集合经典试题及答案
- 格式:doc
- 大小:76.50 KB
- 文档页数:4
集合考试题及答案集合是数学中的一个基本概念,它在各个领域都有着广泛的应用。
以下是一些集合考试题及其答案,供参考:题目一:定义集合A={x | x是自然数,且1≤x≤10},集合B={y |y是偶数}。
求A∩B。
答案:集合A包含自然数1到10,即A={1, 2, 3, 4, 5, 6, 7, 8, 9, 10}。
集合B包含所有的偶数。
A与B的交集是同时属于A和B的元素,即A∩B={2, 4, 6, 8, 10}。
题目二:集合C={x | x是整数,且-5≤x≤5},集合D={y | y是正整数}。
求C∪D。
答案:集合C包含从-5到5的所有整数,即C={-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}。
集合D包含所有的正整数,即D={1, 2, 3, ...}。
C与D的并集是包含C和D所有元素的集合,但去除重复元素。
因此,C∪D包含了从-5到无穷大的所有整数,由于题目限制,我们只列出到5,即C∪D={-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}。
题目三:集合E={x | x是奇数},集合F={y | y是3的倍数}。
求E∩F。
答案:集合E包含所有的奇数,集合F包含所有3的倍数。
E与F的交集是同时满足奇数和3的倍数的元素。
这些元素是3的奇数倍,即E∩F={3, 9, 15, ...},但题目中没有指定范围,我们只列出前三个元素。
题目四:集合G={x | x²=1},求G。
答案:集合G包含满足x²=1的所有x值。
解这个方程,我们得到x=1或x=-1。
因此,G={1, -1}。
题目五:集合H={x | x²-4=0},求H。
答案:集合H包含满足x²-4=0的所有x值。
解这个方程,我们得到x²=4,所以x=2或x=-2。
因此,H={2, -2}。
总结:集合论是数学的基础之一,它涉及到元素与集合之间的关系,包括交集、并集、补集等概念。
集合测试题及答案一、选择题(每题2分,共10分)1. 集合A={1, 2, 3},B={2, 3, 4},那么A∩B(A与B的交集)是什么?A. {1}B. {2, 3}C. {4}D. {1, 2, 3}2. 如果集合C={x | x是偶数},那么5属于C吗?A. 是B. 否3. 集合D={x | x是小于10的自然数},D的元素个数是多少?A. 5B. 9C. 10D. 无穷多4. 集合E={x | x^2 - 5x + 6 = 0},E中元素的个数是?A. 0B. 1C. 2D. 35. 对于集合F={1, 2, 3},其幂集P(F)包含多少个元素?A. 3B. 4C. 7D. 8二、填空题(每题3分,共15分)6. 集合A={x | x是小于5的正整数},用描述法表示A为________。
7. 集合G={1, 2, 3},那么G的补集(相对于自然数集N)是________。
8. 若集合H={x | x是大于1且小于10的整数},H的并集(与集合G={2, 3, 4, 5})是________。
三、解答题(每题5分,共20分)9. 给定集合I={1, 2, 3, 4, 5},J={4, 5, 6, 7},求I∪J(I与J的并集)。
10. 集合K={x | x是偶数且x<10},L={x | x是3的倍数且x<10},求K∩L(K与L的交集)。
11. 如果集合M={x | x是大于0且小于10的整数},求M的子集个数。
12. 集合N={x | x是2的幂次方},求N的前5个元素。
答案一、选择题1. B. {2, 3}2. B. 否3. C. 104. C. 25. D. 8二、填空题6. A={1, 2, 3, 4}7. G的补集是{x | x属于自然数集N且x≠1, 2, 3}8. H∪G={1, 2, 3, 4, 5}三、解答题9. I∪J={1, 2, 3, 4, 5, 6, 7}10. K∩L={6}11. M的子集个数是2^5=3212. N的前5个元素是{1, 2, 4, 8, 16}这份测试题覆盖了集合的基本操作,包括交集、并集、补集、子集和幂集等概念,适合作为集合理论的复习材料。
