七年级数学图形的初步认识复习测试题(含答案)
- 格式:doc
- 大小:1.01 MB
- 文档页数:6
一、选择题1.已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD 等于( )A .15 cmB .16 cmC .10 cmD .5 cm2.已知线段8AB =,在线段AB 上取点C ,使得:1:3AC CB =,延长CA 至点D ,使得2AD AC =,点E 是线段CB 的中点,则线段ED 的长度为( ). A .5B .9C .10D .163.如图,在ABC 中,90BAC ∠=︒,点D ,E 分别在BC ,CA 边的延长线上,EH BC ⊥于点H ,EH 与AB 交于点F .则1∠与2∠的数量关系是( ).A .12∠=∠B .1∠与2∠互余C .1∠与2∠互补D .12100∠+∠=°4.如图,AD 是△ABC 的角平分线,点O 在AD 上,且OE ⊥BC 于点E ,∠BAC=60°,∠C=80°,则∠EOD 的度数为( )A .20°B .30°C .10°D .15°5.已知柱体的体积V =S•h ,其中S 表示柱体的底面面积,h 表示柱体的高.现将矩形ABCD 绕轴l 旋转一周,则形成的几何体的体积等于( )A .2 r h πB .22?r h πC .23?r h πD .24?r h π 6.如果∠1的余角是∠2,并且∠1=2∠2,则∠1的补角为( ) A .30° B .60° C .120° D .150° 7.如果∠1与∠2互余,∠2与∠3互余,那么∠1与∠3的关系为( )A .互余B .互补C .相等D .无法确定8.已知线段8,6AB cm AC cm ==,下面有四个说法: ①线段BC 长可能为2cm ;②线段BC 长可能为14cm ;③线段BC 长不可能为5cm ;④线段BC 长可能为9cm .所有正确说法的序号是()A.①②B.③④C.①②④D.①②③④9.已知线段AB=6cm,反向延长线段AB到C,使BC=83AB,D是BC的中点,则线段AD的长为____cmA.2 B.3 C.5 D.610.如图,图中射线、线段、直线的条数分别为()A.5,5,1 B.3,3,2C.1,3,2 D.8,4,111.如下图,直线的表示方法正确的是()①②③④A.都正确B.只有②正确C.只有③正确D.都不正确12.用一个平面去截一个几何体,能截出如图所示的四种平面图形,则这个几何体可能是()A.圆柱B.圆锥C.长方体D.球二、填空题13.若∠A=4817︒',则它的余角是__________;它的补角是___________。
第二章几何图形的初步认识数学七年级上册-单元测试卷-冀教版(含答案)一、单选题(共15题,共计45分)1、中午12点15分时,钟表上的时针和分针所成的角是()A.90ºB.75ºC.82.5ºD.60º2、点A (4,3)经过某种图形变化后得到点B(-3,4),这种图形变化可以是()A.关于x轴对称B.关于y轴对称C.绕原点逆时针旋转90° D.绕原点顺时针旋转90°3、如图,在中,将绕点逆时针旋转得到使点落在边上,连接,则的长度是()A. B. C. D.4、如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则BE的长为()A.1B.2C.3D.45、如图,直线 AB 与 CD 相交于点 O , OE 平分∠AOC,且∠AOC=80°,则∠BOE 的度数为()A. B. C. D.6、如图,已知∠A=70°,O是AB上一点,直线OD与AB的夹角∠BOD=82°。
要使OD∥AC,直线OD绕点O按逆时针方向至少旋转( )度。
A.12B.18C.22D.287、能用∠α、∠AOB、∠O三种方式表示同一个角的图形是()A. B. C. D.8、如图所示,能用∠AOB,∠O,∠1三种方法表示同一个角的图形的是()A. B. C. D.9、已知:如图,在等边△ABC中取点P,使得PA,PB,PC的长分别为3,4,5,将线段AP 以点A为旋转中心顺时针旋转60°得到线段AD,连接BD,下列结论:①△ABD可以由△APC绕点A顺时针旋转60°得到;②点P与点D的距离为3;③∠APB=150°;④S△APC+S△APB=6+,其中正确的结论有()A.①②④B.①③④C.①②③D.②③④10、如图所示,在正方形ABCD中,AB=4,点O在AB上,且OB=1,点P是BC上一动点,连接OP,将线段OP绕点O逆时针旋转90°得到线段OQ.要使点Q恰好落在AD 上,则BP的长是( )A.3B.2C.1D.无法确定11、有两个直角三角形纸板,一个含45°角,另一个含30°角,如图①所示叠放,先将含30°角的纸板固定不动,再将含45°角的纸板绕顶点A顺时针旋转,使BC∥DE,如图②所示,则旋转角∠BAD的度数为()A.15°B.30°C.45°D.60°12、某校七年级在下午3:00开展“阳光体育”活动.下午3:00这一时刻,时钟上分针与时针所夹的角等于()A.30°B.60°C.90°D.120°13、如图,将△绕点顺时针旋转到△的位置,且点恰好落在边上,则下列结论不一定成立的是()A. B. C. ∥ D. 平分14、下列说法正确的是()A.两点之间,线段最短B.若∠AOC= ∠AOB,则OC是∠AOB的平分线 C.已知A,B,C三个不同点,过其中每两点画一条直线,可以画出3条直线 D.各边都相等的多边形是正多边形15、经过圆锥顶点的截面的形状可能是()A. B. C. D.二、填空题(共10题,共计30分)16、一个角为53°,则这个角的余角是________17、如图,已知圆柱底面周长为6cm,圆柱高为2cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为________cm.18、如图,∠ABC=90°,∠CBD=45°,BP平分∠ABD,则∠ABP的度数是________°.19、如图,AD∥BC,AB⊥BC于点B,AD=4,将CD绕点D逆时针旋转90°至DE,连接AE、CE,若△ADE的面积为6,则BC=________.20、如图,Rt△OA1B1是由Rt△OAB绕点O顺时针方向旋转得到的,且A、O、B1三点共线.如果∠OAB=90°,∠AOB=30°,OA= .则图中阴影部分的面积为________.(结果保留π)21、已知在中,,是的高,,则________.22、如图,直线AB,CD,EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=30°,则∠BOE =________度,∠AOG=________度.23、已知角的余角比它的补角的还少10°,则________.24、如图,在Rt△ABC中,ABC=90°,AB=2,BC=4,点P在边BC上,联结AP,将△ABP绕着点A旋转,使得点P与边AC的中点M重合,点B的对应点是点B',延长AB'交BC于E,则EP的长等于________。
第4章图形的初步认识检测题(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1.下列物体的形状类似于球的是()A.茶杯B.羽毛球C.乒乓球D.白炽灯泡2.正多面体的面数、棱数、顶点数之间存在着一个奇妙的关系,若用F、E. V分别表示正多而体的而数、棱数、顶点数,则有F + V — E = 2,现有一个正多面体共有12条棱,6个顶点,则它的面数F等于()A.6B.8C.12D.203.如果Na与N/?是邻补角,且/a> 很那么Z侄的余角是(A.l(Za+Z/?)B.|ZaC.|(Za-Z/?)D.不能确定4.下列四个立体图形中,主视图为圆的是()。
5.将“创建文明城市”六个字分别写在一个正方体的六个而上,这个正方体的平面展开图如所示, 那么在这个正方体中,和“创”相对的字是( A.文B.明C.城6.如图, 已知直线曲、CD 相交于点。
, ZEOC = 110% 则ZBOD 的大小C.45°D.55QD rH第6题图B.35A.25 共5页8. 下列平而图形不能够国成正方体的是(9. 过平面_匕4, B, C 三点中的任意两点作直线,可作()那么线段OB 的长度是( )二、填空题(每小题3分,共24分)11. 如图,直线CD 相交于点。
,OE 平分匕AOD,若ZBOC = 80°,贝ljZAOE = 12. 直线上的点有—个,射线上的点有—个,线段上的点有—个.13. 两条直线相交有 个交点,三条直线相交最多有 个交点,最少有 个交点.14. 如图,OM 平分ZAOB, ON 平分ZCOD.若NMON= 50。
,ZBOC = 10% 则匕4OD = 15 .如图给出的分别有射线、16.下列表面展开图的立体图形的名称分别是:A.1条B.3条C.1条或3条D.无数条10.在直线[上顺次取4、B 、 C 三点,使得= 5 cm, BC = 3 cm.如果。
