是4的等差数列的第n项”.故第n个图案中有白色地面砖的块数是4n+2方法二:(特殊值代入排除法)或由图可知,当n=1时,a1=6,可排除B答案当n=2时,a2=10,可排除CD答案.故答案为A点评:归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).3.(5分)若f′(x0)=2,则等于()A.﹣1 B.﹣2 C.1D.考点:极限及其运算.专题:极限思想.分析:首先应该紧扣函数在一点导数的概念,由概念的应用直接列出等式,与式子对比求解.解答:解析:因为f′(x0)=2,由导数的定义即=2⇒=﹣1所以答案选择A.点评:此题主要考查函数在一点导数的概念的应用,属于记忆理解性的问题,这类题目属于最基础性的.4.(5分)(xx•湖北模拟)一个物体的运动方程为s=1﹣t+t2其中s的单位是米,t的单位是秒,那么物体在3秒末的瞬时速度是()A.7米/秒B.6米/秒C.5米/秒D.8米/秒考点:导数的几何意义.专题:计算题.分析:①求出s的导函数s'(t)=2t﹣1②求出s'(3)解答:解:s'(t)=2t﹣1,s'(3)=2×3﹣1=5.故答案为C点评:考查求导法则及导数意义5.(5分)(xx•江西模拟)曲线y=x3﹣2x+4在点(1,3)处的切线的倾斜角为()A.30°B.45°C.60°D.120°考点:导数的几何意义.专题:计算题.分析:欲求在点(1,3)处的切线倾斜角,先根据导数的几何意义可知k=y′|x=1,再结合正切函数的值求出角α的值即可.解答:解:y/=3x2﹣2,切线的斜率k=3×12﹣2=1.故倾斜角为45°.故选B.点评:本题考查了导数的几何意义,以及利用正切函数的图象求倾斜角,本题属于容易题.6.(5分)(xx•广东)函数f(x)=(x﹣3)e x的单调递增区间是()A.(﹣∞,2)B.(0,3)C.(1,4)D.(2,+∞)考点:利用导数研究函数的单调性.分析:若求解函数f(x)的单调递增区间,利用导数研究函数的单调性的性质,对f(x)求导,令f′(x)>0,解出x的取值区间,要考虑f(x)的定义域.解答:解:f′(x)=(x﹣3)′e x+(x﹣3)(e x)′=(x﹣2)e x,求f(x)的单调递增区间,令f′(x)>0,解得x>2,故选D.点评:本题主要考查利用导数研究函数的单调性的这一性质,值得注意的是,要在定义域内求解单调区间.7.(5分)函数的最大值为()A.e﹣1B.e C.e2D.考点:函数在某点取得极值的条件.专题:计算题.分析:先找出导数值等于0的点,再确定在此点的左侧及右侧导数值的符号,确定此点是函数的极大值点还是极小值点,从而求出极值.解答:解:令,当x>e时,y′<0;当x<e时,y′>0,,在定义域内只有一个极值,所以,故答案选A.点评:本题考查求函数极值的方法及函数在某个点取得极值的条件.8.(5分)(2011•资中县模拟)已知函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则实数a的取值范围是()A.﹣1<a<2 B.﹣3<a<6 C.a<﹣3或a>6 D.a<﹣1或a>2考点:利用导数研究函数的极值.专题:计算题.分析:题目中条件:“函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值”告诉我们其导数有两个不等的实根,利用二次方程根的判别式可解决.解答:解:由于f(x)=x3+ax2+(a+6)x+1,有f′(x)=3x2+2ax+(a+6).若f(x)有极大值和极小值,则△=4a2﹣12(a+6)>0,从而有a>6或a<﹣3,故选C.点评:本题主要考查利用导数研究函数的极值,导数的引入,为研究高次函数的极值与最值带来了方便.9.(5分)(xx•浙江)设f′(x)是函数f(x)的导函数,将y=f(x)和y=f′(x)的图象画在同一个直角坐标系中,不可能正确的是()A.B.C.D.考点:利用导数研究函数的单调性;导数的几何意义.专题:压轴题.分析:本题可以考虑排除法,容易看出选项D不正确,因为D的图象,在整个定义域内,不具有单调性,但y=f(x)和y=f′(x)在整个定义域内具有完全相同的走势,不具有这样的函数.解答:解析:检验易知A、B、C均适合,不存在选项D的图象所对应的函数,在整个定义域内,不具有单调性,但y=f(x)和y=f′(x)在整个定义域内具有完全相同的走势,不具有这样的函数,故选D.点评:考查函数的单调性问题.10.(5分)若函数y=lnx﹣ax的增区间为(0,1),则a的值是()A.0<a<1 B.﹣1<a<0 C.a=﹣1 D.a=1考点:利用导数研究函数的单调性.专题:计算题.分析:先求导数,令导数大于0,解的x的范围即为函数的增区间,因为已知函数的增区间是(0,1),所以导数大于0的解集就是(0,1),就可求出a的值.