集合学习过程一、复习预习考纲要求:考纲要求:1.理解集合的概念。
.理解集合的概念。
2.能在具体的数学环境中,应用集合知识。
.能在具体的数学环境中,应用集合知识。
3.特别是集合间的运算。
.特别是集合间的运算。
4.灵活应用集合知识与其它知识间的联系,集合是一种方法。
.灵活应用集合知识与其它知识间的联系,集合是一种方法。
二、知识讲解1.集合的相关概念基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用. . 集合的表示法:列举法、描述法、图形表示法集合的表示法:列举法、描述法、图形表示法. . 集合元素的特征:确定性、互异性、无序性集合元素的特征:确定性、互异性、无序性. . 常见的数集:自然数集、整数集、有理数集、实数集常见的数集:自然数集、整数集、有理数集、实数集 2集合间的关系任何一个集合是它本身的子集,记为A A Í; 空集是任何集合的子集,记为A Íf ; 空集是任何非空集合的真子集;空集是任何非空集合的真子集;n 元集的子集个数共有2n 个;真子集有21n -个;非空子集有21n -个;非空的真子集有22n -个.3.集合间的运算{|,}{|}{,}A B x x A x B A B x x A x B A x U x A ÛÎÎÛÎÎÛÎÏU 交:且并:或补:且C4主要性质和运算律主要性质和运算律(1) 包含关系:,,,,,;,;,.U A A A A U A U A B B C A C A B A A B B A B A A B B ÍF ÍÍÍÍÍÞÍÍÍÊÊC (2) 等价关系:U A B A B A A B B AB U ÍÛ=Û=Û=C (3) 集合的运算律:集合的运算律:交换律:.;A B B A A B B A == 新课标第一网新课标第一网 结合律结合律::)()();()(C B A C B A C B A C B A ==分配律分配律:.:.)()()();()()(C A B A C B A C A B A C B A ==三、例题精析考点一 子集、真子集【例题1】:集合}1,0,1{-共有共有 个子集个子集个子集 【答案】:8【解析】:n 元集的子集个数共有2n 个,所以是8个。
集合简单练习题及答案集合是数学中一个非常重要的概念,它描述了一组元素的总体。
下面是一些集合的简单练习题以及它们的答案。
练习题1:判断下列集合是否相等。
A = {1, 2, 3}B = {3, 2, 1}C = {1, 2, 1}答案1:集合A和集合B相等,因为集合中的元素是无序的,只考虑元素的种类和数量。
集合C和A不相等,因为集合中的元素不允许重复。
练习题2:求集合A和集合B的并集。
A = {1, 2, 3}B = {2, 3, 4}答案2: A和B的并集是A ∪ B = {1, 2, 3, 4}。
练习题3:求集合A和集合B的交集。
A = {1, 2, 3}B = {2, 3, 4}答案3: A和B的交集是A ∩ B = {2, 3}。
练习题4:求集合A和集合B的差集。
A = {1, 2, 3, 4}B = {2, 3}答案4: A和B的差集是A - B = {1, 4}。
练习题5:判断下列集合是否为子集。
A = {1, 2}B = {1, 2, 3, 4}答案5:集合A是集合B的子集,因为A中的所有元素都在B中。
练习题6:求集合A和集合B的补集。
A = {1, 2, 3}B = {2, 3, 4}假设全集U = {1, 2, 3, 4, 5}答案6: A的补集是A' = {4, 5},B的补集是B' = {1, 5}。
练习题7:判断下列集合是否为幂集。
A = {1}B = {1, 2}C = {1, 2, 3}答案7:集合A的幂集是{∅, {1}}。
集合B的幂集是{∅, {1}, {2}, {1, 2}}。
集合C的幂集包含更多的子集,包括空集和所有可能的元素组合。
练习题8:求集合A和集合B的笛卡尔积。
A = {1, 2}B = {3, 4}答案8: A和B的笛卡尔积是A × B = {(1, 3), (1, 4), (2, 3), (2, 4)}。
练习题9:求集合A的对称差集与集合B。