是线段AC 的中点,A.2 cmB.0.5 cmC.1.5 cmD.l cmA第11题图直线、线段,其中能相交的图形有 个. 第15题图17.如图,C, D是线段上两点,若CB = 4 cm, DB = 7 cm,且D^L AC的中点,贝脂。
第4章图形的初步认识(单元测试)华东师大新版七年级上册数学一.选择题(共7小题)1.时钟的时针由4点转到5点45分,时针转过的角度是( )A.52030'B.50045'C.5405'D.10045'2.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB 的大小为( )A.69°B.111°C.141°D.159°3.如图,点A,O,B在同一条直线上,OC平分∠DOB,已知,∠AOE=30°30',∠DOC=65°15',则∠DOE的度数是( )A.70°B.78°C.80°D.84°4.如图所示,下列说法错误的是( )A.∠DAO可用∠DAC表示B.∠COB也可用∠O表示C.∠2也可用∠OBC表示D.∠CDB也可用∠1表示5.用3个同样的小正方体摆出的几何体,从三个方向看到的图形分别如图:....=∠A.∠AOC=∠BOCB.∠AOC<∠AOBC.∠AOC=∠BOC或∠.如图所示,图(表面上),请根据要求回答问题:,求的值;运动秒后都停止运动,此时恰有=BD第4章图形的初步认识(单元测试)华东师大新版七年级上册数学参考答案与试题解析一.选择题(共7小题)1.时钟的时针由4点转到5点45分,时针转过的角度是( )A.52030'B.50045'C.5405'D.10045'【答案】A【解答】解:钟表12个数字,每相邻两个数字之间的夹角为30°,每相邻两个数字之间有5个格,每格之间的度数为6°,时钟的时针由4点转到5点45分,时针转过的5+5×格,时针转过的度数=6°×(5+5×)=52°30′.故选:A.2.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB 的大小为( )A.69°B.111°C.141°D.159°【答案】C【解答】解:由题意得:∠1=54°,∠2=15°,∠3=90°﹣54°=36°,∠AOB=36°+90°+15°=141°,故选:C.3.如图,点A,O,B在同一条直线上,OC平分∠DOB,已知,∠AOE=30°30',∠DOC=65°15',则∠DOE的度数是( )A.70°B.78°C.80°D.84°【答案】C【解答】解:∵OC平分∠DOB,∠DOC=65°15',∴∠BOD=2∠DOC=130°30′,∴∠AOD=180°﹣130°30′=49°30′,∴∠DOE=∠AOD+∠AOE=49°30′+30°30′=80°.故选:C.4.如图所示,下列说法错误的是( )A.∠DAO可用∠DAC表示B.∠COB也可用∠O表示C.∠2也可用∠OBC表示D.∠CDB也可用∠1表示【答案】B【解答】解:A、∠DAO可用∠DAC表示,本选项说法正确;B、∠COB不能用∠O表示,本选项说法错误;C、∠2也可用∠OBC表示,本选项说法正确;D、∠CDB也可用∠1表示,本选项说法正确;故选:B.5.用3个同样的小正方体摆出的几何体,从三个方向看到的图形分别如图:这个几何体是( )A.B.C.D.【答案】B【解答】解:由俯视图可知,小正方体摆出的几何体为:,故选:B.6.如图是由几个相同的小正方体组成的几何体,则下列说法正确的是( )A.左视图面积最大B.俯视图面积最小C.左视图面积和正视图面积相等D.俯视图面积和正视图面积相等【答案】D【解答】解:观察图形可知,几何体的主视图由4个正方形组成,俯视图由4个正方形组成,左视图由3个正方形组成,所以左视图的面积最小,俯视图面积和正视图面积相等.故选:D.=∠A.∠AOC=∠BOCB.∠AOC<∠AOBC.∠AOC=∠BOC或∠=∠=∠===×【答案】(1(2)图形见解答.【解答】解:的距离为×∴△ABM的面积=×10×5=25.或△ABM′的面积=×10×21=105.19.如图甲,点O是线段AB上一点,C、D两点分别从O、B同时出发,以2cm/s、4cm/s的速度在直线AB上运动,点C在线段OA之间,点D在线段OB之间.(1)设C、D两点同时沿直线AB向左运动t秒时,AC:OD=1:2,求的值;(2)在(1)的条件下,若C、D运动秒后都停止运动,此时恰有OD﹣AC=BD,求CD的长;(3)在(2)的条件下,将线段CD在线段AB上左右滑动如图乙(点C在OA之间,点D在OB 之间),若M、N分别为AC、BD的中点,试说明线段MN的长度总不发生变化.【答案】见试题解答内容【解答】解:(1)设AC=x,则OD=2x,又∵OC=2t,DB=4t∴OA=x+2t,OB=2x+4t,∴;(2)设AC=x,OD=2x,又OC=×2=5(cm),BD=×4=10(cm),由OD﹣AC=BD,得2x﹣x=×10,x=5,OD=2x=2×5=10(cm),=AC=×=BC=×=acm=AC=BC=AC+BC=AB=acm=AC=BC=AC﹣BC=()=bcm(2)数轴上表示a和﹣5的两点A和B之间的距离是 |a+5| ;(3)若数轴上三个有理数a、b、c满足|a﹣b|=1,|a﹣c|=7,则|b﹣c|的值为 6或8 ;(4)当a= 1 时,|a+3|+|a﹣1|+|a﹣4|的值最小,最小值是 7 .【答案】见试题解答内容【解答】解:(1)2﹣(﹣3)=5,故答案为:5;(2)|AB|=|a﹣(﹣5)|=|a+5|,故答案为:|a+5|;(3)当a>b>c时,|b﹣c|=|a﹣c|﹣|a﹣b|=7﹣1=6;当b>a>c时,|b﹣c|=|a﹣c|+|a﹣b|=7+1=8;C点在A,B两点之间时不符合题意,综上|b﹣c|的值为6或8,故答案为:6或8;(4)∵当﹣3≤a≤4时,|a+3|+|a﹣4|的最小值为7,∴只需要|a﹣1|的值最小即可,此时a=1,|a﹣1|=0,∴当a=1时,|a+3|+|a﹣1|+|a﹣4|的值最小,最小值是7.故答案为:1;7.。
2020年华东师大新版七年级(上)《第4章图形的初步认识》常考题套卷(4)一、选择题(共10小题)1.如图,将一副三角尺按不同位置摆放,摆放方式中∠α与∠β互余的是()A.B.C.D.2.一个圆柱体切拼成一个近似长方体后()A.表面积不变,体积变大B.表面积变大,体积不变C.表面积变小,体积不变D.表面积不变,体积不变3.下列图形中,经过折叠不能围成正方体的是()A.B.C.D.4.如果线段AB=13厘米,MA+MB=17厘米,那么下面说法正确的是()A.M点在线段AB上B.M点在直线AB上C.M点在直线AB外D.M点可能在直线AB上,也可能在直线AB外5.若平面内有点A、B、C、D,过其中任意两点画直线,则最多可以画的条数是()A.6条B.7条C.8条D.9条6.甲、乙两个城市,乙城市位于甲城市北偏东50°方向,距离为80km,那么甲城市位于乙城市()A.南偏东50°方向,距离为80kmB.南偏西50°方向,距离为80kmC.南偏东40°方向,距离为80kmD.南偏西40°方向,距离为80km7.如图所示的几何体,它的俯视图是()A.B.C.D.8.如图,将一根绳子对折以后用线段AB表示,现从P处将绳子剪断,剪断后的各段绳子中最长的一段为60cm,若AP=PB,则这条绳子的原长为()A.100cm B.150cmC.100cm或150cm D.120cm或150cm9.在同一平面内,已知∠AOB=50°,∠COB=30°,则∠AOC等于()A.80°B.20°C.80°或20°D.10°10.如图所示是正方体的展开图,原正方体“4”的相邻面上的数字之和是()A.2B.12C.14D.15二、填空题(共10小题)11.如图,长方形的长为3cm,宽为2cm,以该长方形的一边所在直线为轴,将其旋转一周,形成圆柱,其体积为cm3.(结果保留π)12.在长方体、圆柱、圆锥、球中,三视图均一样的几何体是.13.如图,∠AOB=20°,∠AOC=90°,点B、O、D在同一直线上,那么∠COD=.14.如图是某几何体的表面展开图,则这个几何体是.15.平面上有四个点,经过其中每两个点画一条直线,那么一共可以画直线条.16.用小正方体搭一个几何体,其主视图和左视图如图所示,那么搭成这样的几何体至少需要个小正方体,最多需要个小正方体.17.90°﹣45°30′=度.18.用一个平面截下列几何体:①长方体,②六棱柱,③球,④圆柱,⑤圆锥,截面能得到三角形的是(填写序号即可).19.若一个棱柱有十个顶点,且所有侧棱长的和为30cm,则每条侧棱长为cm.20.在8:30分,这一时刻钟面上时针与分针的夹角是度.三、解答题(共10小题)21.