快速成形技术的快速模具制造技术(doc 6)
- 格式:doc
- 大小:3.76 MB
- 文档页数:6
快速制模技术模具是制造业中使用量大、影响面广的工具产品。
没有型腔模、压铸模、铸模、深拉模和冲压模,就无法生产出被广泛应用和具有竞争价格的塑料件、合金压铸件、钢板件和锻件。
在现代批量生产中,没有高水平的模具,就没有高质量的产品,它对企业提高生产效率、降低生产成本也有重要的作用。
据国外最新统计分析,金属零件粗加工的75%、精加工的50%和塑料零件的90%是用模具加工完成的。
因此,模具工业也被称为“皇冠工业”。
由于市场竞争的日益激烈,产品更新换代的速度不断加快,多品种小批量将成为制造业的重要生产方式,在这种情况下,制造业对产品原型的快速制造和模具的快速制造提出了强烈的要求。
高速加工技术的出现,为模具制造技术开辟了一条崭新的道路。
快速制模技术是一种快捷、方便、实用的模具制造技术。
特别适用于新产品开发试制、工艺验证和功能验证以及多品种小批量生产。
快速制模技术特点快速模具制造技术与传统的模具制造技术相比,具有如下特点:(1)制造方法简单,工艺范围广由于快速模具制造是基于材料逐层堆积的成形方法,工艺过程相对简单、方便和快捷,它不仅能适应各种生产类型特别是单件小批的模具生产,而且能适应各种复杂程度的模具制造;它既能制造塑料模具,也能制造金属模具。
模具的结构愈复杂,快速模具制造的优越性就更突出。
(2)模具材料可强韧化和复合化快速模具制造工艺能方便地利用在合金中添加元素或结晶核心,改变金属凝固过程或热处理等手段,可改善和提高模具材料的性能;或者在合金中添加其它材料,可制造复合材料模具。
(3)设计周期短,质量高由于RT的模具设计极少依赖人的因素,因而可有效地降低人为的设计缺陷。
设计师可利用RP制造的高精度模型,在设计阶段就可对产品的整体或局部进行装配和综合评价,并不断改进,大大地提高了产品的设计质量。
(4)便于远程的制造服务由于RT对信息技术的应用,缩短了用户和制造商之间的距离,利用互联网可进行远程设计和远程服务,能使有限的资源得到充分的发挥,用户的需求能得到最快的响应。
快速成型技术在产品设计中的应用快速成型技术,即Rapid Prototyping,简称RP技术,是一种利用计算机辅助设计(CAD)和计算机辅助制造(CAM)技术,通过堆叠或涂覆材料来逐层制造实体模型的技术。
随着科技的不断发展,快速成型技术在产品设计中的应用得到了越来越广泛的应用,为产品开发提供了更快、更灵活的解决方案。
本文将探讨快速成型技术在产品设计中的应用,并介绍其优势和未来发展趋势。
快速成型技术在产品设计中的应用主要体现在以下几个方面:1.快速制作实体模型:传统上,产品的开发需要花费大量的时间和成本来制作实体模型进行测试和验证。
而有了快速成型技术,设计师可以通过CAD软件设计出模型,并利用快速成型技术将设计图转化成实体模型,实现快速制作和验证设计的效果。
这样可以有效缩短产品开发周期,提高产品设计的灵活性和精度。
2.灵活性和创新性:快速成型技术可以很容易地制作复杂形状的实体模型,从而为设计师提供了更多的创意空间。
设计师可以通过快速成型技术制作出各种各样的模型,包括曲线、空间结构等复杂形状,从而激发设计的创新性,提高产品的竞争力。
3. 降低成本:传统的产品设计需要雕刻模型或制作模具,这些过程通常需要大量的时间和成本。
而快速成型技术可以直接将设计图转化为实体模型,无需制作模具和雕刻,从而大大节省了成本和时间。
4. 可视化效果:产品设计师可以通过快速成型技术将设计图快速转化为实体模型,从而更直观地展现给客户和团队成员,加快决策过程。
这种可视化效果可以帮助客户和团队更好地理解设计意图,提出意见和建议,从而更好地满足市场需求。