第一章集合一、选择题1.(2012·湖南高考理科·T1)设集合M={-1,0,1},N={x|x2≤x},则M∩N=( )(A){0} (B){0,1} (C){-1,1} (D){-1,0,1}【解题指南】求出集合N中所含有的元素,再与集合M求交集.【解析】选B. 由…2x x,得…2x x0-,…x(x1)0-,剟0x1,所以N=剟{x0x1},所以M I N={0,1},故选B.2.(2012·浙江高考理科·T1)设集合A={x|1<x<4},集合B ={x|x2-2x-3≤0}, 则A∩(C R B)=()(A)(1,4) (B)(3,4) (C)(1,3) (D)(1,2)∪(3,4)【解题指南】考查集合的基本运算.【解析】选B.集合B ={x|x2-2x-3≤0}={}13x x-≤≤,{}1,3RB x x x=<->或ð,∴A∩(C R B)=(3,4)3.(2012·江西高考理科·T1)若集合{}{}1,1,0,2A B=-=,则集合{}|,,z z x y x A y B=+∈∈中的元素的个数为()(A)5 (B)4 (C)3 (D)2【解题指南】将x y+的可能取值一一列出,根据元素的互异性重复元素只计一次,可得元素个数.【解析】选C.由已知得,{}|,,z z x y x A y B=+∈∈{}1,1,3=-,所以集合{}|,,z z x y x A y B=+∈∈中的元素的个数为3.4.(2012·新课标全国高考理科·T1)已知集合{}1,2,3,4,5A=,(){},|,,,B x y x A y A x y A =∈∈-∈则B 中所含元素的个数为( )(A)3 (B)6 (C)8 (D)10【解题指南】将x y -可能取的值列举出来,然后与集合A 合到一起,根据元素的互异性确定元素的个数.【解析】选D.由,x A y A ∈∈得0x y -=或1x y -=±或2x y -=±或3x y -=±或4x y -=±,故集合B 中所含元素的个数为10个.5. (2012·广东高考理科·T2)设集合U={1,2,3,4,5,6},M={1,2,4 },则=ðU M ( )(A)U (B){1,3,5} (C){3,5,6} (D){2,4,6}【解题指南】掌握补集的定义:{|,}U M x x U x M =∈∉且ð,本题易解.【解析】选C. {3,5,6}U M =ð.6.(2012·山东高考文科·T2)与(2012·山东高考理科·T2)相同 已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则U (A)B ð为( ) (A ){}1,2,4 (B ){}2,3,4 (C ){}0,2,4 (D ){}0,2,3,4【解题指南】 先求集合A 关于全集U 的补集,再求它与集合B 的并集即可.【解析】选C.{}{}{}U (A)B 0,42,40,2,4==ð. 7.(2012·广东高考文科·T2)设集合U={1,2,3,4,5,6},M={1,3,5},则U M ð=( )(A){2,4,6} (B){1,3,5} (C){1,2,4} (D)U【解题指南】根据补集的定义:{|,}U M x x U x M =∈∉且ð求解即可.【解析】选A. {2,4,6}U M =ð.8.(2012·辽宁高考文科·T2)与(2012·辽宁高考理科·T1)相同 已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则()()U U A B ⋂=痧(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6}【解题指南】据集合的补集概念,分别求出,痧U U A B ,然后求交集.【解析】选B. 由已知C U A={2,4,6,7,9},U B ð={0,1,3,7,9},则(U A ð)⋂(U B ð)={2,4,6,7,9}⋂{0,1,3,7,9}={7,9}.9.(2012·新课标全国高考文科·T1)已知集合A={x|x 2-x -2<0},B={x|-1<x<1},则( )(A )A B Ü (B )B A Ü (C )A=B (D )A ∩B=∅【解题指南】解不等式x 2-x -2<0得集合A ,借助数轴理清集合A 与集合B 的关系.【解析】选B. 本题考查了简单的一元二次不等式的解法和集合之间的关系,由题意可得{}|12A x x =-<<,而{}|11B x x =-<<,故B A Ü.10.