解答:解:对函数y=lnx﹣ax求导,得,y′=﹣a,令y′>0,﹣a>0,化简得∵函数y=lnx﹣ax的增区间为(0,1),∴当x∈(0,1)上y′>0即的解集为(0,1),∵分式不等式的解集的区间端点是x(1﹣ax)=0的根∴当x=1时,1×(1﹣a×1)=0,∴1﹣a=0,a=1故选D点评:本题主要考查导函数的正负与原函数的单调性之间的关系,当导函数大于0时原函数单调递增,另外还考查了已知分式不等式的解集,求参数的值.11.(5分)积分=()A.B.C.πa2D.2πa2考点:定积分的简单应用;定积分.专题:计算题.分析:本题利用定积分的几何意义计算定积分,即求被积函数y=与x轴所围成的图形的面积,围成的图象是半个圆.解答:解:根据定积分的几何意义,则表示圆心在原点,半径为3的圆的上半圆的面积,故==.故选B.点评:本小题主要考查定积分、定积分的几何意义、圆的面积等基础知识,考查考查数形结合思想.属于基础题.12.(5分)由抛物线y2=2x与直线y=x﹣4所围成的图形的面积是()A.18 B.C.D.16考点:定积分.专题:导数的综合应用.分析:利用导数的运算法则和微积分基本定理即可得出.解答:解:联立,解得或,∴由抛物线y2=2x与直线y=x﹣4所围成的图形的面积S=∵,∴S=+=18.故选A.点评:熟练掌握导数的运算法则和微积分基本定理是解题的关键.二、填空题(本大题共4个小题,每小题4分,共16分,将正确答案填在题中横线上)13.(4分)若y=x3+x﹣2在P处的切线平行于直线y=7x+1,则点P的坐标是(,)或(﹣,).考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用.分析:先求导函数,由导数的几何意义令导函数等于4建立方程,求出方程的解,即可求出切点的横坐标,代入原函数即可求出切点坐标.解答:解:由y=x3+x﹣2,求导数得y′=3x2+1,由已知得3x2+1=7,解之得x=±.当x=时,y=;当x=﹣时,y=.∴切点P0的坐标为(,)或(﹣,).故答案为:(,)或(﹣,).点评:本题考查利用导数求切点的坐标,利用导数值等于切线的斜率是解决问题的关键,属基础题.14.(4分)若函数f(x)=x3+x2+mx+1是R上的单调递增函数,则m的取值范围是m≥.考点:函数单调性的性质.专题:计算题.分析:f(x)为三次多项式函数,解决单调性用导数,函数f(x)=x3+x2+mx+1是R上的单调递增函数即f′(x)>0在R上恒成立.解答:解:f′(x)=3x2+2x+m.∵f(x)在R上是单调递增函数,∴f′(x)≥0在R上恒成立,即3x2+2x+m≥0.由△=4﹣4×3m≤0,得m≥.故答案为m≥点评:本题考查函数单调性的应用:已知单调性求参数范围.一般转化为导函数≥0或≤恒成立处理.15.(4分)已知f(x)=2x3﹣6x2+m(m为常数),在[﹣2,2]上有最大值3,那么此函数在[﹣2,2]上的最小值为﹣37.考点:利用导数求闭区间上函数的最值.专题:计算题.分析:本题是典型的利用函数的导数求最值的问题,只需要利用已知函数的最大值为3,进而求出常熟m的值,即可求出函数的最小值.解答:解:由已知,f′(x)=6x2﹣12x,有6x2﹣12x≥0得x≥2或x≤0,因此当x∈[2,+∞),(﹣∞,0]时f(x)为增函数,在x∈[0,2]时f(x)为减函数,又因为x∈[﹣2,2],所以得当x∈[﹣2,0]时f(x)为增函数,在x∈[0,2]时f(x)为减函数,所以f(x)max=f(0)=m=3,故有f(x)=2x3﹣6x2+3所以f(﹣2)=﹣37,f(2)=﹣5因为f(﹣2)=﹣37<f(2)=﹣5,所以函数f(x)的最小值为f(﹣2)=﹣37.答案为:﹣37点评:本题考查利用函数的导数求最值的问题,解一元二次不等式的方法.16.(4分)曲线y=cosx(0≤x≤π)与坐标轴所围成的图形的面积为3﹒考点:余弦函数的图象.专题:计算题.分析:根据面积等于cosx的绝对值在0≤x≤π上的积分可求出答案.解答:解:S==3=3(sin﹣sin0)=3故答案为3点评:本题主要考查余弦函数的图象和用定积分求面积的问题.属基础题.三、解答题(本大题共6个小题,共74分,解答应写出文字说明、证明过程或演算步骤)17.(12分)已知函数f(x)=xe﹣x(x∈R).(1)求函数f(x)在x=1的切线方程;(2)求函数f(x)的单调区间和极值.考点:利用导数研究函数的极值;利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:(1)先求函数的导函数f′(x),再求所求切线的斜率即f′(1),由于切点为(1,),即可得所求切线的方程;(2)求导函数,由导数的正负,可得函数的单调区间,从而可求函数的极值.