5. 高效的定制化生产:快速成型技术可以帮助企业快速响应市场需求,实现定制化生产。
设计师可以根据客户需求快速制作出客户需求的产品,实现小批量、多样化的生产,从而提高产品的市场竞争力。
未来,随着科技的不断发展和应用场景的不断扩大,快速成型技术在产品设计中的应用将会越来越广泛。
随着快速成型技术的不断创新和发展,将会有更多的材料可以用于快速成型技术,从而更好地满足产品设计的需求。
第六章快速成型技术 (2)4.1 快速原型技术简介 (2)4.1.1 快速成型的基本原理 (2)4.1.2 快速成型的工艺过程 (3)4.1.3 快速原形技术的特点 (4)4.2 RP工艺方法简介 (5)4.2.1典型RP工艺方法简介 (5)4.2.2 典型快速成型工艺比较 (8)4.2.3 其他快速成型工艺 (9)4.3 SCPS350紫外光快速成型机 (9)4.3.1 SCPS350紫外光快速成型机基本原理及制作过程 (9)4.3.2 SCPS350紫外光快速成型机床控制软件的介绍 ..................................... 错误!未定义书签。
4.3.3 SCPS350紫外光快速成型机机床实例讲解............................................. 错误!未定义书签。
第六章快速成型技术4.1 快速原型技术简介快速成型(Rapid Prototyping)是上世纪80年代末及90 年代初发展起来的新兴制造技术,是由三维CAD模型直接驱动的快速制造任意复杂形状三维实体的总称。
它集成了CAD 技术、数控技术、激光技术和材料技术等现代科技成果,是先进制造技术的重要组成部分。
由于它把复杂的三维制造转化为一系列二维制造的叠加,因而可以在不用模具和工具的条件下生成几乎任意复杂的零部件,极大地提高了生产效率和制造柔性。
与传统制造方法不同,快速成型从零件的CAD几何模型出发,通过软件分层离散和数控成型系统,用激光束或其他方法将材料堆积而形成实体零件。
通过与数控加工、铸造、金属冷喷涂、硅胶模等制造手段相结合,已成为现代模型、模具和零件制造的强有力手段,在航空航天、汽车摩托车、家电等领域得到了广泛应用。
快速成型技术自问世以来,得到了迅速的发展。
由于RP技术可以使数据模型转化为物理模型,并能有效地提高新产品的设计质量,缩短新产品开发周期,提高企业的市场竞争力,因而受到越来越多领域的关注,被一些学者誉为敏捷制造技术的使能技术之一。
快速成型技术的原理、工艺过程及技术特点:快速成型属于离散/堆积成型。
它从成型原理上提出一个全新的思维模式维模型,即将计算机上制作的零件三维模型,进行网格化处理并存储,对其进行分层处理,得到各层截面的二维轮廓信息,按照这些轮廓信息自动生成加工路径,由成型头在控制系统的控制下,选择性地固化或切割一层层的成型材料,形成各个截面轮廓薄片,并逐步顺序叠加成三维坯件.然后进行坯件的后处理,形成零件。
快速成型的工艺过程具体如下:l )产品三维模型的构建。
由于 RP 系统是由三维 CAD 模型直接驱动,因此首先要构建所加工工件的三维CAD 模型。
该三维CAD模型可以利用计算机辅助设计软件(如Pro/E , I-DEAS , Solid Works , UG 等)直接构建,也可以将已有产品的二维图样进行转换而形成三维模型,或对产品实体进行激光扫描、CT 断层扫描,得到点云数据,然后利用反求工程的方法来构造三维模型。
2 )三维模型的近似处理。
由于产品往往有一些不规则的自由曲面,加工前要对模型进行近似处理,以方便后续的数据处理工作。
由于STL格式文件格式简单、实用,目前已经成为快速成型领域的准标准接口文件。
它是用一系列的小三角形平面来逼近原来的模型,每个小三角形用3 个顶点坐标和一个法向量来描述,三角形的大小可以根据精度要求进行选择。