(2012·安徽高考文科·T2)设集合A={3123|≤-≤-x x },集合B 为函数)1lg(-=x y 的定义域,则A ⋂B=( )(A )(1,2) (B )[1,2] (C )[ 1,2) (D )(1,2 ]【解题指南】先求出集合,A B ,再求交集.【解析】选D .∵{3213}[1,2]A x x =-≤-≤=-,(1,)(1,2]=+∞=B A B ,∴.11.(2012·福建高考文科·T2)已知集合{1,2,3,4}M =,{2,2}N =-,下列结论成立的是( )(A)N M ⊆ (B)M N M = (C)M N N = (D){2}M N =【解题指南】通过观察找出公共元素,即得交集,结合子集,交、并、补各种概念进行判断和计算.【解析】选D .N 中元素-2不在M 中,因此,A 错,B 错; {2}M N N =≠,因此C错,故选D .12.(2012·浙江高考文科·T1)设全集U={1,2,3,4,5,6} ,集合P={1,2,3,4} ,Q={3,4,5},则P∩(ðU Q)=()(A){1,2,3,4,6} (B){1,2,3,4,5}(C){1,2,5} (D){1,2}【解题指南】考查集合的基本运算.【解析】选D. C U Q={}1,2,6,则P∩(CU Q)={}1,2.13.(2012·北京高考文科·T1)与(2012·北京高考理科·T1)相同已知集合A={x∈R|3x+2>0},B={x∈R|(x+1)(x-3)>0},则A∩B=()(A)(-∞,-1)(B)(-1,-23)(C)(-23,3)(D)(3,+∞)【解题指南】通过解不等式先求出A,B两个集合,再取交集.【解析】选D.集合A=2{|}3x x>-,{|13}B x x x=<->或,所以{|3}A B x x=>.14.(2012·湖南高考文科·T1)设集合M={-1,0,1},N={x|x2=x},则M∩N=()(A){-1,0,1} (B){0,1} (C){1} (D){0}【解题指南】先求出集合N中的元素,再求集合M,N的交集.【解析】选B. N={0,1},∴M∩N={0,1},故选B.15. (2012·江西高考文科·T2)若全集U={x∈R|x2≤4},则集合 A={x∈R||x+1|≤1}的补集C u A为( )(A){x∈R |0<x<2} (B){x∈R |0≤x<2}(C){x∈R |0<x≤2} (D){x∈R |0≤x≤2}【解题指南】解不等式得集合U和A,在U中对A取补集.【解析】选C.{|22}U x x =-≤≤,{|20}A x x =-≤≤,则ðU A={|02}U C A x x =<≤. 16.(2012·湖北高考文科·T1)已知集合A={x|2x -3x +2=0,x ∈R } , B={x|0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为(A) 1 (B)2 (C) 3 (D)4【解题指南】根据集合的性质,先化简集合A,B.再结合集合之间的关系求解.【解析】选D. 由题意知:A= {1,2} ,B={1,2,3,4}.又A C B ⊆⊆,则集合C 可能为{1,2},{1,2,3},{1,2,4},{1,2,3,4}. 二、填空题17.(2012·上海高考理科·T2)若集合}012|{>+=x x A ,}2|1||{<-=x x B ,则=B A .【解题指南】本题考查集合的交集运算知识,此类题的易错点是临界点的大小比较. 【解析】集合1{2+10}{|}2A x x x x =>=>-,集合{}{12}{|212}13B x x x x x x =-<=-<-<=-<<,所以1{|3}2A B x x =-<<. 【答案】1{|3}2x x -<< 18.(2012·江苏高考·T1)已知集合{}{}1,2,4,2,4,6A B ==,则A B = .【解题指南】从集合的并集的概念角度处理.【解析】{1,2,4,6}=A B .【答案】{1,2,4,6}。
集合综合练习题及答案一、选择题1、下列哪个选项不是集合?A. {1,2,3,4,5}B. {x|x是正方形}C. {x|0<x<10}D. {x|x是中国的城市}答案:D. {x|x是中国的城市}。