如图某学校从教学楼到图书馆总有少数同学不走人行道,而横穿草坪.(1)试用所学的知识来说明少数学生这样走的理由;(2)请问学生这样走行吗?如不行请你在草坪上竖起一个牌子,写上一句话来警示学生应该怎样做.22.各个花瓶的表面可以看作由哪个平面图形绕虚线旋转一周而得到?用线连一连.23.如图,已知线段a和线段AB,(1)延长线段AB到C,使BC=a(尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=5,BC=3,点O是线段AC的中点,求线段OB的长.24.图1所示的三棱柱,高为8cm,底面是一个边长为5cm的等边三角形.(1)这个三棱柱有条棱,有个面;(2)图2框中的图形是该三棱柱的一种表面展开图的一部分,请将它补全(一种即可);(3)要将该三棱柱的表面沿某些棱剪开,展开成一个平面图形,至少需剪开条棱,需剪开棱的棱长的和的最大值为cm.25.两个圆柱体容器如图所示,它们的直径分别为4cm和8cm,高分别为39cm和10cm.把容器一倒满水,然后将容器一中的水倒入容器二中,求容器二中的水面离容器口有多少厘米,26.如图①是一个组合几何体,右边是它的两种视图,在右边横线上填写出两种视图名称;根据两种视图中尺寸,计算这个组合几何体的表面积和体积.27.如图,在钟面上,点O为钟面的圆心,以点O为顶点按要求画出符合下列要求的角(角的两边不经过钟面上的数字):(1)在图1中画一个锐角,使锐角的内部含有2个数字,且数字之差的绝对值最大;(2)在图2中画一个直角,使直角的内部含有3个数字,且数字之积等于数字之和;(3)在图3中画一个钝角,使钝角的内部含有4个数字,且数字之和最小;(4)在图4中画一个平角,使平角的内部与外部的数字之和相等;(5)在图5中画两个直角,使这两个直角的内部含有的3个数字之和相等.28.用长为12厘米、宽为6厘米的长方形纸片围成一个圆柱的侧面(不计损耗),求得到圆柱的表面积.(π取3)29.在七年级第一章的学习中,我们已经学习过:点动成,线动成,动成体.比如:(1)圆规在纸上划过会留下一个封闭的痕迹,这种现象说明.(2)一个人手里拿着一个绑在一根棍上的半圆面,当这个人把这个半圆面绕着这根棍飞快地旋转起来时就会看到一个球,这种现象说明.(3)聪明的你一定观察过生活中还有许多类似的现象,你能举出一个例子吗?并解释该现象.30.如图所示,是由几个小立方块所搭几何体的俯视图,小立方块中的数字表示在该位置小立方块的个数.请画出从正面和从左面看到的这个几何体的形状图.2020年华东师大新版七年级(上)《第4章图形的初步认识》常考题套卷(4)参考答案与试题解析一、选择题(共10小题)1.如图,将一副三角尺按不同位置摆放,摆放方式中∠α与∠β互余的是()A.B.C.D.【解答】解:A、∠α与∠β不互余,故本选项错误;B、∠α与∠β不互余,故本选项错误;C、∠α与∠β互余,故本选项正确;D、∠α与∠β不互余,∠α和∠β互补,故本选项错误;故选:C.2.一个圆柱体切拼成一个近似长方体后()A.表面积不变,体积变大B.表面积变大,体积不变C.表面积变小,体积不变D.表面积不变,体积不变【解答】根据立体图形的切拼方法可知:圆柱体切拼成一个长方体后,体积大小不变,表面积增加了两个以圆柱的高和底面半径为边长的长方形的面积,所以表面积变大了.故选:B.3.下列图形中,经过折叠不能围成正方体的是()A.B.C.D.【解答】解:A、有两个面重叠,不能折成正方体;选项B、C、D经过折叠均能围成正方体.故选:A.4.如果线段AB=13厘米,MA+MB=17厘米,那么下面说法正确的是()A.M点在线段AB上B.M点在直线AB上C.M点在直线AB外D.M点可能在直线AB上,也可能在直线AB外【解答】解:(1)当M点在直线外时,M,A,B构成三角形,两边之和大于第三边,能出现MA+MB=17;(2)当M点在线段AB延长线上,也可能出现MA+MB=17.故选:D.5.若平面内有点A、B、C、D,过其中任意两点画直线,则最多可以画的条数是()A.6条B.7条C.8条D.9条【解答】解:分三种情况:1、四点在同一直线上时,只可画1条;2、当三点在同一直线上,另一点不在这条直线上,可画4条;3、当没有三点共线时,可画6条.所以最多可以画6条.故选:A.6.甲、乙两个城市,乙城市位于甲城市北偏东50°方向,距离为80km,那么甲城市位于乙城市()A.南偏东50°方向,距离为80kmB.南偏西50°方向,距离为80kmC.南偏东40°方向,距离为80kmD.南偏西40°方向,距离为80km【解答】解:如图:∵乙城市位于甲城市北偏东50°方向,距离为80km,∴甲城市位于乙城市南偏西50°方向,距离为80km,故选:B.7.如图所示的几何体,它的俯视图是()A.B.C.D.【解答】解:从上面可看到从左往右二列小正方形的个数为:1,2,左面的小正方形在上面.故选:A.8.如图,将一根绳子对折以后用线段AB表示,现从P处将绳子剪断,剪断后的各段绳子中最长的一段为60cm,若AP=PB,则这条绳子的原长为()A.100cm B.150cmC.100cm或150cm D.120cm或150cm【解答】解:当PB的2倍最长时,得PB=30cm,AP=PB=20cm,AB=AP+PB=50cm,这条绳子的原长为2AB=100cm;当AP的2倍最长时,得AP=30cm,AP=PB,PB=AP=45cm,AB=AP+PB=75cm,这条绳子的原长为2AB=150cm.故选:C.9.在同一平面内,已知∠AOB=50°,∠COB=30°,则∠AOC等于()A.80°B.20°C.80°或20°D.10°【解答】解:①如图1,OC在∠AOB内,∵∠AOB=50°,∠COB=30°,∴∠AOC=∠AOB﹣∠COB=50°﹣30°=20°;②如图2,OC在∠AOB外,∵∠AOB=50°,∠COB=30°,∴∠AOC=∠AOB+∠COB=50°+30°=80°;综上所述,∠AOC的度数是20°或80°.故选:C.10.如图所示是正方体的展开图,原正方体“4”的相邻面上的数字之和是()A.2B.12C.14D.15【解答】解:∵正方体的展开图,原正方体“4”的相对面上的数字为2,∴原正方体“4”的相邻面上的数字分别为1,3,5,6,∴原正方体“4”的相邻面上的数字之和是15,故选:D.二、填空题(共10小题)11.如图,长方形的长为3cm,宽为2cm,以该长方形的一边所在直线为轴,将其旋转一周,形成圆柱,其体积为12π或18πcm3.(结果保留π)【解答】解:由题可得,当以该长方形的长所在直线为轴时V=π•22×3=12π,当以该长方形的宽所在直线为轴,V=π•32×2=18π,故答案为:12π或18π.12.在长方体、圆柱、圆锥、球中,三视图均一样的几何体是球.【解答】解:正方体只有一个面正对时主视图、俯视图、左视图都是正方形;圆柱主视图和左视图是矩形,俯视图是圆;圆锥主视图和左视图是等腰三角形,俯视图是圆;球体主视图、俯视图、左视图都是圆;因此三视图都完全相同的几何体是球体.故答案为:球.13.如图,∠AOB=20°,∠AOC=90°,点B、O、D在同一直线上,那么∠COD=110°.【解答】解:∵∠AOB=20°,∠AOC=90°,∴∠BOC=70°,∴∠DOC=180°﹣70°=110°.故答案为:110°.14.如图是某几何体的表面展开图,则这个几何体是圆柱体.【解答】解:一个长方形和两个圆折叠后,能围成的几何体是圆柱.故答案为:圆柱体.15.平面上有四个点,经过其中每两个点画一条直线,那么一共可以画直线1或4或6条.【解答】解:①当四点共线时,则经过每两个点画一条直线,那么共可以画直线1条;②当只有三点共线时,则经过每两个点画一条直线,那么共可以画直线4条;③当每三点不共线时,则经过每两个点画一条直线,那么共可以画直线6条.故答案为:1或4或6.16.用小正方体搭一个几何体,其主视图和左视图如图所示,那么搭成这样的几何体至少需要5个小正方体,最多需要13个小正方体.【解答】解:综合主视图和左视图,这个几何体的底层最多有3×3=9个小正方体,最少有3个小正方体,第二层最多有4个小正方体,最少有2个小正方体,那么搭成这样的几何体至少需要3+2=5个小正方体,最多需要4+9=13个小正方体.故答案为5个,13个.17.90°﹣45°30′=44.5度.【解答】解:90°﹣45°30′=89°60′﹣45°30′=44°30′=44.5°,故答案为:44.5.18.用一个平面截下列几何体:①长方体,②六棱柱,③球,④圆柱,⑤圆锥,截面能得到三角形的是①②⑤(填写序号即可).【解答】解:①长方体能截出三角形;②六棱柱沿对角线截几何体可以截出三角形;③球不能截出三角形;④圆柱不能截出三角形;⑤圆锥能截出三角形;故截面可能是三角形的有①②⑤共3个.故答案为:①②⑤.19.若一个棱柱有十个顶点,且所有侧棱长的和为30cm,则每条侧棱长为6cm.