STL 文件有二进制码和 ASCll 码两种输出形式,二进制码输出形式所占的空间比 ASCII 码输出形式的文件所占用的空间小得多,但ASCII码输出形式可以阅读和检查。
典型的CAD 软件都带有转换和输出 STL 格式文件的功能。
3 )三维模型的切片处理。
根据被加工模型的特征选择合适的加工方向,在成型高度方向上用一系列一定间隔的平面切割近似后的模型,以便提取截面的轮廓信息。
间隔一般取0.05mm~0.5mm,常用 0.1mm 。
间隔越小,成型精度越高,但成型时间也越长,效率就越低,反之则精度低,但效率高。
快速成型技术在模具制造中的应用与发展前景快速成型技术(Rapid Prototyping,简称RP),又称增材制造技术(Additive Manufacturing,简称AM),是一种通过逐层逐点添加材料的方式,直接将三维数字模型转换为实体模型的制造技术。
它通过数控技术、计算机模型和数字化工艺的应用,极大地缩短了传统制造过程中从设计到加工的时间,提高了制造效率和产品质量,并在模具制造领域得到广泛应用。
快速成型技术在模具制造中的应用主要体现在以下几个方面:1. 制造复杂结构的模具:传统的模具制造往往需要多次加工和组装,制约了模具的结构复杂度和精度,而快速成型技术可以直接将复杂的三维数字模型转化为实体模型,使得制造复杂结构的模具变得更加容易。
例如,快速成型技术可以实现内部空腔、内螺纹结构等复杂形状的模具制造,大大提高了模具的功能性和应用领域。
2. 减少制造周期:快速成型技术可以大大缩短模具的设计和制造周期。
传统的模具制造需要经过设计、加工、组装等多个环节,而且每个环节都可能出现问题导致延误。
而快速成型技术可以直接将数字模型转化为实体模型,减少了多个环节的中间过程,加快了模具的制造速度。
尤其是在产品开发的初期阶段,这种快速制造模具的能力非常重要,可以提高产品研发的效率和竞争力。
3. 优化模具结构和性能:快速成型技术可以通过不断试验迅速调整模具的设计和结构,提高模具的性能和质量。
在传统的模具制造中,往往需要经过多次试验和修改才能最终确定模具的结构和参数。
而快速成型技术可以通过快速制造并测试多个不同设计的模具样品,迅速找到最优设计方案,减少了试错的成本和周期,提高了模具的效率和性能。
4. 减少模具制造成本:快速成型技术不仅可以缩短制造周期,还可以降低模具制造的成本。
传统的模具制造方式往往需要大量的人工和设备投入,制造周期长,成本高。
而快速成型技术可以通过直接从数字模型中生成模具,减少了多个加工环节和设备的投入,降低了制造成本。
3D打印机实训报告 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-“快速成型与快速模具”3D打印实训报告一、3D打印机的介绍1、3D打印机的介绍3D打印(3D printing)也称为“增材制造(Additive Manufacturing)”,它是新兴的一种快速成型技术。
与传统的减材制造工艺不同,3D打印是以数据设计文件为基础,将材料逐层沉积或黏合以构造成三维物体的技术。
3D打印的思想萌芽和实验探索由来已久,但现代意义上的3D打印技术于20世纪80年代中期诞生于美国。
Charles Hull(3D Systems公司的创始人)和Scott Crump(Stratasys公司的创始人)是3D打印技术的先驱人物。
1986年,Charles Hull发明了第一台3D打印机,之后成立了第一家3D打印公司3D Systems。
1988年,3D Systems公司推出了世界上第一台基于SLA技术的商用3D打印机SLA-250,它的面世标志着3D打印商业化的起步。