因为D中的元素是不确定的,而集合中的元素必须是确定的。
2、下列哪个选项是集合?A. {1,2,3,4,5}的元素都是整数。
B. {x|x是正方形}的元素都是四边形。
C. {x|0<x<10}的元素都是正数。
D. {x|x是中国的城市}的元素都是城市。
答案:A. {1,2,3,4,5}的元素都是整数。
因为选项A中的元素都是确定的,符合集合的定义。
3、下列哪个选项不是集合?A. {1,2,3,4,5}的元素个数为5。
B. {x|x是正方形}中的元素为四边形。
C. {x|0<x<10}中的元素为正数。
D. {x|x是中国的城市}中的元素为城市。
答案:B. {x|x是正方形}中的元素为四边形。
因为B中的元素不是确定的,不符合集合的定义。
二、填空题1、写出集合{1,2,3,4,5}的所有子集:______。
2、写出集合{x|x是正方形}的所有子集:______。
3、写出集合{x|0<x<10}的所有子集:______。
4、写出集合{x|x是中国的城市}的所有子集:______。
答案:1、{∅,{1},{2},{3},{4},{5},{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5},{3,4},{3,5},{4,5}}。
2、{∅,{正方形}}。
3、{∅,{正数}}。
4、{∅,{城市}}。
2 集合综合练习题合作经营可行性分析报告一、引言随着全球化的深入发展,企业间的合作已经成为一种趋势。
通过合作经营,企业可以共享资源、降低风险、提高效率,进而实现更大的商业价值。
本报告旨在分析合作经营的可行性,为企业决策提供参考。
二、合作经营的定义与优势合作经营是指两个或多个企业在一定领域内共同出资、共同经营、共担风险、共享收益的一种经营模式。
集合测试题及答案一、选择题1. 集合A和集合B的并集表示为:A. A∪BB. A∩BC. A-BD. A∪B答案:A2. 集合A中所有元素都属于集合B,则称集合A是集合B的:A. 子集B. 并集C. 交集D. 补集答案:A3. 若集合A={1, 2, 3},集合B={2, 3, 4},则A∩B的元素个数为:A. 1B. 2C. 3D. 4答案:B二、填空题1. 集合{1, 2, 3}的补集(相对于全集U={1, 2, 3, 4, 5})是________。
答案:{4, 5}2. 若A={x | x是偶数},B={x | x是3的倍数},则A∩B的元素包括所有________。
答案:6的倍数三、简答题1. 描述什么是集合的幂集,并给出一个具体的例子。
答案:集合的幂集是指一个集合的所有子集构成的集合,包括空集和该集合本身。
例如,集合A={1, 2}的幂集是{∅, {1}, {2}, {1, 2}}。
2. 解释什么是集合的差集,并给出一个例子。
答案:集合的差集是指属于集合A但不属于集合B的所有元素组成的集合。
例如,如果A={1, 2, 3},B={2, 3, 4},则A-B={1}。
四、计算题1. 给定集合A={1, 2, 3, 4}和集合B={3, 4, 5, 6},求A∪B,A∩B,A-B。
答案:A∪B = {1, 2, 3, 4, 5, 6}A∩B = {3, 4}A-B = {1, 2}2. 如果集合C={x | x是小于10的正整数},求C的幂集。
答案:C的幂集包含从空集到C本身的所有子集,即{∅, {1},{2}, ..., {1, 2, ..., 9}}。
五、论述题1. 讨论集合论在数学中的重要性,并给出至少两个应用领域的例子。
答案:集合论是现代数学的基础,它提供了一种形式化的方法来描述数学对象和它们之间的关系。
例如,在逻辑学中,集合论用于定义命题的真值;在计算机科学中,集合论的概念被用来设计数据结构和算法。
集合测试题及答案一、选择题1. 以下哪个选项不是集合的基本概念?A. 元素B. 子集C. 并集D. 函数2. 集合A={1, 2, 3},集合B={2, 3, 4},A与B的交集是什么?A. {1}B. {2, 3}C. {1, 2, 3}D. {2, 3, 4}3. 如果集合A={1, 2, 3},那么A的幂集有多少个元素?A. 3B. 4C. 7D. 84. 集合A={1, 2, 3},集合B={3, 4, 5},A与B的差集是什么?A. {1, 2}B. {1, 2, 3}C. {3, 4, 5}D. {4, 5}5. 对于任意集合A,以下哪个命题是正确的?A. A是A的子集。