【解答】解:∵棱柱共有10个顶点,∴该棱柱是五棱柱,∵所有的侧棱长的和是30cm,∴每条侧棱长为30÷5=6cm.故答案为:6.20.在8:30分,这一时刻钟面上时针与分针的夹角是75度.【解答】解:30分钟,钟面上时针从8开始转的度数为30×0.5°=15°,分针从12开始转的度数为30×6°=180°,所以此时钟面上时针与分针夹角的度数=8×30°+15°﹣180°=75°.故答案是:75.三、解答题(共10小题)21.如图某学校从教学楼到图书馆总有少数同学不走人行道,而横穿草坪.(1)试用所学的知识来说明少数学生这样走的理由;(2)请问学生这样走行吗?如不行请你在草坪上竖起一个牌子,写上一句话来警示学生应该怎样做.【解答】解:(1)少数学生这样走的理由是:两点之间,线段最短;(2)学生这样走不行,可以是:脚下留情(答案不唯一).22.各个花瓶的表面可以看作由哪个平面图形绕虚线旋转一周而得到?用线连一连.【解答】解:连接如图:23.如图,已知线段a和线段AB,(1)延长线段AB到C,使BC=a(尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=5,BC=3,点O是线段AC的中点,求线段OB的长.【解答】解:(1)如图:(2)∵AB=5,BC=3,∴AC=8,∵点O是线段AC的中点,∴AO=CO=4,∴BO=AB﹣AO=5﹣4=1,∴OB长为1.24.图1所示的三棱柱,高为8cm,底面是一个边长为5cm的等边三角形.(1)这个三棱柱有9条棱,有5个面;(2)图2框中的图形是该三棱柱的一种表面展开图的一部分,请将它补全(一种即可);(3)要将该三棱柱的表面沿某些棱剪开,展开成一个平面图形,至少需剪开5条棱,需剪开棱的棱长的和的最大值为34cm.【解答】解:(1)这个三棱柱有9条棱,有5个面;故答案为:9,5;(2)如图;(3)由图形可知:没有剪开的棱的条数是4条,则至少需要剪开的棱的条数是:9﹣4=5(条).故至少需要剪开的棱的条数是5条.需剪开棱的棱长的和的最大值为:8×3+5×2=34(cm).故答案为:5,34.25.两个圆柱体容器如图所示,它们的直径分别为4cm和8cm,高分别为39cm和10cm.把容器一倒满水,然后将容器一中的水倒入容器二中,求容器二中的水面离容器口有多少厘米,【解答】解:设第二个容器的水面离容器口有xcm,第一个容器中水的体积为π×39,第二个容器中水的体积为π×(10﹣x);∵水的体积不变,∴π×22×39=π×42×(10﹣x),解得x=0.25.即容器二中的水面离容器口有0.25厘米.26.如图①是一个组合几何体,右边是它的两种视图,在右边横线上填写出两种视图名称;根据两种视图中尺寸,计算这个组合几何体的表面积和体积.【解答】解:两个视图分别为主视图、俯视图,体积为:8×5×2+π×22×6=80+24π,表面积为:(8×5+8×2+5×2)×2+4π×6=132+24π,答:这个几何体的表面积为132+24π,体积为80+24π.27.如图,在钟面上,点O为钟面的圆心,以点O为顶点按要求画出符合下列要求的角(角的两边不经过钟面上的数字):(1)在图1中画一个锐角,使锐角的内部含有2个数字,且数字之差的绝对值最大;(2)在图2中画一个直角,使直角的内部含有3个数字,且数字之积等于数字之和;(3)在图3中画一个钝角,使钝角的内部含有4个数字,且数字之和最小;(4)在图4中画一个平角,使平角的内部与外部的数字之和相等;(5)在图5中画两个直角,使这两个直角的内部含有的3个数字之和相等.【解答】解:如图所示,(1)如图1,∠AOB即为所求;(2)如图2,∠AOB即为所求;(3)如图3,∠COD即为所求;(4)如图4,∠DOE即为所求;(5)如图5,∠EOF和∠MON即为所求.28.用长为12厘米、宽为6厘米的长方形纸片围成一个圆柱的侧面(不计损耗),求得到圆柱的表面积.(π取3)【解答】解:底面周长是12cm,高6cm时,圆柱的表面积为:12×6+=72+≈96(cm2);底面周长是6cm,高12cm时,圆柱的表面积为:12×6+=72+≈78(cm2).29.在七年级第一章的学习中,我们已经学习过:点动成线,线动成面,面动成体.比如:(1)圆规在纸上划过会留下一个封闭的痕迹,这种现象说明点动成线.(2)一个人手里拿着一个绑在一根棍上的半圆面,当这个人把这个半圆面绕着这根棍飞快地旋转起来时就会看到一个球,这种现象说明面动成体.(3)聪明的你一定观察过生活中还有许多类似的现象,你能举出一个例子吗?并解释该现象.【解答】解:(1)故答案为:线,面,面;(2)由点、线、面、体的关系得,点动成线,故答案为:点动成线;(3)由点、线、面、体的关系得,面动成体,故答案为:面动成体;(4)例如:彗星从天空中划过一道明亮的弧线陨落,是点动成线的例子.30.如图所示,是由几个小立方块所搭几何体的俯视图,小立方块中的数字表示在该位置小立方块的个数.请画出从正面和从左面看到的这个几何体的形状图.【解答】解:如图所示:。
初一数学图形认识初步棱、顶点、面间数量关系(欧拉公式)练习题欧拉公式:(1)简单多面体的顶点数V、面数F及棱数E间的关系为:V+F﹣E=2.这个公式叫欧拉公式.(2)V+F﹣E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数.一选择题1.将正方体的面数记为f,边数记为e,顶点数记为v,则f+v﹣e=()A.1 B.2 C.3 D.42.一个多面体,若顶点数为4,面数为4,则棱数是()A.2 B.4 C.6 D.83.设长方体的顶点数为v,棱数为e,面数为f,则v+e+f等于()A.26 B.2 C.14 D.104.正多面体的面数、棱数、顶点数之间存在着一个奇妙的关系,若用F,E,V分别表示正多面体的面数、棱数、顶点数,则有F+V﹣E=2,现有一个正多面体共有12条棱,6个顶点,则它的面数F等于()A.6 B.8 C.12 D.205.欧拉公式中,多面体的面数F,棱数E,顶点数V之间的正确关系是()A.F+V﹣E=2 B.F+E﹣V=2 C.E+V﹣F=2 D.E﹣V﹣F=2二填空题6.简单多面体是各个面都是多边形组成的几何体,十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)和棱数(E)之间存在一个有趣的关系式,称为欧拉公式.如表是根据左边的多面体模型列出的不完整的表.现在有一个多面体,它的每一个面都是三角形,它的面数(F)和棱数(E)的和为30,则这个多面体的顶点数V=.7.阅读下面的材料:1750年欧拉在写给哥德巴赫的信中列举了多面体的一些性质,其中一条是,如果用V,E,F分别表示凸多面体的顶点数、棱数、面数,则有V﹣E+F=2.这个发现就是著名的欧拉定理.根据所阅读的材料,完成:一个多面体的面数为12,棱数是80,则其顶点数为.8.阅读下面的材料:1750年欧拉在写给哥德巴赫的信中列举了多面体的一些性质,其中一条是:如果用V,E,F分别表示凸多面体的顶点数、棱数、面数,则有V﹣E+F=2.这个发现,就是著名的欧拉定理.根据所阅读的材料,完成:一个多面体的面数为12,棱数是30,则其顶点数为.9.一个多面体的顶点数为12,棱数是30,则这个多面体的面数是.10.任意一个多面体,它的面数记为a,顶点数记为b,棱的条数记为c,则a,b,c三者之间的关系式为.11.n棱柱的面数+顶点数﹣棱数=.12.从每个顶点出发的所有棱长相等,所有面形状、大小完全相同的正多边形的几何体称为正多面体、其面数+顶点数﹣棱数=.13.如图,正四面体的顶点数(4)+面数(4)﹣棱数(6)=2,仔细观察后计算,正八面体的顶点数+面数﹣棱数=.14.瑞士著名数学家欧拉发现:简单多面体的顶点数V、面数F及棱数E之间满足一种有趣的关系:V+F﹣E=2,这个关系式被称为欧拉公式.比如:正二十面体(如右图),是由20个等边三角形所组成的正多面体,已知每个顶点处有5条棱,则可以通过欧拉公式算出正二十面体的顶点为个.那么一个多面体的每个面都是五边形,每个顶点引出的棱都有3条,它是一个面体.15.一个多面体的面数为6,棱数是12,则其顶点数为.16.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(v)、面数(f)、棱数(e)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型:根据上面多面体模型,你发现顶点数(v)、面数(f)、棱数(e)之间存在的关系式是.17.正多面体共有五种,它们是、、、、,它们的面数f,棱数e、顶点数v满足关系式.18.图1(1)、(2)、(3)依次表示四面体、八面体、正方体.它们各自的面积数F、棱数E与顶点数V如下表,观察这些数据,可以发现F、E、V之间的关系满足等式:.