解答:解:(1)∵f(x)=xe﹣x,∴f′(x)=x(e﹣x)′+x′e﹣x=e﹣x(﹣x+1)∴f′(1)=0,f(1)=即函数f(x)图象在x=1处的切线斜率为0∴图象在x=1处的切线方程为y=(2)求导函数,f′(x)=(1﹣x)e﹣x,令f′(x)=0,解得x=1由f′(x)>0,可得x<1;由f′(x)<0,可得x>1∴函数在(﹣∞,1)上是增函数,在(1,+∞)上是减函数∴函数在x=1时取得极大值f(1)=.点评:本题考查导数的几何意义,考查函数的单调性与极值,属于中档题.18.(12分)(xx•河南模拟)已知函数f(x)=ax3+bx2的图象经过点M(1,4),曲线在点M处的切线恰好与直线x+9y=0垂直.(1)求实数a,b的值;(2)若函数f(x)在区间[m,m+1]上单调递增,求m的取值范围.考点:函数的单调性与导数的关系;导数的几何意义.专题:计算题.分析:(1)将M的坐标代入f(x)的解析式,得到关于a,b的一个等式;求出导函数,求出f′(1)即切线的斜率,利用垂直的两直线的斜率之积为﹣1,列出关于a,b的另一个等式,解方程组,求出a,b的值.(2)求出f′(x),令f′(x)>0,求出函数的单调递增区间,据题意知[m,m+1]⊆(﹣∝,﹣2]∪[0,+∝),列出端点的大小,求出m的范围.解答:解:(1)∵f(x)=ax3+bx2的图象经过点M(1,4),∴a+b①式…(1分)f'(x)=3ax2+2bx,则f'(1)=3a+2b…(3分)由条件②式…(5分)由①②式解得a=1,b=3(2)f(x)=x3+3x2,f'(x)=3x2+6x,令f'(x)=3x2+6x≥0得x≥0或x≤﹣2,…(8分)∵函数f(x)在区间[m,m+1]上单调递增∴[m,m+1]⊆(﹣∝,﹣2]∪[0,+∝)∴m≥0或m+1≤﹣2∴m≥0或m≤﹣3点评:注意函数在切点处的导数值是曲线的切线斜率;直线垂直的充要条件是斜率之积为﹣1.19.(12分)(xx•韶关模拟)设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(Ⅰ)求a、b的值;(Ⅱ)若对任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.考点:利用导数研究函数的极值;利用导数求闭区间上函数的最值.专题:计算题;分类讨论.分析:(1)依题意有,f'(1)=0,f'(2)=0.求解即可.(2)若对任意的x∈[0,3],都有f(x)<c2成立⇔f(x)max<c2在区间[0,3]上成立,根据导数求出函数在[0,3]上的最大值,进一步求c的取值范围.解答:解:(Ⅰ)f'(x)=6x2+6ax+3b,因为函数f(x)在x=1及x=2取得极值,则有f'(1)=0,f'(2)=0.即解得a=﹣3,b=4.(Ⅱ)由(Ⅰ)可知,f(x)=2x3﹣9x2+12x+8c,f'(x)=6x2﹣18x+12=6(x﹣1)(x ﹣2).当x∈(0,1)时,f'(x)>0;当x∈(1,2)时,f'(x)<0;当x∈(2,3)时,f'(x)>0.所以,当x=1时,f(x)取得极大值f(1)=5+8c,又f(0)=8c,f(3)=9+8c.则当x∈[0,3]时,f(x)的最大值为f(3)=9+8c.因为对于任意的x∈[0,3],有f(x)<c2恒成立,所以9+8c<c2,解得c<﹣1或c>9,因此c的取值范围为(﹣∞,﹣1)∪(9,+∞).点评:本题考查了导数的应用:函数在某点存在极值的性质,函数恒成立问题题,而函数①f(x)<c2在区间[a,b]上恒成立与②存在x∈[a,b],使得f(x)<c2是不同的问题.①⇔f(x)max<c2,②⇔f(x)min<c2,在解题时要准确判断是“恒成立”问题还是“存在”问题.在解题时还要体会“转化思想”及“方程与函数不等式”的思想的应用.20.(12分)如图,一矩形铁皮的长为8cm,宽为5cm,在四个角上截去四个相同的小正方形,制成一个无盖的小盒子,设小正方形的边长为多少时,盒子容积最大?最大值为多少?考点:函数模型的选择与应用.专题:计算题.分析:设小正方形的边长为xcm,则盒子容积为:y=(8﹣2x)•(5﹣2x)•x为三次函数,用求导法,可得x=1时,函数y取得最大值,此时盒子容积最大.解答:解:设小正方形的边长为xcm,则x∈(0,);盒子容积为:y=(8﹣2x)•(5﹣2x)•x=4x3﹣26x2+40x,对y求导,得y′=12x2﹣52x+40,令y′=0,得12x2﹣52x+40=0,解得:x=1,x=(舍去),所以,当0<x<1时,y′>0,函数y单调递增;当1<x<时,y′<0,函数y单调递减;所以,当x=1时,函数y取得最大值18;所以,小正方形的边长为1cm,盒子容积最大,最大值为18cm3.点评:本题考查了简单的三次函数模型的应用,利用求导法求得三次函数在其定义域上的最值问题,是中档题.21.(13分)设函数f(x)=2x3﹣3(a+1)x2+6ax+18(a∈R)(1)判断f(x)在定义域上的单调性;(2)求f(x)在[1,2]上的最大值.