B. A是A的真子集。
C. A是A的交集。
D. A是A的并集。
二、填空题6. 集合的三要素包括:________、________、________。
7. 如果集合A={x | x > 0},那么A的补集在实数集R中表示为________。
8. 集合A={1, 2, 3},集合B={2, 3, 4},A与B的并集是________。
三、简答题9. 请解释什么是集合的笛卡尔积,并给出两个集合A={1, 2}和B={a, b}的笛卡尔积。
10. 请描述如何确定一个元素是否属于一个集合。
四、计算题11. 给定集合A={1, 2, 3},B={2, 3, 4},C={3, 4, 5},请计算A∪B∩C。
12. 如果集合D={x | x^2 - 5x + 6 = 0},请找出D的所有元素。
答案:一、选择题1. D2. B3. D4. A5. A二、填空题6. 确定性、无序性、互异性7. R - A = {x | x ≤ 0 或 x > 0 且x ≠ 1, 2, 3}8. {1, 2, 3, 4}三、简答题9. 集合的笛卡尔积是指两个集合中元素的有序对的集合。
对于A和B,笛卡尔积是A×B = {(1, a), (1, b), (2, a), (2, b)}。
集合练习题及答案一、选择题1. 集合A={1,2,3},B={2,3,4},求A∪B。
A. {1,2,3,4}B. {1,2,3}C. {2,3}D. {1,4}2. 若集合A={x|x<5},B={x|x>3},则A∩B表示的集合是:A. {x|x<3}B. {x|3<x<5}C. {x|x>5}D. {x|x≤3}3. 集合A={1,2,3},B={4,5,6},A∩B等于:A. {1,2,3}B. {4,5,6}C. 空集D. {1,2,3,4,5,6}4. 集合A={x|x^2-5x+6=0},求A的元素。
A. {2,3}B. {1,6}C. {-1,6}D. {-2,3}5. 若集合A={x|-3≤x≤3},B={x|x>-2},求A-B。
A. {x|-3≤x≤-2}B. {x|-2<x≤3}C. {x|-3<x<-2}D. 空集二、填空题6. 集合{1,2,3}的补集(相对于全集U={1,2,3,4,5})是_________。
7. 若A={x|0<x<10},B={x|-5<x<5},则A∩B=_________。
8. 集合{a,b,c}的幂集含有的元素个数是_________。
9. 集合{1,2}的笛卡尔积{1,2}×{1,2}包含的元素个数是_________。
10. 若A={x|0<x<10},B={x|-5<x<5},且A⊆B,则A的元素个数最多是_________。
三、解答题11. 已知集合A={1,2,3},B={2,3,4},求A∩B,并说明交集的定义。
12. 集合C={x|x^2-4=0},求C,并解释补集的概念。
13. 给定集合D={x|-1<x<2},E={x|x>1},求D∪E,并解释并集的定义。
14. 若F={x|x^2+4x+3=0},求F,并求F相对于全集U={1,2,3,4,5,6}的补集。
集合简单练习题及答案一、判断题1. 空集是任何集合的子集。
2. 若A∩B=A,则A⊆B。
3. 集合{1, 2, 3}和集合{3, 2, 1}是不同的集合。
4. 任意两个集合的交集一定是空集。
5. 若A⊆B,则A∪B=B。
二、选择题1. 设A={x|x²3x+2=0},则A中元素的个数为()A. 0B. 1C. 2D. 32. 已知集合M={1, 2, 3, 4, 5},下列选项中不属于M的子集的是()A. {1, 2, 3}B. {5, 4, 3, 2, 1}C. {6}D. {}3. 若集合A={x|x²5x+6=0},B={x|x²3x+2=0},则A∩B=()A. {1}B. {2}C. {1, 2}D. ∅4. 已知集合A={1, 2, 3},B={2, 3, 4},则A∪B=()A. {1, 2, 3, 4}B. {1, 2, 3}C. {2, 3}D. {1, 4}5. 设集合A={x|x²x6=0},B={x|x²4x+3=0},则AB=()A. {2}B. {3}C. {2}D. {3}三、填空题1. 已知集合A={1, 2, 3, 4},B={3, 4, 5, 6},则A∩B=_________。