Scott Crump研发了另一3D打印主流技术FDM,于1989年申请了美国专利并创立了Stratasys公司,1992年推出第一台基于FDM技术的“3D Modeler”打印机。
经过二十余年的发展,3D打印机在工业领域已经有一定的应用基础。
随着计算能力、设计软件、新材料及互联网进步的不断推动,3D打印技术近年来发展迅速,应用领域不断拓宽,显示出巨大的发展潜力。
3D打印与传统制造业的最大区别在于产品成型的过程上。
在传统的制造业,整个制造流程一般需要经过开模具、铸造或锻造、切割、部件组装等过程成型。
3D打印则免去了复杂的过程,无需模具,一次成型。
因此,3D打印可以克服一些传统制造上无法达成的设计,制作出更复杂的结构。
随着技术的不断进步,3D打印在铸造精度上已经可以与传统方式相媲美,但是在大规模生产上,3D打印目前仍无法获得规模经济,在成本上和效率上不具优势。
快速成型技术快速成型技术简介快速成型技术(Rapid Prototyping Technology-RPT)属于先进制造技术范畴机械工程学科非传统加工工艺(或称为特种加工)是将CAD、CAM、、激光、精密伺服驱动和新材料等先进技术集成的一种全新制造技术。
它通过叠加成型方法可以自动而迅速地将设计的三维CAD模型转化为具有一定结构和功能的原型或直接制造零件。
与传统的制造方法相比,它具有生产周期短,成本低的优势,并且可以灵活地改变设计方案,实现柔性生产,在新产品的开发中具有广阔的应用前景。
目前世界上投入应用的快速成形的方法有十多种,主要包括立体印刷(SLA-StereoLithgraphy Apparatus)、分层实体制造(LOM-Laminated obxxxxject Manufacturing)、选择性激光烧结(SLS—Selective Laser Sintering)、熔化沉积制造(FDM-Fused Deposition Modeling)、固基光敏液相(SGC-Solid Ground Curing)等方法。
其中选择性激光烧结(SLS)技术具有成型材料选择范围宽、应用领域广的突出优点,得到了迅速发展,正受到越来越多的重视。
SLS方法具有以下的优点:由于粉末具有自支撑作用,不需另外支撑;材料广泛,不仅包括各种塑料材料、蜡和覆膜砂,还可以直接生产金属和陶瓷零件。
且材料可重复使用,利用率高。
快速成型技术工作原理使用CO2 激光器烧结粉末材料(如蜡粉、PS粉、ABS粉、尼龙粉、覆膜陶瓷和金属粉等)。
成型时先在工作台上铺上一层粉末材料激光束在计算机的控制下按照截面轮廓的信息对制件实心部分所在的粉末进行烧结。
一层完成后工作台下降一个层厚再进行下一层的铺粉烧结。
如此循环,最终形成三维产品。
快速成型技术应用选择性激光烧结快速成型(Selective Laser Sintering Rapid Prototyping) 技术(简称SLS技术)由于具有成型材料选择范围宽、应用领域广的突出优点,得到了迅速的发展,正受到越来越多的重视。
快速成型制造技术特种加工技术是先进制造技术的重要组成部分,是衡量一个国家制造技术水平和能力的重要标志,在我国的许多关键制造业中发挥着不可替代的作用。
采用特种加工技术可以加工特殊材料,且加工中无切削力,能够进行微细加工及复杂的空间曲面成形,所以能够解决航空航天、军工、汽车、模具、冶金、机械等工业中的关键技术难题,从而逐步形成新兴的特种加工行业。
特种加工技术主要包括电加工技术、高能束流加工技术、快速成型制造技术等,其中以快速成型制造技术对现代制造业的影响最为重大。
快速成型制造技术(Rapid Prototyping Manufac?turing,RPM),就是根据零件的三维模型数据,迅速而精确地制造出该零件。