三解答题19.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格.(2)你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是.(3)一个多面体的面数与顶点数相同,且有12条棱,则这个多面体的面数是.20.图1至图3是将正方体截去一部分后得到的多面体.(1)根据要求将表格补充完整:(2)猜想f、v、e三个数量间有何关系;(3)根据猜想计算,若一个多面体有顶点数2018个,棱数4035条,试求出它的面数.21.观察下列多面体,并把下表补充完整.观察上表中的结果,你能发现a、b、c之间有什么关系吗?请写出发现的关系式.22.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格,你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是.(2)一个多面体的面数比顶点数小8,且有30条棱,则这个多面体的面数是.(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表面三角形的个数为x个,八边形的个数为y个,求x+y的值.23.观察下列多面体,并把如表补充完整.观察表中的结果,你能发现a、b、c之间有什么关系吗?请写出关系式.24.回答下列问题:(1)如图所示的甲、乙两个平面图形能折什么几何体?(2)由多个平面围成的几何体叫做多面体.若一个多面体的面数为f,顶点个数为v,棱数为e,分别计算第(1)题中两个多面体的f+v﹣e的值?你发现什么规律?(3)应用上述规律解决问题:一个多面体的顶点数比面数大8,且有50条棱,求这个几何体的面数.25.设棱锥的顶点数为V,面数为F,棱数为E.(1)观察与发现:三棱锥中,V3=,F3=,E3=;五棱锥中,V5=,F5=,E5=;(2)猜想:①十棱锥中,V10=,F10=,E10=;②n棱锥中,Vn=,Fn=,En=;(用含有n的式子表示)(3)探究:①棱锥的顶点数(V)与面数(F)之间的等量关系:;②棱锥的顶点数(V)、面数(F)、棱数(E)之间的等量关系:E=;(4)拓展:棱柱的顶点数(V)、面数(F)、棱数(E)之间是否也存在某种等量关系?若存在,试写出相应的等式;若不存在,请说明理由.26.如图1至图3是将正方体截去一部分后得到的多面体.(1)根据要求填写表格.(2)猜想f、v、e三个数量间有何关系;(3)根据猜想计算,若一个多面体有顶点数2018个,棱数4036条,试求出它的面数.27.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式,请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格;你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是.(2)正十二面体有12个面,那它有条棱;(3)一个多面体的面数比顶点数小8,且有30条棱,则这多面体的顶点数是;(4)某个玻璃饰品的外形是简单多面体,它的外表是由三角形和八边形两种多边形拼接而成,且有48个顶点,每个顶点处都有3条棱,设该多面体表面三角形的个数为x个,八边形的个数为y个,求x+y 的值.28.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:(2)你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是.(3)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是.29.在对第一章“丰富的图形世界”复习前,老师让学生整理正方体截面的形状并探究多面体(由若干个多边形所围成的几何体)的棱数、面数、顶点数之间的数量关系,如图是小颖用平面截正方体后剩余的多面体,请解答下列问题:(1)根据上图完成下表.(2)猜想:一个多面体的V(顶点数),F(面数),E(棱数)之间的数量关系是;(3)计算:已知一个多面体有20个面、30条棱,那么这个多面体有个顶点.30.观察下列多面体,并把表补充完整.(1)完成表中的数据;(2)若某个棱柱由28个面构成,则这个棱柱为棱柱;(3)根据表中的规律判断,n棱柱共有个面,共有个顶点,共有条棱;(4)观察表中的结果,你发现棱柱顶点数、棱数、面数之间有什么关系吗?请直接写出来.初一数学图形认识初步棱、顶点、面间数量关系(欧拉公式)练习题参考答案与解析1.分析:根据正方体的概念和特性进行分析计算即解.解:正方体的顶点数v =8,棱数e =12,面数f =6.故f+v ﹣e =8+6﹣12=2.故选B .2.分析:根据欧拉公式,简单多面体的顶点数V 、面数F 及棱数E 间的关系为:V+F ﹣E =2,代入求出棱数.解:根据欧拉公式:V+F ﹣E =2,可得4+4﹣E =2,解得E =6.故选C .3.分析:根据长方体的概念和特性进行分析计算即解.解:长方体的顶点数v =8,棱数e =12,面数f =6.故v+e+f =8+12+6=26.故选A .4.分析:根据题意中的公式F+V ﹣E =2,将E ,V 代入即解.解:∵正多面体共有12条棱,6个顶点,∴E =12,V =6,∴F =2﹣V+E =2﹣6+12=8.故选B .5.分析:根据欧拉公式进行解答即可.解:凸多面体的面数F 、顶点数V 和棱数E 满足如下关系:V+F ﹣E =2,故选A .6.分析:直接利用V ,E ,F 分别表示凸多面体的顶点数、棱数、面数,欧拉公式为V ﹣E+F =2,求出答案.解:∵现在有一个多面体,它的每一个面都是三角形,它的面数(F )和棱数(E )的和为30,∴这个多面体的顶点数V =2+E ﹣F ,∵每一个面都是三角形,∴每相邻两条边重合为一条棱,∴E =23F ,∵E+F =30,∴F =12,∴E =18,∴V =,2+E ﹣F =8,故答案为8. 7.分析:直接利用欧拉公式V ﹣E+F =2,求出答案.解:∵用V ,E ,F 分别表示凸多面体的顶点数、棱数、面数,则有V ﹣E+F =2.∴V =E ﹣F+2,∵一个多面体的面数为12,棱数是80,∴其顶点数为:80﹣12+2=70.故答案为:70.8.分析:直接把面数、棱数代入公式,即可求得顶点数.解:由题意可得,V ﹣30+12=2,解得V =20.故答案为:209分析:根据常见几何体的结构特征进行判断.解:∵顶点数记为V ,棱数记为E ,面数记为F ,V+F ﹣E =2,∴12+F ﹣30=2,解得:F =20.故答案为:20.10.分析:简单多面体的顶点数V 、面数F 及棱数E 间的关系为:V+F ﹣E =2,这个公式叫欧拉公式.解:由欧拉公式可得:a+b ﹣c =2.故答案为:a+b ﹣c =2.11.分析:根据欧拉公式,得出正多面体的面数+顶点数﹣棱数的结果.解:从每个顶点出发的所有棱长相等,所有面形状、大小完全相同的正多边形的几何体称为正多面体,其面数+顶点数﹣棱数=2.故答案为:2.12.分析:根据欧拉公式,得出正多面体的面数+顶点数﹣棱数的结果.解:从每个顶点出发的所有棱长相等,所有面形状、大小完全相同的正多边形的几何体称为正多面体,其面数+顶点数﹣棱数=2.故答案为2.13.分析:只需分别找出正八面体的顶点数,面数和棱数即可.解:正八面体有6个顶点,12条棱,8个面.∴正八面体的顶点数+面数﹣棱数=6+8﹣12=2.故答案为:2.14.分析:①设出正二十面体的顶点为n 个,则棱有25n 条.利用欧拉公式构建方程即可解决问题.②设顶点数V ,棱数E ,面数F ,每个点属于三个面,每条边属于两个面,利用欧拉公式构建方程即可解决问题.解:①设出正二十面体的顶点为n 个,则棱有25n 条.由题意F =20,∴n+20﹣25n =2,解得n =12.②设顶点数V ,棱数E ,面数F ,每个点属于三个面,每条边属于两个面,由每个面都是五边形,则就有E =25F ,V =35F ,由欧拉公式:F+V ﹣E =2,代入:F+35F ﹣25F =2,化简整理:F =12,所以:E =30,V =20,即多面体是12面体.棱数是30,面数是12,故答案为12,12.15.分析:因为多面体的面数为6,棱数是12,故多面体为四棱柱.解:根据四棱柱的概念,有8个顶点.故答案为8.16.分析:先根据四面体、长方体、正八面体,正十二面体的顶点数、面数和棱数,总结出顶点数(v )、面数(f )、棱数(e )之间存在的关系式即可.解:四面体的顶点数为4、面数为4,棱数为6,则4+4﹣6=2;长方体的顶点数为8、面数为6,棱数为12,则8+6﹣12=2;正八面体的顶点数为6,面数为8,棱数为12,则8+6﹣12=2;则关系式为:v+f ﹣e =2;故答案为:v+f ﹣e =2.17.