考点:利用导数求闭区间上函数的最值;利用导数研究函数的单调性.专题:导数的综合应用.分析:(1)求函数的导数,利用导数不等式去判断函数的单调性.(2)利用(1)的单调性以及单调区间求出函数在[1,2]上的最大值.解答:解:(1)函数的导数为f'(x)=6x2﹣6(a+1)x+6a=6(x﹣1)(x﹣a).①若a=1,则f'(x)=6(x﹣1)2≥0恒成立,所以此时函数f(x)在R上单调递增.②若a>1,则由f'(x)>0得x>a或x<1,此时函数f(x)单调递增.由f'(x)<0得1<x<a,此时函数f(x)单调递减.③若a<1,则由f'(x)>0得x>1或x<a,此时函数f(x)单调递增.由f'(x)<0得a<x<1,此时函数f(x)单调递减.综上,若a=1,函数f(x)在R上单调递增.若a>1,f(x)在(a,+∞)和(﹣∞,1)上单调递增,在(1,a)上函数f(x)单调递减.若a<1,f(x)在(1,+∞)和(﹣∞,a)上单调递增,在(a,1)上函数f(x)单调递减.(2)由(1)知,若a=1,函数f (x )在R 上单调递增.所以f (x )在[1,2]上的最大值为f (2)=22.若a <1,f (x )在(1,+∞)单调递增,所以f (x )在[1,2]上的最大值为f (2)=22. 若a >1,因为f (1)=3a+17,由f (1)=3a+17=22得,a=.当a=时,所以f (x )在[1,2]上的最大值为f (2)=22.当时,f (1)<f (22),所以f (x )在[1,2]上的最大值为f (2)=22.当时,f (1)>f (22),所以f (x )在[1,2]上的最大值为f (1)=3a+17.点评:本题考查了利用导数研究函数的单调性与最值,当参数不确定时,需要对参数进行分类讨论.22.(13分)(xx •枣庄模拟)已知函数f (x )=ax (a ∈R ),g (x )=lnx ﹣1.(1)若函数h (x )=g (x )+1﹣f (x )﹣2x 存在单调递减区间,求a 的取值范围;(2)当a >0时,试讨论这两个函数图象的交点个数.考点:利用导数研究函数的单调性;函数的零点与方程根的关系.专题:常规题型;计算题;分类讨论.分析: (1)先求出函数h ′(x ),欲使h (x )存在单调递减区间,则h ′(x )<0在(0,+∞)上有解,然后利用分离法可得a >在(0,+∞)上有解,故a 大于函数在(0,+∞)上的最小值即可.(2)先令F (x )=f (x )﹣g (x )=ax ﹣lnx+1(a >0),函数f (x )=ax 与g (x )=lnx ﹣1的交点个数即为函数F (x )的零点的个数,利用导数研究函数F (x )的最小值,比较最小值与0的大小即可得到F (x )的零点的个数.解答: 解:(1)h (x )=lnx ﹣﹣2x (x >0),h ′(x )=﹣ax ﹣2.若使h (x )存在单调递减区间,则h ′(x )=﹣ax ﹣2<0在(0,+∞)上有解.而当x >0时,﹣ax ﹣2<0⇔ax >﹣2⇔a >﹣问题转化为a >在(0,+∞)上有解,故a 大于函数在(0,+∞)上的最小值.又=﹣1,在(0,+∞)上的最小值为﹣1,所以a >﹣1.(2)令F (x )=f (x )﹣g (x )=ax ﹣lnx+1(a >0)函数f (x )=ax 与g (x )=lnx ﹣1的交点个数即为函数F (x )的零点的个数.F ′(x )=a ﹣(x >0)令F (x )=a ﹣=0解得x=.随着x 的变化,F (x ),F (x )的变化情况如表:(7分)①当F ()=2+lna >0,即a=e ﹣2时,F (x )恒大于0,函数F (x )无零点.(8分)②当F ()=2+lna=0,即a=e ﹣2时,由上表,函数F (x )有且仅有一个零点.③F ()=2+lna <0,即0<a <e ﹣2时,显然1<F (1)=a+1>0,所以F (1)F ()<0•,又F (x )在(0,)内单调递减,所以F (x )在(0,)内有且仅有一个零点当x >时,F (x )=ln 由指数函数y=(e a )x (e a >1)与幂函数y=x 增长速度的快慢,知存在x 0>使得从而F (x 0)=ln因而F ()•F (x 0<0)又F (x )在(,+∞)内单调递增,F (x )在[,+∞)上的图象是连续不断的曲线,所以F (x )在(,+∞)内有且仅有一个零点.因此,0<a <e ﹣2时,F (x )有且仅有两个零点.综上,a >e ﹣2,f (x )与g (x )的图象无交点;当a=e ﹣2时,f (x )与g (x )的图象有且仅有一个交点;0<a <e ﹣2时,f (x )与g (x )的图象有且仅有两个交点.点评: 本题主要考查了利用导数研究函数的单调性,函数的零点与方程根的关系等基础题知识,考查了转化和划归的数学思想,属于中档题.。