它是在20世纪80年代后期发展起来的,被认为是最近20年来制造领域的一次重大突破,是目前先进制造领域研究的热点之一。
快速成型制造技术是集CAD技术、数控技术、激光加工、新材料科学、机械电子工程等多学科、多技术为一体的新技术。
传统的零件制造过程往往需要车、钳、铣、磨等多种机加工设备和各种夹具、刀具、模具,制造成本高,周期长,对于一个比较复杂的零件,其加工周期甚至以月计,很难适应低成本、高效率的加工要求。
快速成型制造技术能够适应这种要求,是现代制造技术的一次重大变革。
快速成型产品随着CAD建模和光、机、电一体化技术的发展,快速成型技术的工艺方法发展很快。
目前已有光固法(SLA)、层叠法(LOM)、激光选区烧结法(SLS)、熔融沉积法(FDM)、掩模固化法(SGC)、三维印刷法(TDP)、喷粒法(BPM)等10余种。
1、光固化立体造型(Stereolithography,SLA)该技术以光敏树脂为原料,将计算机控制下的紫外激光,以预定零件各分层截面的轮廓为轨迹,对液态树脂逐点扫描,由点到线到面,使被扫描区的树脂薄层产生聚合反应,从而形成零件的一个薄层截面。
当一层固化完毕,升降工作台移动一个层片厚度的距离,在原先固化好的树脂表面再覆盖一层新的液态脂以便进行新一层扫描固化。
RP技术简介快速原型制造技术,又叫快速成形技术,(简称RP技术);英文:RAPID PROTOTYPING(简称RP技术),或RAPID PROTOTYPING MANUFACTUREING,简称RPM。
快速成型(RP)技术是九十年代发展起来的一项先进制造技术,是为制造业企业新产品开发服务的一项关键共性技术, 对促进企业产品创新、缩短新产品开发周期、提高产品竞争力有积极的推动作用。
自该技术问世以来,已经在发达国家的制造业中得到了广泛应用,并由此产生一个新兴的技术领域。
RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。
不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。
但是,其基本原理都是一样的,那就是"分层制造,逐层叠加",类似于数学上的积分过程。
形象地讲,快速成形系统就像是一台"立体打印机"。
RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。
RP技术的基本原理是:将计算机内的三维数据模型进行分层切片得到各层截面的轮廓数据,计算机据此信息控制激光器(或喷嘴)有选择性地烧结一层接一层的粉末材料(或固化一层又一层的液态光敏树脂,或切割一层又一层的片状材料,或喷射一层又一层的热熔材料或粘合剂)形成一系列具有一个微小厚度的的片状实体,再采用熔结、聚合、粘结等手段使其逐层堆积成一体,便可以制造出所设计的新产品样件、模型或模具。
快速成型机的工艺立体光刻成型sla层合实体制造lom熔融沉积快速成型fdm激光选区烧结法SLS多相喷射固化mjs多孔喷射成型mjm直接壳法产品铸造dspc激光工程净成型lens选域黏着及热压成型SAHP层铣工艺lmp分层实体制造som自美国3D公司1988年推出第一台商品SLA快速成形机以来,已经有十几种不同的成形系统,其中比较成熟的有SLA、SLS、LOM和FDM等方法。
基于快速成型技术(RP)的快速模具制造(RT)技术的研究摘要:快速成型技术(RP)的发展带来了一系列的创新制造技术,其中快速模具制造(RT)是一项重要的技术。
RT技术利用RP技术制造出的模具,可以在短时间内快速制造出符合要求的零部件,为制造业的高效生产提供了有力支持。
本文将对RT技术的原理、技术分类和发展趋势进行探讨,并分析了RT技术在现代制造业中的应用,并对其未来的发展方向做出了展望。