2. 若集合M={x|x²4x+3=0},则M的元素个数为_________。
3. 设集合P={x|x²2x+1=0},则P=_________。
4. 已知集合A={x|x²5x+6=0},B={x|x²3x+2=0},则A∪B=_________。
5. 若集合A={1, 2, 3},B={x|x²5x+6=0},则AB=_________。
四、解答题1. 设集合A={x|x²4x+3=0},B={x|x²3x+2=0},求A∩B。
2. 已知集合M={1, 2, 3, 4, 5},求满足条件“集合中的元素都是偶数”的M的子集。
第一章 第一节 集合
达标训练 技能过关
[课堂训练]
1.(2012·江西)若集合A ={-1,1},B ={0,2},则集合{z |z =x +y ,x ∈A ,y ∈B }中的元素的个数为
A .5
B .4
C .3
D .2
解析 由题意得-1与0和2的和分别为-1,1;1与0和2的和分别为1和3,则集合{z |z =x +y ,x ∈A ,y ∈B }中的元素共有-1,1,3三个.故选C.
答案 C
2.(2012·辽宁)已知全集U ={0,1,2,3,4,5,6,7,8,9},集合A ={0,1,3,5,8},集合B ={2,4,5,6,8},则(∁U A )∩(∁U B )等于
A .{5,8}
B .{7,9}
C .{0,1,3}
D .{2,4,6}
解析 由题意得:∁U A ={2,4,6,7,9},∁U B ={0,1,3,7,9}.故(∁U A )∩(∁U B )={7,9},选B. 答案 B
3.(2013·济南模拟)已知U ={y |y =log 2x ,x >1},P =⎩⎪⎨⎪⎧⎭
⎪⎬⎪
⎫y ⎪
⎪⎪ y =1
x ,x >2
,则∁U P 等于
A.⎣⎢⎡⎭⎪⎫12,+∞ .⎝ ⎛⎭
⎪⎫
0,12 C .(0,+∞) D .(-∞,0]∪⎣⎢⎡⎭
⎪⎫12,+∞
解析 化简得U ={y |y =log 2x ,x >1}=(0,+∞),P =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪ y =1
x ,x >2
=⎝
⎛⎭⎪⎫
0,12,所以∁U P =
⎣⎢⎡⎭
⎪⎫
12,+∞.故选A. 答案 A
4.如图所示的Venn 图中,A ,B 是非空集合,定义集合A #B 为阴影部分表示的集合.x ,y ∈R ,A ={x |y =2x -x 2},B ={y |y =3x ,x >0},则A #B 为
A.{x |0<x <2}
B .{x |1<x ≤2}
C .{x |0≤x ≤1或x ≥2}
D .{x |0≤x ≤1或x >2}
解析 ∵A ={x |0≤x ≤2},B ={y |y >1}, ∴A #B ={x |0≤x ≤1或x >2}. 答案 D
[课下作业]
[时间45分钟,满分80分]
一、选择题(每题6分,共30分)
1.(2012·广东)设集合U ={1,2,3,4,5,6},M ={1,2,4},则∁U M 等于 A .U B .{1,3,5} C .{3,5,6}
D .{2,4,6} 解析 据集合在全集中补集的定义可知∁U M ={3,5,6},故选C. 答案 C
2.若集合M ={y |y =3x },集合S ={x |y =lg(x -1)},则下列各式正确的是 A .M ∪S =M B .M ∪S =S C .M =S
D .M ∩S =∅
解析 ∵M ={y |y =3x }={y |y >0},S ={x |y =lg(x -1)}={x |x >1},∴M ∪S =M . 答案 A
3.(2012·北京)已知集合A ={x ∈R|3x +2>0},B ={x ∈R|(x +1)(x -3)>0},则A ∩B 等于 A .(-∞,-1) B .⎩⎨⎧⎭
⎬⎫
-1,-23 C.⎝ ⎛⎭⎪⎫-23,3 D .(3,+∞)
解析 因为A =⎩
⎪⎨⎪⎧⎭
⎪⎬⎪
⎫x ∈R ⎪⎪⎪
x >-23
,B ={x |x <-1,或x >3},画出数轴如图所示,易得:A ∩B
={x |x >3}.