分析:根据正多面体的面是正三角形,正方形,正五边形三种情况写出即可;再根据欧拉公式进行解答.解:正多面体只能有五种,用正三角形做面的正四面体、正八面体,正二十面体,用正方形做面的正六面体,用正五边形做面的正十二面体.f+v ﹣e =2.18.分析:根据题给图形中各图具体的面积数F 、棱数E 与顶点数V ,即可得出答案.解:根据表中所列可知:四面体有4﹣6+4=2;八面体有8﹣12+6=2;正方体有6﹣12+8=2;故有F ﹣E+V =2.故答案为:F ﹣E+V =2.19.分析:(1)依据多面体模型,即可得到棱数和顶点数;(2)依据表格中的数据,即可得出顶点数(V)、面数(F)、棱数(E)之间存在的关系式;(3)依据欧拉公式进行计算,即可得到这个多面体的面数.解:(1)四面体的棱数为6;正八面体的顶点数为6;故答案为:6,6;(2)顶点数(V)、面数(F)、棱数(E)之间存在的关系式是V+F﹣E=2,故答案为:V+F﹣E=2;(3)设这个多面体的面数是x,则2x﹣12=2,解得x=7,这个多面体的面数是7,故答案为:7.20.分析:(1)根据图形数出即可.(2)根据(1)中结果得出f+v﹣e=2.(3)把数值代入f+v﹣e=2求出即可.解:(1)填表如下:故答案为:7,8,15.(2)f+v﹣e=2.(3)∵v=2018,e=4035,f+v ﹣e=2,∴f+2018﹣4035=2,解得f=2019.故它的面数是2019.21.分析:只要将各个图形的顶点数、棱数、面数数一下就行;数的时候要注意:图中不能直接看到的那一部分不要遗漏,也不要重复,可通过想象计数,正确填入表内,通过观察找出每个图中“顶点数、棱数、面数”之间隐藏着的数量关系,这个数量关系用公式表示出来即可.解:填表如下,观察表中的结果,能发现a、b、c之间有的关系是:a+c﹣b=2.22.分析:(1)观察可得顶点数+面数﹣棱数=2;(2)代入(1)中的式子即可得到面数;(3)得到多面体的棱数,求得面数即为x+y的值.解:(1)四面体的棱数为6;正八面体的顶点数为6;关系式为:V+F﹣E=2;(2)由题意得:F+8+F﹣30=2,解得F=12;(3)∵有24个顶点,每个顶点处都有3条棱,两点确定一条直线;∴共有24×3÷2=36条棱,那么24+F﹣36=2,解得F=14,∴x+y=14.故答案为:(1)6;6;V+F﹣E=2.(2)12;(3)14.23.分析:结合三棱柱、四棱柱和五棱柱的特点,即可填表,根据已知的面、顶点和棱与几棱柱的关系,可知n棱柱一定有(n+2)个面,2n个顶点和3n条棱,进而得出答案,利用前面的规律得出a,b,c之间的关系.解:填表如下,根据上表中的规律判断,若一个棱柱的底面多边形的边数为n,则它有n个侧面,共有n+2个面,共有2n个顶点,共有3n条棱;故a,b,c之间的关系:a+c﹣b=2.24.分析:(1)由长方体与五棱锥的折叠及长方体与五棱锥的展开图解题.(2)列出几何体的面数,顶点数及棱数直接进行计算即可;(3)设这个多面体的面数为x,根据顶点数+面数﹣棱数=2,列出方程即可求解.解:(1)图甲折叠后底面和侧面都是长方形,所以是长方体;图乙折叠后底面是五边形,侧面是三角形,实际上是五棱锥的展开图,所以是五棱锥.(2)甲:f=6,e=12,v=8,f+v ﹣e=2;乙:f=6,e=10,v=6,f+v﹣e=2;规律:顶点数+面数﹣棱数=2.(3)设这个多面体的面数为x,则x+x+8﹣50=2,解得x=22.25.分析:(1)观察与发现:根据三棱锥、五棱锥的特征填写即可;(2)猜想:①根据十棱锥的特征填写即可;②根据n棱锥的特征的特征填写即可;(3)探究:①通过列举得到棱锥的顶点数(V)与面数(F)之间的等量关系;②通过列举得到棱锥的顶点数(V)、面数(F)、棱数(E)之间的等量关系;(4)拓展:根据棱柱的特征得到棱柱的顶点数(V)、面数(F)、棱数(E)之间的等量关系.解:(1)观察与发现:三棱锥中,V3=4,F3=4,E3=6;五棱锥中,V5=6,F5=6,E5=10;(2)猜想:①十棱锥中,V10=11,F10=11,E10=20;②n棱锥中,Vn=n+1,Fn=n+1,En=2n;(用含有n的式子表示)(3)探究:①棱锥的顶点数(V)与面数(F)之间的等量关系:V =F;②棱锥的顶点数(V)、面数(F)、棱数(E)之间的等量关系:E=V+F﹣2;(4)拓展:棱柱的顶点数(V)、面数(F)、棱数(E)之间也存在某种等量关系,相应的等式是:V+F﹣E =2.故答案为:4,4,6;6,6,10;11,11,20;n+1,n+1,2n;V=F,V+F﹣2.26.分析:(1)根据图形数出即可.(2)根据(1)中结果得出f+v﹣e=2.(3)代入f+v﹣e =2求出即可.解:(1)题1,面数f=7,顶点数v=9,棱数e=14,题2,面数f=6,顶点数v=8,棱数e=12,题3,面数f=7,顶点数v=10,棱数e=15,故答案为:7,9,14.6,8,12,7,10,15.(2)f+v﹣e=2.(3)∵v=2018,e=4036,f+v﹣e=2,∴f+2018﹣4036=2,f=2020,即它的面数是2020.27.分析:(1)观察表格可以看出:顶点数+面数﹣棱数=2,关系式为:V+F﹣E=2;(2)根据题意得出是十二面体,得出顶点数;(3)代入(1)中公式进行计算;(4)根据欧拉公式可得顶点数+面数﹣棱数=2,然后表示出棱数,进而可得面数.解:(1)根据题意得:四面体的棱数为6,正八面体顶点数为6,∵4+4﹣6=2,8+6﹣12=2,6+8﹣12=2,∴顶点数(V)、面数(F)、棱数(E)之间存在的关系式是V+F﹣E=2;故答案为:V+F﹣E=2;(2)正十二面体有十二个面,每个面都是正五边形,它的每个顶点处都有相同数目的棱.则它有30条棱,20个顶点;故答案是:30;(3)由(1)可知:V+F﹣E=2,∵一个多面体的面数比顶点数小8,且有30条棱,∴V+V﹣8﹣30=2,即V=20,故答案是:20;(4)∵有48个顶点,每个顶点处都有3条棱,两点确定一条直线;∴共有48×3÷2=72条棱,设总面数为F,48+F﹣72=2,解得F=26,∴x+y=26.28.分析:(1)观察图形即可得出结论;(2)观察可得顶点数+面数﹣棱数=2;(3)代入(2)中的式子即可得到面数.解:(1)观察图形,四面体的棱数为6;正八面体的顶点数为6;正十二面体的面数为12;(2)观察表格可以看出:顶点数+面数﹣棱数=2,关系式为:V+F﹣E=2;(3)由题意得:F﹣8+F ﹣30=2,解得F=20.故答案为:(1)6,6,12;(2)V+F﹣E=2;(3)20.29.分析:(1)观察图形即可得出结论;(2)观察可得顶点数+面数﹣棱数=2;(3)代入(2)中的式子即可得到面数.解:(1)观察图形,多面体(1)的顶点数为10;多面体(3)的面数为5;多面体(5)的棱数为12;故答案为:10,5,12;(2)观察表格可以看出:顶点数+面数﹣棱数=2,即关系式为:V+F﹣E=2;故答案为:V+F﹣E=2;(3)由题意得:V+20﹣30=2,解得V=12.故答案为:12.30.分析:(1)结合三棱柱、四棱柱、五棱柱和六棱柱的特点,即可填表:(2)(3)根据已知的面、顶点和棱与几棱柱的关系,可知n棱柱一定有(n+2)个面,2n个顶点和3n条棱,进而得出答案;(4)利用前面的规律得出a,b,c之间的关系.解:(1)填表如下.(2)若某个棱柱由28个面构成,则这个棱柱为26棱柱;(3)根据表中的规律判断,n棱柱共有(n+2)个面,共有 2n个顶点,共有 3n条棱;(4)a,b,c之间的关系:a+c﹣b=2故答案为:8;15,18;7;26;(n+2),2n,3n.- 11 -。