关键词:快速成型技术;快速模具制造;RP技术;制造业一、引言随着全球市场的不断扩大和竞争的日益激烈,企业需要加快产品设计和制造的速度,以便更快地满足市场需求。
快速成型技术(RP)的应用为实现这一目标提供了创新的手段,可以在短时间内制造出符合要求的零部件或模型。
然而,RP技术的制造成本较高,并且一些材料的机械性能还不够理想,这都限制了其在实际生产中的应用。
因此,快速模具制造(RT)技术应运而生。
RT技术是一项将RP 技术应用于模具制造的新技术,可以在短时间内制造出符合要求的模具,以便进行大批量零件的生产。
相对于传统的模具制造技术,RT技术具有制造周期短、成本低、设计灵活等优点,并且可以制造出更加复杂的模具。
二、RT技术的原理RT技术主要利用RP技术制造出的模具进行制造。
在传统的模具制造过程中,需要先设计、制造模具,再使用模具制造出零部件。
而在RT技术中,只需要在计算机中设计出模具,然后利用RP技术将模具制造出来,再使用模具制造出零部件。
从而将制造周期大幅缩短,提高制造效率。
RT技术涉及到多种RP技术,例如光固化RP技术、激光快速成型技术、喷墨3D打印技术等。
这些技术都可以用于制造模具,以便在短时间内快速制造出符合要求的零件。
三、RT技术的分类RT技术可以分为直接RT和间接RT两种。
直接RT是指将模具制造完成后,直接在模具内制造零件。
直接RT技术又可以分为热成型、注塑成型、压铸成型等不同的生产工艺。
间接RT是指先通过RP技术制造出原型模具,然后用原型模具制造出硅胶模具,最后再使用硅胶模具制造出生产模具。
基于快速成形技术的快速模具制造技术(doc 10页)2.用快速成形件作母模,复制软模具(Soft tooling)用快速成形件作母模,可浇注蜡、硅橡胶、环氧树脂、聚氨脂等软材料,构成软模具,或先浇注硅橡胶、环氧树脂模(即蜡模的压型),再浇注蜡模。
其中,蜡模可用于熔模铸造,而硅橡胶模、环氧树脂模等可用作试制用注塑模或低熔点合金铸造模。
3.用快速成形件作母模,复制硬模具(Iron tooling)用快速成形件作母模,或据其复制的软模具,可浇注(或涂覆)石膏、陶瓷、金属基合成材料、金属,构成硬模具(如各种铸造模、注塑模、蜡模的压型、拉伸模),从而批量生产塑料件或金属件。
这种模具有良好的机械加工性能,可进行局部切削加工,以便获得更高的精度,或镶入嵌块、冷却系统、浇注系统等。
用金属基合成材料浇注成的蜡模的压型,其模具寿命可达1000~1 0000件。
4. 用快速成形系统制作电脉冲机床用电极用快速成型件作母体,通过喷镀或涂覆金属、粉末冶金、精密铸造、浇注石墨粉或特殊研磨,可制作金属电极或石墨电极。
三、基于RP的快速模具制造的应用1. 利用硅橡胶模(Silicon Rubber Mold)制作佛头、线圈硅橡胶有很好的弹性和复制性能,用它来复制模具可不考虑拔模斜度,基本不会影响尺寸精度,而且这种材料有很好的切割性能,用薄片就可容易地将其切开且切面间非常贴合,因此用它来复制模具时可以先不分上下模,整体浇注出软模后,再沿预定的分模面将其切开,取出母模,即可得到上下两个软模。
(1)试验用设备和材料所用的设备:Stratasys的Titan快速成形机、HVC-1真空注型机和恒温箱。
所用的材料:日产KE-1310ST透明硅橡胶、日产CAT-1310固化剂(浇注时,KE-1310ST与CAT-1310以100:10混合)和PX215真空注型硬制聚氨脂树脂(异氰酸脂,多元醇1∶1混合)。
(2)制模工艺路线使用 UG、PRO-E、Solid Edge 等软件进行三维实体造型,以STL 文件格式保存;将文件输入快速成形机作出制件原型,处理后作为硅橡胶母模;组合模框后将硅橡胶和固化剂的混合物浇注于框中,通过真空脱泡、固化后剖切取出母样即得硅胶模;最后在真空注型机中浇注塑料样件。