2019学年度上学期9月月考高二数学试卷时间:120分钟 满分:150分第I 卷一选择题(每题5分,共60分) 1. 数列1,4,9,16,25--的一个通项公式是 ( )A. 2n a n = B. ()21nn a n =-C. ()121n n a n +=- D. ()()211n n a n =-+2. 正项等比数列{}n a 中, 312a =, 23S =,则公比q 的值是( ) A. 12 B. 12- C. 1或12- D. 1-或12-3.已知{}n a 为递增等差数列,12321=++a a a48321=⋅⋅a a a ,则=1a ( )A. 1B.2C.4D. 6 4. 等比数列{}n a 中,,18,367463=+=+a a a a 21=n a ,则n= ( ) A. 1 B.7 C. 8 D. 95. 数列{}n a 的通项公式为72-=n a n ,则=+++1521a a a ( )A . 153B . 210C .135D . 1206.已知n S 是公差不为0的等差数列{}n a 的前n 项和,且124,,S S S 成等比数列,则231a a a +=( ) A. 4 B. 6 C. 8 D. 10 7.已知,,abc R ∈,则下列推证中正确的是( )A. 22a b am bm >⇒> B.a ba b c c>⇒> C. 22ac bc a b >⇒> D. 2211,0a b ab a b>>⇒< 8.在等差数列{}n a 前n 项和为n S ,若481,4S S ==,则9101112a a a a +++的值为( )A. 5B. 7C. 9D. 119. 等比数列{}n a ,若其前n 项和12-=n n s ,则22212n a a a ++⋯+= ( )A.()11413n -- B. 41n - C. ()1213n - D. ()1413n - 10.数列1, 112+, 1123++,…, 112n ++⋯+的前n 项和为( )A. 221n n +B. 21n n ++C. 21n n +D. 21n n +11. 已知n S 是等差数列{}n a 的前n 项和,且675S S S >>,给出下列五个命题:①0d <;②110S >;③120S <;④数列{}n S 中的最大项为11S ;⑤67a a >, 其中正确命题的个数为( )A. 2B. 3C. 4D. 512. 设数列{}n a 的前n 项的和为n S ,且1142n n a -⎛⎫=+- ⎪⎝⎭,若对于任意的*n N ∈都有()143n x S n ≤-≤恒成立,则实数x 的取值范围是 ( ).A.[23,3] B.[2,3] C. ]2923[, D. ]293[, 第Ⅱ卷二 填空题(每题5分,共20分)13. 等比数列{}n a 中,41=a ,95=a 则=3a ______________________.14. 两个等差数列34,23-=-=n b n a n n 各有100项,则它们共有相同项______个. 15. 数列{}n a 中,已知11=a ,1321321-=+++++n n a na a a a ,则=20a ______. 16. 下列叙述正确的有__________.①某数列{}n a 的前n 项和n S =54n 22+-n ,该数列可能是等差数列., ②等比数列{}n a 的前n 项和n S =t 3+n ,则必有t=—1. ③已知数列{}n a 中,9998--=n n a n ,则其前30项中,最小项为9a ,最大项为10a .④已知两个等比数列的公比不相等,但第5项相等,则这两个等比数列中,除第5项外,再无可能出现序号和数值都相等的项.三 解答题(17题10分,18~22题,每题12分,共70分)17.比较大小(1)已知的大小与比较x x x x x ++>2355,5.(2)比较244aa+和1的大小.18.等差数列{}n a 中,39,27642531=++=++a a a a a a , (1)求{}n a 的通项公式;(2)若()n nn a b 1-=,且n T 为{}n b 的n 项和,求50T\19. 已知各项均为正数的等比数列{}n a 前n 项和n S ,143=S ,1538a a a ∙=. (1)求数列{}n a 的通项公式;(2)设()21n n b n a =-,求数列{}n b 的前n 项和n T .20. 已知数列{}n a 的首项 ,2,1,123,5311=+==+n a a a a n n n .(1)求证:数列⎭⎬⎫⎩⎨⎧-11n a 为等比数列; (2) 记nn a a a S 11121+++= ,若100<n S ,求最大正整数n .21. 已知数列{}n a 的前n 项和是n S ,且*11()2n n S a n N +=∈. (1)求数列{}n a 的通项公式;(2)设*31log (1)()n n b S n N +=-∈,求适合方程122311112551n n b b b b b b ++++=的正整数n 的值. ,22.