答案 D
4.(预测题)设全集U=R,A={x|x(x-2)<0},B={x|y=ln(1-x)},则A∩(∁U B)是
A.(-2,1) B.(1,2)
C.(-2,1] D.[1,2)
解析由x(x-2)<0得0<x<2,
∴A={x|0<x<2},
由1-x>0得x<1,∴B={x|x<1},
∴∁U B={x|x≥1},
∴A∩(∁U B)={x|1≤x<2}.
答案 D
5.设集合A={x||x-a|<1,x∈R},B={x|1<x<5,x∈R}.若A∩B=∅,则实数a的取值范围是
A.{a|0≤a≤6} B.{a|a≤2或a≥4}
C.{a|a≤0或a≥6} D.{a|2≤a≤4}
解析由|x-a|<1得a-1<x<a+1,又A∩B=∅,所以a+1≤1或a-1≥5,解得a≤0或a≥6.
答案 C
二、填空题(每题6分,共12分)
6.(2012·天津)已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)(x-2)<0},且A∩B=(-1,n),则m=________,n=________.
解析化简集合A=(-5,1),集合B=(m,2)或B=(2,m)(舍).又A∩B=(-1,n),故m=-1,n=1.
答案-1 1
7.已知集合A={x|x≤a},B={x|1≤x≤2},且A∪(∁R B)=R,则实数a的取值范围是________.解析∵∁R B=(-∞,1)∪(2,+∞),且A∪(∁R B)=R,∴结合数轴,得a≥2.
答案[2,+∞)
三、解答题(12分+12分+14分,共38分)
8.设集合A={x2,2x-1,-4},B={x-5,1-x,9},若A∩B={9},求A∪B.
解析由9∈A,可得x2=9,或2x-1=9,
解得x =±3,或x =5.
当x =3时,A ={9,5,-4},b ={-2,-2,9},B 中元素重复,故舍去;
当x =-3时,A ={9,-7,-4},B ={-8,4,9},A ∩B ={9}满足题意,故A ∪B ={-8,-7,-4,4,9};
当x =5时,A ={25,9,-4},B ={0,-4,9},此时A ∩B ={-4,9}与A ∩B ={9}矛盾,故舍去.
综上所述,A ∪B ={-8,-7,-4,4,9}.
9.(易错题)已知集合A ={x |a -1<x <2a +1},B ={x |0<x <1},若A ∩B =∅,求实数a 的取值范围.
解析 ∵A ∩B =∅,
(1)当A =∅时,有2a +1≤a -1⇒a ≤-2; (2)当A ≠∅时,有2a +1>a -1⇒a >-2.
又∵A ∩B =∅,则有2a +1≤0或a -1≥1⇒a ≤-12或a ≥2,∴-2<a ≤-1
2或a ≥2,
由以上可知a ≤-1
2
或a ≥2.
10.已知集合A ={x |x 2-2x -3≤0,x ∈R},B ={x |x 2-2mx +m 2-4≤0,x ∈R}. (1)若A ∩B =[1,3],求实数m 的值; (2)若A ⊆∁R B ,求实数m 的取值范围.
解析 A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}. (1)∵A ∩B =[1,3],∴⎩⎪⎨⎪⎧
m -2=1
m +2≥3,得m =3.
(2)∁R B ={x |x <m -2或x >m +2}. ∵A ⊆∁R B ,∴m -2>3或m +2<-1. ∴m >5或m <-3.。