高分子材料成型加工中的模具快速制造技术高分子材料成型加工是一种广泛应用于各种工业领域的制造方法。
在这个过程中,模具的制造是至关重要的一环。
而模具的制造技术的快速制造则成为了行业内的热门话题。
本文将探讨高分子材料成型加工中的模具快速制造技术。
在高分子材料成型加工领域,模具的设计和制造直接影响着产品的质量和生产效率。
传统的模具制造过程通常需要较长的时间,包括设计、加工、调试等多个环节,导致生产周期延长,成本增加。
因此,如何实现模具的快速制造成为了行业内的研究热点。
一种常见的模具快速制造技术是采用快速成型技术,如3D打印技术。
通过3D打印技术,可以将设计好的模具直接打印成型,减少了传统加工的工序。
这样不仅可以缩短制造周期,降低成本,还可以实现复杂结构模具的制造。
此外,3D打印技术还可以根据产品的需求进行定制化设计,满足个性化生产的需求。
除了3D打印技术,快速铸造技术也是模具快速制造的一种重要方法。
传统的铸造过程通常需要制作模具、熔炼金属、浇注等多个步骤,耗时且成本较高。
而采用快速铸造技术,可以直接通过CAD设计和快速原型制造技术,快速制造出模具并进行快速铸造,从而缩短生产周期,提高生产效率。
在高分子材料成型加工中,模具的材料选择也是影响快速制造技术的重要因素。
传统模具常常采用金属材料,但金属材料的加工过程复杂且成本较高。
而采用高分子材料制造模具,不仅可以降低成本,还可以更好地适应高分子材料成型加工的特点,提高生产效率。
总的来说,高分子材料成型加工中的模具快速制造技术是实现高效生产的重要手段。
通过采用快速成型技术和快速铸造技术,结合高分子材料的特点,可以缩短生产周期,降低成本,提高生产效率。
未来随着快速制造技术的不断发展,相信在高分子材料成型加工领域会有更多创新性的模具制造技术出现,为行业带来更大的发展机遇。
快速成形技术的快速模具制造技术(doc 6)
基于快速成形技术的快速模具制造技术
一、引言
近10年来,制造业市场环境发生了巨大的变化,迅速将产品推向市场已成为制造商把握市场先机的重要保障。
因此,产品的快速开发技术将成为赢得21世纪制造业市场的关键
快速成形技术(以下简称RP)是一种集计算机辅助设计、精密机械、数控激光技术和材料学为一体的新兴技术,它采用离散堆积原理,将所设计物体的CAD模型转化成实物样件。
由于RP技术采用将三维形体转化为二维平面分层制造的原理,对物体构成复杂性不敏感,因此物体越复杂越能体现它的优越性。
以RP为技术支撑的快速模具制造RT(Rapid Tooling)也正是为了缩短新产品开发周期,早日向市场推出适销对路的、按客户意图定制的多品种、小批量产品而发展起来的新型制造技术。
由于产品开发与制造技术的进步,以及不断追求新颖、奇特、多变的市场消费导向,使得产品(尤其是消费品)的寿命周期越来越短已成为不争的事实。
例如,汽车、家电、计算机等产品,采用快速模具制造技术制模,制作周期为传统模具制造的1/3~1/10,生产成本仅为1/3~1/5。
所以,工业发达国家已将RP/RT作为缩短产品开发时间及模具制作周期的重要研究课题和制造业核心技术之一,我国也已开始了快速制造业的研究与开发应用工作。
二、基于RPM的快速模具制造方法
模具是制造业必不可少的手段,其中用得最多的有铸模、注塑模、冲压模和锻模等。
传统制作模具的方法是:对木材或金属毛坯进行车、铣、刨、钻、磨、电蚀等加工,得到所需模具的形状和尺寸。
这种方法既费时又费钱,特别是汽车、摩托车和家电所需的一些大型模具,往往造价数十万元以上,制作周期长达数月甚至一年。
而基于RPM技术的RT直接或间接制作模具,使模具的制造时间大大缩短而成本却大大降低。
1. 用快速成形机直接制作模具