七年级上册数学单元测试卷-第二章几何图形的初步认识-冀教版(含答案)一、单选题(共15题,共计45分)1、如图,将矩形ABCD绕着点A逆时针旋转得到矩形AEFG,点B的对应点E落在边CD上,且DE=EF,若AD= ,则弧CF的长为( )A. B. C. D.π2、一个角的度数比它的余角的度数大20°,则这个角的度数是()A.20°B.35°C.45°D.55°3、△ABC在如图所示的平面直角坐标系中,将△ABC向右平移3个单位长度后得△A1B1C1,再将△A1B1C1绕点O旋转180°后得到△A2B2C2.则下列说法正确的是()A.A1的坐标为(3,1) B. =3 C.B2C=2 D.∠AC2O=45°4、若∠1=20°18′,∠2=20°15′30′′,∠3=20.25°,则()A.∠1>∠2>∠3B.∠2>∠1>∠3C.∠1>∠3>∠2D.∠3>∠1>∠25、下列说法:其中正确的是()①若∠A+∠B=180°,则∠A,∠B互补;②若∠A+∠B=180°,则∠A,∠B是同旁内角;③若∠A,∠B互补,则∠A+∠B=180°;④若∠A,∠B是同旁内角,则∠A+∠B=180°.A.①②③④B.①③C.①③④D.①②③6、如图,在Rt△ACB中,∠ACB=90°,∠A=35°,将△ABC绕点C逆时针旋转α角到△A1B1C的位置,A1B1恰好经过点B,则旋转角α的度数等()A.35°B.55°C.65°D.70°7、若一个角的补角等于它的余角的3倍,则这个角为()A.75°B.60°C.45°D.30°8、将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到的数字是()A.96B.69C.66D.999、将一块木板钉在墙上,我们至少需要2个钉子将它固定,这是因为()A.两点确定一条直线B.两点确定一条线段C.两点之间,直线最短D.两点之间,线段最短10、如图,AB//CD,点E在CA的延长线上若∠BAE =50°,则∠ACD的大小为()A.120B.130C.140D.15011、已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β﹣∠γ的值等于()A.45°B.60°C.90°D.180°12、下列几何体中,可以组成如图所示的陀螺的是()A.长方体和圆锥B.长方形和三角形C.圆和三角形D.圆柱和圆锥13、如图,E,F分别是正方形ABCD的边AB,BC上的点,BE=CF,连接CE,DF.△CDF可以看作是将△BCE绕正方形ABCD的中心O按逆时针方向旋转得到.则旋转角度为()A.45°B.60°C.90°D.120°14、如图,△OCD是由△OAB绕点O顺时针旋转40°后得到的图形,若∠AOD=90°,则∠BOC的度数是()A.5°B.10°C.15°D.20°15、如果和互补,且,则下列表示的余角的式子中正确的有()①②③④A.①②③B.①②④C.①③④D.②③④二、填空题(共10题,共计30分)16、如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,1),B(0,﹣2),C (1,0),点P(0,2)绕点A旋转180°得到点P1,点P1绕点B旋转180°得到点P2,点P2绕点C旋转180°得到点P3,点P3绕点A旋转180°得到点P4,…,按此作法进行下去,则点P2018的坐标为________.17、“三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪”能三等分任何一个角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,C点固定,OC=CD=DE,点D,E可在槽中滑动,若∠BDE=78°,则∠AOB等于________度.18、如图,在中,,,,将绕点逆时针旋转得到,连接,则的长为________.19、如图,在△ABC中,∠C=90°,AC=2cm,AB=3cm,将△ABC绕点B顺时针旋转60°得到△FBE,则点E与点C之间的距离是________cm.20、如图,在△ABC中,AB=AC=4,BC=6,把△ABC绕着点B顺时针旋转,当点A与边BC上的点A′重合时,那么∠AA′B的余弦值等于________.21、在Rt△ABC中,∠C=90°,AC=1,BC= ,点O为Rt△ABC内一点,连接A0、BO、CO,且∠AOC=∠COB=BOA=120°,按下列要求画图(保留画图痕迹):以点B为旋转中心,将△AOB绕点B顺时针方向旋转60°,得到△A′O′B(得到A、O的对应点分别为点A′、O′),并回答下列问题:∠ABC=________,∠A′BC=________,OA+OB+OC=________.22、已知数轴上有A,B两点,且这两点之间的距离为,若点A表示的数为,则点B表示的数为________.23、在如图所示的网格中,每个小正方形的长度为1,点A的坐标为(﹣3,5),点B的坐标为(﹣1,1),点C的坐标为(﹣1,﹣3),点D的坐标为(3,﹣1),小强发现线段CD可以由线段AB绕着某点旋转一个角度得到,其中点A与点C对应,点B与点D对应,则这个旋转中心的坐标为________.24、把△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得到△AB′C′,即如图,∠BAB′=θ,= = =n,我们将这种变换记为[θ,n].△ABC 中,AB=AC,∠BAC=36°,BC=1,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB′C′为平行四边形,那么θ=________,n=________.25、如图,将绕着点按顺时针方向旋转得到.若,则________ .三、解答题(共5题,共计25分)26、如图,在. 是的平分线,是边上的高,,,求的度数.27、如图,已知∠AOB=70°,∠BOC=40°,OM是∠AOC的平分线,ON是∠BOC的平分线,求∠MON的度数.28、上午9点半时,时针与分针的夹角是多少度?29、如图,已知:,OC平分,,试求的度数.30、如图,试说明△A′B′C′是由△ABC通过怎样的图形变换或变换组合(平移、旋转、轴对称)得到的?参考答案一、单选题(共15题,共计45分)1、B2、D3、D4、A5、B6、D7、C8、B9、A10、B11、C12、D13、C14、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。
第二章几何图形的初步认识数学七年级上册-单元测试卷-冀教版(含答案)一、单选题(共15题,共计45分)1、下列命题是真命题的个数为()①两条直线被第三条直线所截,内错角相等.②三角形的内角和是180°.③在同一平面内平行于同一条直线的两条直线平行.④相等的角是对顶角.⑤两点之间,线段最短.A.2B.3C.4D.52、如图,在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141°D.159°3、△ABC在如图所示的平面直角坐标系中,将△ABC向右平移3个单位长度后得△A1B1C1,再将△A1B1C1绕点O旋转180°后得到△A2B2C2.则下列说法正确的是()A.A1的坐标为(3,1) B. =3 C.B2C=2 D.∠AC2O=45°4、下图是我们常用的一副三角尺.用一副三角尺可以拼出的角度是A.70°B.135°C.140°D.55°5、等边三角形绕着它的中心旋转一周,可与原图形重合的次数是()A.1次B.2次C.3次D.4次6、在数轴上点、所表示的数分别为-2和5,点C在数轴上,且点C到点A、B的距离之和为13,则点C所表示的数为()A.-5B.8C.-5或8D.3或-87、如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,此时点C恰好在线段DE上,若∠B=40°,∠CAE=60°,则∠DAC的度数为()A.15°B.20°C.25°D.30°8、将△ABC绕O点顺时针旋转50°得△A1B1C1(A、B分别对应A1、B1),则直线AB与直线A1B1的夹角(锐角)为()9、如图,直线与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转60°后得到△,则点的坐标是()A.(,4)B.(4,)C.(,3)D.(+2,)10、甲、乙、丙、丁四个学生在判断时钟的分针和时针互相垂直的时刻,每个人说两个时刻,说对的是()A.甲说3点和3点半B.乙说6点1刻和6点3刻C.丙说9点和12点1刻D.丁说3点和9点11、把两块三角板按如图所示那样拼在一起,则∠ABC等于()A.90°B.100°C.105°D.120°12、如图所示的正方形中,点在边上,把绕点顺时针旋转得到,.旋转角的度数是()13、对于平面图形上的任意两点P,Q,如果经过某种变换得到的新图形上的对应点P1,Q1,下列变换中不一定保证PQ=P1Q1的是()A.平移B.旋转C.翻折D.位似14、如图,该图形绕点O按下列角度旋转后,不能与其自身重合的是()A.72°B.108°C.144°D.216°15、下列语句正确的是()A.一条直线可以看成一个平角B.周角是一条射线C.角是由一条射线旋转而成的D.角是由公共端点的两条射线组成的图形二、填空题(共10题,共计30分)16、在平面直角坐标系中,已知点在第二象限,那么点在第________象限.17、边长为2的正方形ABCD与边长为2 的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上,将正方形ABCD绕点A逆时针旋转如图(2),线段DG 与线段BE相交,交点为H,则△GHE与△BHD面积之和的最大值为________.18、完成推理填空:如图在△ABC中,已知∠1+∠2=180°,∠3=∠B,试说明∠AED=∠C.