已知数列{}n a 和{}n b 满足()nb n a a a a 2321= (*∈N n ),若{}n a 为等比数列,且6,2231+==b b a (1)求n a 与n b(2)对于任意自然数n ,求使不等式2232120)3(321λλ-<--++++n nb b b b n 恒成立的λ的取值范围.高二数学9月月考参考答案一选择题:DABDA CCADC BB 二填空题:6 25 20 ②③ 三解答题: 17.(1) x x 53+ > x x +25. (2)244aa+≤1 18.34-=n a n()()()()5015913171971591317211931974444425100.T =-+-+-+⋯+=-++-++-++⋯+-+=+++⋯+=⨯=19. (Ⅰ) 2nn a =;(Ⅱ) ()12326n n T n +=-⋅+.(Ⅰ)设等比数列的公比为q ,且0q >, ∵243648a a a ⋅=⇒=∴218a q =,又12314a a a ++=∴()2344002q q q q --=>⇒=∴2nn a =(Ⅱ)由(Ⅰ)知()21n n b n a =- 得()212nn b n =-⋅故()()12112+1232232212n n n n T b b b n n -=++=⋅+⋅++-⋅+-⋅ (1)∴()()23121232232212n n n T n n +=⋅+⋅++-⋅+-⋅ (2)()()12-得: ()()123122222212n n n T n +-=++++--⋅,∴()12326n n T n +=-⋅+20(1)1n =时,11112a a +=,123a =,2n ≥时,11112112n n n n S a S a--⎧=-⎪⎪⎨⎪=-⎪⎩,111()2n n n n S S a a ---=-,∴11(2)3n n a a n -=≥, {}n a 是以23为首项,13为公比的等比数列,1211()2()333n n n a -=⨯=.(2)11123n n n S a -==,13131log (1)log ()(1)3n n n b S n ++=-==-+,111112n n b b n n +=-++, 1223111111111111()()()23341222n n b b b b b b n n n ++++=-+-++-=-+++, 11252251n -=+,100n =. 21(1)313111,3132111-=-∴+=++n n n n a a a a,且)(011,0111*∈≠-∴≠-N n a a n∴数列⎭⎬⎫⎩⎨⎧-11n a 为等比数列. (2)由(1)可求得1)31(21,)31(32111+⨯=∴⨯=--n n n n a a . n n n n n n n n a a a S 31131131312)313131(21111221-+=--⋅+=++++=+++=∴+若,100<n S 则100311<-+n n ,99max =∴n 22 (1)由题意()nb n a a a a 2321= , 623+=b b ,知()82233==-b b ann a a 2,21==又 ()nb n n a a a a 222)1(n 321==+ n b =n n +2(2)21815)3(32122321-+-=--++++n n n n b b b b n当n=7或8时,上式有最大值19,22019λλ-<即解得),(191∈λ。
2019学年高二数学9月月考试题理第I卷(选择题)一、选择题(本题共12道小题,每小题5分,共60分)1.从装有黑球和白球各2个的口袋内任取2个球,那么互斥而不对立的两个事件()A.至少有1个黑球,至少有1个白球 B.恰有一个黑球,恰有2个白球C.至少有一个黑球,都是黑球 D.至少有1个黑球,都是白球2.4名同学报名参加两个课外活动小组,每名同学限报其中的一个小组,则不同的标报名方法共有()A.4种 B.16种 C.64种 D.256种3.若正整数N除以正整数m后的余数为n,则记为N=n(mod m),例如10=2(mod 4),下面程序框图的算法源于我国古代闻名中外的《中国剩余定理》.执行该程序框图,则输出的i等于()A.4 B.8 C.16 D.324.已知f(x)=5x5+4x4+3x3+2x2+x+1,若用秦九韶算法求f(5)的值,下面说法正确()A.至多4乘法运算和5次加法运算B.15次乘法运算和5次加法运算C.10次乘法运算和5次加法运算D.至多5次乘法运算和5次加法运算5.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C 实施时必须相邻,请问实验顺序的编排方法共有()A.24种B.48种C.96种D.144种6.