由于一些快速成形机制作的工件有较好的机械强度和稳定性,因此快速成形件可直接用作模具。
例如,Stratasys公司TITAN快速成形机的PPSF制件坚如硬木,可承受30 0℃高温,经表面处理(如喷涂清漆,高分子材料或金属)后可用作砂型铸造木模、低熔点合金铸造模、试制用注塑模以及熔模铸造的压型。
当用作砂形铸造的木模时,它可用来重复制作50~100件砂型。
作为蜡模的成型模时,它可用来重复注射100件以上的蜡模。
用FDM快速成形机的ABS工件能选择性地融合包裹热塑性粘结剂的金属粉,构成模具的半成品,烧结金属粉并在孔隙渗入第二种金属(铝)从而制作成金属模。
2.用快速成形件作母模,复制软模具(Soft tooling)
用快速成形件作母模,可浇注蜡、硅橡胶、环氧树脂、聚氨脂等软材料,构成软模具,或先浇注硅橡胶、环氧树脂模(即蜡模的压型),再浇注蜡模。
其中,蜡模可用于熔模铸造,而硅橡胶模、环氧树脂模等可用作试制用注塑模或低熔点合金铸造模。
3.用快速成形件作母模,复制硬模具(Iron tooling)
用快速成形件作母模,或据其复制的软模具,可浇注(或涂覆)石膏、陶瓷、金属基合成材料、金属,构成硬模具(如各种铸造模、注塑模、蜡模的压型、拉伸模),从而批量生产塑料件或金属件。
这种模具有良好的机械加工性能,可进行局部切削加工,以便获得更高的精度,或镶入嵌块、冷却系统、浇注系统等。
用金属基合成材料浇注成的蜡模的压型,其模具寿命可达1000~10000件。
4. 用快速成形系统制作电脉冲机床用电极
用快速成型件作母体,通过喷镀或涂覆金属、粉末冶金、精密铸造、浇注石墨粉或特殊研磨,可制作金属电极或石墨电极。
三、基于RP的快速模具制造的应用
1. 利用硅橡胶模(Silicon Rubber Mold)制作佛头、线圈
硅橡胶有很好的弹性和复制性能,用它来复制模具可不考虑拔模斜度,基本不会影响尺寸精
度,而且这种材料有很好的切割性能,用薄片就可容易地将其切开且切面间非常贴合,因此用它来复制模具时可以先不分上下模,整体浇注出软模后,再沿预定的分模面将其切开,取出母模,即可得到上下两个软模。
(1)试验用设备和材料
所用的设备:Stratasys的Titan快速成形机、HVC-1真空注型机和恒温箱。
所用的材料:日产KE-1310ST透明硅橡胶、日产CAT-1310固化剂(浇注时,KE-1310ST与CAT -1310以100:10混合)和PX215真空注型硬制聚氨脂树脂(异氰酸脂,多元醇1∶1混合)。
(2)制模工艺路线
使用 UG、PRO-E、Solid Edge 等软件进行三维实体造型,以STL文件格式保存;将文件输入快速成形机作出制件原型,处理后作为硅橡胶母模;组合模框后将硅橡胶和固化剂的混合物浇注于框中,通过真空脱泡、固化后剖切取出母样即得硅胶模;最后在真空注型机中浇注塑料样件。
具体的制模流程如图1所示。
CAD三维造型软件
↓
STL文件
↓
FDM快速成型制作母件
↓
制作模框
↓
浇注硅胶和固化剂的混合物
↓
固化
↓
分模
↓
树脂浇注
图1 制模工艺路线
(3)制作硅胶模具时的注意事项
对加成型硅橡胶而言,不要在室温下固化,而以40℃~60℃加温固化;分模面的选取一定要注意将外观面朝下,在内观面的合适位置上放置胶棒;如果零件有倒钩,可以在硅胶模上作45°切口,但注意不要割断;在一些树脂不易流满的死角处,一定要做气孔;对不容易进行分模的原型件,可以喷少许离型剂。
此外,对形状复杂(倒钩、斜面很多),两半模无法满足脱模条件的情况,开模时可以将硅橡胶模具剖开成数块来处理。
但要注意,在浇注塑料件的时候合模应精确,否则会因模具的错位或合模不紧而影响浇注品的精度。
(4)应用图例
图2和图3分别是我们制作的佛头和线圈模具的照片。
此主题相关图片如下:
图2 佛头模具。