解:∵∠1+∠EFD=180°(邻补角定义),∠1+∠2=180°(已知)∴________(同角的补角相等)①∴________(内错角相等,两直线平行)②∴∠ADE=∠3(________)③∵∠3=∠B(________)④∴________(等量代换)⑤∴DE∥BC(________)⑥∴∠AED=∠C(________)⑦19、如图,中,,,在以的中点为坐标原点,所在直线为轴建立的平面直角坐标系中,将绕点顺时针旋转,使点旋转至轴的正半轴上的点处,若,则图中阴影部分面积为________.20、如图,网络格上正方形小格的边长为1,图中线段AB和点P绕着同一个点做相同的旋转,分别得到线段A′B′和点P′,则在1区~4区中,点P′所在的单位正方形区域是________(选填区域名称).21、一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA与边FE叠合,顶点B、C、D 在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是________.22、如图,一幅三角尺有公共的顶点,若40°,则________°.23、如图,△ABC中,∠ACB=90°,∠BAC=20°,点O是AB的中点,将OB绕点O顺时针旋转α角时(0°<α<180°),得到OP,当△ACP为等腰三角形时,α的值为________24、将一副三角板如图放置,若∠AOD=20°,则∠BOC的大小为________.25、在直角坐标系中,A(2,8)绕y轴上一点旋转90°后对应点A'正好在x轴上,那么对应点A'的坐标为________.三、解答题(共5题,共计25分)26、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱.现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?27、如图,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点,BP的延长线交⊙O于Q,过Q的⊙O的切线交OA的延长线于R.求证:RP=RQ.28、如图,图中能用一个大写字母表示的角有几个?分别把它们表示出来.29、将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现有一个长是5cm、宽是6cm的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱几何体,它们的体积分别是多大?30、如图所示,OE,OD分别平分∠AOB和∠BOC,且∠AOB=90°,如果∠BOC=40°,求∠EOD的度数.参考答案一、单选题(共15题,共计45分)1、B2、C3、D4、B5、C6、C7、B8、B9、A10、D11、D12、B13、D14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
第四章图形的初步认识复习题
一、精心选一选
1、下列说法正确的是()
A、直线AB和直线BA是两条直线;
B、射线AB和射线BA是两条射线;
C、线段AB和线段BA是两条线段;
D、直线AB和直线a不能是同一条直线
2、下列图中角的表示方法正确的个数有()
A、1个
B、2个
C、3个
D、4个
3、下面图形经过折叠可以围成一个棱柱的是()
4、经过同一平面内任意三点中的两点共可以画出()
A、一条直线
B、两条直线
C、一条或三条直线
D、三条直线
5、若∠A=20 o 18′,∠B=20 o 15′30〞,∠C=20.25 o,则()
A、∠A>∠B>∠C
B、∠B>∠A>∠C
C、∠A>∠C >∠B
D、∠C >∠A >∠B
6、如图,每个图片都是6个相同的正方形组成的,不能折成正方形的是
()
西 东 A D 7、如左图所示的正方体沿某些棱展开后,能得到的图形是( )
8、下列语句正确的是 ( )
A.钝角与锐角的差不可能是钝角;
B.两个锐角的和不可能是锐角;
C.钝角的补角一定是锐角;
D.∠α和∠β互补(∠α>∠β),则∠α是钝角或直角。
9、在时刻8:30,时钟上的时针和分针的夹角是为( )
A 、85 °
B 、75°
C 、70 °
D 、60°
10、如果∠α=26°,那么∠α余角的补角等于 ( )
A 、20°
B 、70 °
C 、110 °
D 、116°
11、如果∠α+∠β=900,而∠β与∠γ互余,那么∠α与∠γ的关系为 ( )
A 、互余
B 、互补
C 、相等
D 、不能确定。
12、如右图下列说法错误的是( ) A 、OA 方向是北偏东40°
B 、OB 方向是北偏西15 °
C 、OC 方向是南偏西30°
D 、OD 方向是东南方向。
13、下列说法中错误的有( )
(1)线段有两个端点,直线有一个端点;
(2)角的大小与我们画出的角的两边的长短无关;
(3)线段上有无数个点;
(4)同角或等角的补角相等;
(5)两个锐角的和一定大于直角
A .1个
B .2个
C .3个
D .4个
14、如右图∠AOD-∠AOC =()
A、∠ADC
B、∠BOC
C、∠BOD
D、∠COD
15、如图把一个圆绕虚线旋转一周,得到的几何体是( )
二、细心填一填
16. 将下列几何体分类,柱体有:,锥体有(填序号)。
17、∠1和∠2互补,且∠2+∠3=180°,则∠1=_______,理由是。
18、时针指示6点15分,它的时针和分针所成的锐角度数是_______
19、已知:∠AOB=40°,OC是∠AOB的平分线,则∠AOC的余角度数是_______·
20、已知线段AB,在BA的延长线上取一点C,使CA=3AB,
则CB=_______AB.
21、如图所示,射线OA表示的方向是_______,射线OB表示的方向是_______·
(第21题) (第22题) (第22题)
22、如图,若CB = 4 cm,DB = 7 cm,且D是AC的中点,
则AC = ;
23、如图所示,小于平角的角有个;
A
B
O
40°
75°
北
东
图 4
25、48 o 15′36〞的余角是
,补角是 ; 三、耐心做一做 26、如图,平面上有四个点A 、B 、C 、D,根据下列语句画图
(1)画直线AB ;
(2)作射线BC ; (3)画线段CD ;
(4)连接AD,并将其反向延长至E , 使DE=2AD ; (5)找到一点F ,使点F 到A 、B 、C 、D
四点距离和最短。
27、一个角的补角加上10o 等于这个角的余角的3倍,求这个角。
28、如图,∠AOB 是直角,OD 平分∠BOC ,OE 平分∠AOC ,求∠EOD 的度数。
29、如图,已知∠AOB =90 o ,∠AOC 是60 o ,OD 平分∠BOC ,OE 平分∠AOC 。
求∠DOE 。
B
A
30、如图、线段AB=14cm,C是AB上一点,且AC=9cm,O是AB的中点,求线段OC的长度。
一、填的圆圆满满
1. 下列图形是某些多面体的平面展开图,说出这些多面体的名称.
________ ________ ________ ________ _______ 2. 指出右面的三个图形分别是左面这个物体从哪个方向看到的图形.
()()()
3.若线段AB=a,C是线段AB上的任意一点,M、N分别是AC和CB的中点,则MN=_______.
4.如图,∠AOB是直角,已知∠AOC︰∠COD︰∠DOB=2︰1︰2,
那么∠COB=__________.
5.时钟指示2点15分,它的时针和分针所成的锐角是___________.
6.学校、电影院、公园在平面图形上的标点分别是A、B、C,电影院在学校的正东方向、公园在学校的南偏西25°方向,那么平面图上的∠CAB 等于______________.
二、做出你的选择
2.小丽制作了一个对面图案均相同的正方体礼品盒(如下左图所示),则这个正方体礼品盒的平面展开图可能是().
(A)(B)(C)(D)
3.如果线段MN=6cm,NP=2cm,那么M、P两点的距离是(). (A)8cm (B)4cm (C)8cm或4cm (D)无法确定
5.已知∠1、∠2互为补角,且∠1>∠2,则∠2的余角是().
(A)1
2(∠1+∠2)(B)1
2
∠1
(C)1
2(∠1-∠2)(D)1
2
∠2
6. 如图所示,从O点出发的五条射线,可以组成小于平角的角的个数是
().
(A)10个(B)9个(C)8个(D)4个
三、用心解答,规范书写
1.如图所示,(1)按下列语句画出图形:
①延长AC到D,使CD=AC;
②反向延长CB到E,使CE=BC;
③连结DE.
(2)度量其中的线段和角,你有什么发现?
(3)试判断图中两个三角形的面积是否相等?。