某研究机构对儿童记忆能力x和识图能力y进行统计分析,得到如下数据:由表中数据,求得线性回归方程为, =x+,若某儿童的记忆能力为11时,则他的识图能力约为()A.8.5 B.8.7 C.8.9 D.97.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,3,…,840随机编号,则抽取的42个人中,编号落入区间[481,720]的人数为A.11 B.12 C.13 D.148.由数字0,1,2,3,4,5可以组成无重复数字且奇偶数字相间的六位数的个数有()A.72 B.60 C.48 D.529.某教师一天上3个班级的课,每班开1节,如果一天共9节课,上午5节、下午4节,并且教师不能连上3节课(第5节和第6节不算连上),那么这位教师一天的课表的所有排法有()A.474种B.77种 C.462种 D.79种10.对任意实数x,有,则a2=()A.3 B.6 C.9 D.2111.已知b为如图所示的程序框图输出的结果,则二项式(﹣)6的展开式中的常数项是()A.﹣20 B.20C.﹣540 D.54012.甲乙二人玩游戏,甲想一数字记为a,乙猜甲刚才想的数字,把乙猜出的数字记为b,且a,b∈{1,2,3},若|a﹣b|≤1,则称甲乙“心有灵犀”,则他们“心有灵犀”的概率为()A. B. C. D.二、填空题(本题共4道小题,每小题5分,共20分)13.在[﹣2,3]上随机取一个数x,则(x+1)(x﹣3)≤0的概率为.14.十进制1039(10)转化为8进制为(8).15.设样本数据x1,x2,…,x2017的方差是4,若y i=2x i﹣1(i=1,2,…,2017),则 y1,y2,…y2017的方差为.16.将(2x2﹣x+1)8展开且合并同类项之后的式子中x5的系数是.三、解答题(本题共6道小题,第1题10分,其它题12分)17.某冷饮店为了解气温变化对其营业额的影响,随机记录了该店1月份销售淡季中5天的日营业额y(单位:百元)与该地当日最低气温x(单位:℃)的数据,如下表所示:(Ⅰ)判定y与x之间是正相关还是负相关,并求回归方程=x+(Ⅱ)若该地1月份某天的最低气温为6℃,预测该店当日的营业额(参考公式:==,=﹣).18.某统计部门就“A市汽车价格区间的购买意愿”对100人进行了问卷调查,并将结果制作成频率分布直方图,如图,已知样本中数据在区间[10,15)上的人数与数据在区间[25,30)的人数之比为3:4.(Ⅰ)求a,b的值.(Ⅱ)估计A市汽车价格区间购买意愿的中位数;(Ⅲ)按分层抽样的方法在数据区间[10,15)和[20,25)上接受调查的市民中选取6人参加座谈,再从这6人中随机选取2人作为主要发言人,求在[10,15)的市民中至少有一人被选中的概率.19.已知在△ABC中,角A,B,C所对的边分别是a,b,c,且a、b、c成等比数列,c=bsinC﹣ccosB.(Ⅰ)求B的大小;(Ⅱ)若b=2,求△ABC的周长和面积.20.已知n x x x f )3()(232+=展开式中各项的系数和比各项的二项式系数和大992。
(1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项。
21.已知关于x 的一元二次方程x 2﹣2(a ﹣2)x ﹣b 2+16=0.(1)若a ,b 是一枚骰子掷两次所得到的点数,求方程有实根的概率; (2)若a ∈[2,6],b ∈[0,4],求方程没有实根的概率.22.如图,在四棱锥P ﹣ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F .(1)证明PA ∥平面EDB ; (2)证明PB ⊥平面EFD ; (3)求二面角C ﹣PB ﹣D 的大小.9月月考试卷答案一.选择题 1.B 2.B 3.C 4.D 5.C 6.B 7.B 8.B 9.A 10.B 11.C 12.D二.填空题 13. 14.2017 15.16 16.﹣128817.【解答】解:(I)由散点图知:y与x之间是负相关;…因为n=5, =7, =9,(﹣5)=275﹣5×72=30;(x i y i﹣5)=294﹣5×7×9=﹣21.所以b=﹣0.7,…=﹣=9﹣(﹣0.7)×7=13.9.…故回归方程为y=﹣0.7x+13.9…(Ⅱ)当x=6时,y=﹣0.7×6+13.9=9.7.故预测该店当日的营业额约为970元…18.解:(Ⅰ)设样本中数据在区间[10,15)上的人数与数据在区间[25,30)的人数分别为3k,4k,则,解得k=5,∴a=0.03k÷5=0.03,b=0.04k÷5=0.04.(Ⅱ)由频率分布直方图得数据区间[5,20)内的频率为:(0.01+0.03+0.04)×5=0.4,数据区间[20,25)内的频率为:0.06×5=0.3,∴A市汽车价格区间购买意愿的中位数为:20+=.(Ⅲ)按分层抽样的方法在数据区间[10,15)和[20,25)上接受调查的市民中选取6人参加座谈,则在数据区间[10,15)上选取:6×=2人,[20,25)上选取:6×=4人,从这6人中随机选取2人作为主要发言人,基本事件总数n=,在[10,15)的市民中至少有一人被选中的对立事件是选中的2人都在[20,25)内,∴在[10,15)的市民中至少有一人被选中的概率p=1﹣=.19.解:(Ⅰ)根据题意,若c=bsinC﹣ccosB,由正弦定理可得sinC=sinBsinC﹣sinCcosB,又由sinC≠0,则有1=sinC﹣cosB,即1=2sin(B﹣),则有B﹣=或B﹣=,即B=或π(舍)故B=;(Ⅱ)已知b=2,则b2=a2+c2﹣2accosB=a2+c2﹣ac=(a+c)2﹣3ac=12,又由a、b、c成等比数列,即b2=ac,则有12=(a+c )2﹣36,解可得a+c=4, 所以△ABC 的周长l=a+b+c=2+4=6,面积S △ABC=acsinB=b 2sinB=3.20.(1)令x=1,得二项展开式各项系数和为f(1)=(1+3)n =4n,由题意得:4n -2n =992 (2n )2-2n -992=0 ∴(2n +31)(2n -32)=05=⇒n (3分) ∴展开式中二项式系数最大项为中间两项,它们是:62233225390)3()(x x x C T ==32232232354270)3()(x x x C T ==(6分)(2)展开式通项公式为)25(32513r r r r xC T++⋅=r=0, 1 (5)假设T r+1项系数最大,则有: ⎩⎨⎧≥≥++--115511553333r r r r r r r r C C C C (9分)解得:2927≤≤r ∵r ∈N ∴r=4 ∴展开式中系数最大项为3264232455405)3(x x x C T =⋅=21.【解答】解:(1)由题意知本题是一个古典概型 用(a ,b )表示一枚骰子投掷两次所得到的点数的事件 依题意知,基本事件(a ,b )的总数有36个 二次方程x 2﹣2(a ﹣2)x ﹣b 2+16=0有实根,等价于△=4(a ﹣2)2+4(b 2﹣16)≥0,即(a ﹣2)2+b 2≥16,“方程有两个根”的事件为A ,则事件A 包含的基本事件为(1,6),(1,5).(1,4),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,4),(4,5),(4,6),(5,3),(5,4),(5,5),(5,6),(6,1)、(6,2)、(6,3)、(6,4),(6,5),(6,6),共22个 ∴所求的概率为P (A )=;(2)由题意知本题是一个几何概型,;试验的全部结果构成区域Ω={(a ,b )|2≤a ≤6,0≤b ≤4},其面积为S (Ω)=16 满足条件的事件为:B={(a ,b )|2≤a ≤6,0≤b ≤4,(a ﹣2)2+b 2<16} 其面积为S (B )=×π×42=4π22.解:方法一:(1)证明:连接AC ,AC 交BD 于O ,连接EO . ∵底面ABCD 是正方形,∴点O 是AC 的中点在△PAC 中,EO 是中位线, ∴PA ∥EO 而EO ⊂平面EDB 且PA ⊄平面EDB ,所以,PA ∥平面EDB (2)证明:∵PD ⊥底面ABCD 且DC ⊂底面ABCD ,∴PD ⊥DC∵PD=DC ,可知△PDC 是等腰直角三角形,而DE 是斜边PC 的中线,∴DE ⊥PC .①同样由PD⊥底面ABCD,得PD⊥BC.∵底面ABCD是正方形,有DC⊥BC,∴BC⊥平面PDC.而DE⊂平面PDC,∴BC⊥DE.②由①和②推得DE⊥平面PBC.而PB⊂平面PBC,∴DE⊥PB 又EF⊥PB且DE∩EF=E,所以PB⊥平面EFD.(3)解:由(2)知,PB⊥DF,故∠EFD是二面角C﹣PB﹣D的平面角.由(2)知,DE⊥EF,PD⊥DB.设正方形ABCD的边长为a,则,.在Rt△PDB中,.在Rt△EFD中,,∴.所以,二面角C﹣PB﹣D的大小为.方法二:如图所示建立空间直角坐标系,D为坐标原点,设DC=a.(1)证明:连接AC,AC交BD于G,连接EG.依题意得.∵底面ABCD是正方形,∴G是此正方形的中心,故点G的坐标为且.∴,这表明PA∥EG.而EG⊂平面EDB且PA⊄平面EDB,∴PA∥平面EDB.(2)证明;依题意得B(a,a,0),.又,故.∴PB⊥DE.由已知EF⊥PB,且EF∩DE=E,所以PB⊥平面EFD.(3)解:设点F的坐标为(x0,y0,z0),,则(x0,y0,z0﹣a)=λ(a,a,﹣a).从而x0=λa,y0=λa,z0=(1﹣λ)a.所以.由条件EF⊥PB知,,即,解得∴点F的坐标为,且,※精品试卷※∴即PB⊥FD,故∠EFD是二面角C﹣PB﹣D的平面角.∵,且,,∴.∴.所以,二面角C﹣PB﹣D的大小为.。