1一次函数的定义与图像
- 格式:doc
- 大小:130.50 KB
- 文档页数:4
第01讲 一次函数的概念与图象目录考点一:识别一次函数考点二:一次函数图象考点三:一次函数图象与系数关系考点四:一次函数图象上的点的坐标特征考点五:一次函数图象与几何变换【基础知识】一、一次函数的概念(1) 一般地,解析式形如y kx b =+(k ,b 是常数,且0k ≠)的函数叫做一次函数;(2) 一次函数y kx b =+的定义域是一切实数;(3) 当0b =时,解析式y kx b =+就成为y kx =(k 是常数,且0k ≠),这时y 是x 的正比例函数,所以正比例函数是一次函数的特例;(4) 一般地,我们把函数y c =(为常数)叫做常值函数.它的自变量由所讨论的问题确定.二、一次函数的图像:一般地,一次函数y kx b =+(k ,b 是常数,且0k ≠)的图像是一条直线.一次函数y kx b =+的图像也称为直线y kx b =+,这时,我们把一次函数的解析式y kx b =+称为这一直线的表达式.画一次函数y kx b =+的图像时,只需描出图像上的两个点,然后过这两点作一条直线.三、 一次函数的截距:一条直线与y 轴的交点的纵坐标叫做这条直线在y 轴上的截距,简称直线的截距,一般地,直线y kx b =+(0k ≠)与y 轴的交点坐标(0)b ,.直线y kx b =+(0k ≠)的截距是b .四、 一次函数图像的平移:一般地,一次函数y kx b =+(0b ≠)的图像可由正比例函数y kx =的图像平移得到.当0b >时,向上平移个单位;当0b <时,向下平移b 个单位.(函数平移口诀简记为:“上加下减,左加右减”)【考点剖析】一.一次函数的定义(共3小题)1.(2022春•杨浦区校级期中)以下函数中,属于一次函数的是()A.y=B.y=C.y=c(c为常数)D.y=kx+b(k、b为常数)2.(2022春•静安区校级期中)根据变量x、y的关系式,属于y是x的一次函数的是()①y=k(x﹣1)(k≠0)②y=1﹣(k≠0)③x﹣y=2(k≠0)④y=kx+(k≠0).A.①B.①②③C.①③D.全部都是.3.(2022春•闵行区校级月考)已知函数y=(m﹣3)x+3是一次函数,则m=.二.一次函数的图象(共6小题)4.(2022春•静安区校级期中)如图,若k•b>0,且b+k>0,则一次函数y=kx+b的大致图象是()A.B.C.D.5.(2021春•徐汇区期中)如图所示,一次函数y=mx+m的图象中可能是()A.B.C.D.6.(2021春•徐汇区校级月考)如图,已知一次函数y=kx+b(k、b为常数,k≠0)的图象,当y>﹣2时,x的取值范围为()A.x<1B.x>1C.x<0D.x>07.(2022春•徐汇区校级期中)一次函数y=kx+b的图象如图所示,当y>3时,x的取值范围是()A.x<0B.x>0C.x<2D.x>2.8.(2022春•闵行区校级期中)在直角坐标平面内,一次函数y=ax+b的图象如图所示,那么下列说法正确的是()A.当x>0时,y>﹣2B.当x<1时,y>0C.当x<0时,﹣2<y<0D.当x≥1时,y≤09.(2022春•嘉定区期中)如图是一次函数y=kx+b的图象,当x时,函数图象在x轴的上方.三.一次函数图象与系数的关系(共7小题)10.(2022春•杨浦区校级期末)若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的()A.B.C.D.11.(2022春•闵行区校级期中)如果一次函数y=(m﹣3)x+m的图象过第一、二、四象限,那么m的取值范围是.12.(2022春•徐汇区校级期中)一次函数y=(k+1)x﹣2的函数值y随自变量x的增大而减小,那么k 的取值范围是.13.(2022春•静安区校级期中)已知直线y=(1﹣3m)x+(2m﹣1)经过第二、三、四象限,则m的取值范围为.14.(2022春•嘉定区期中)一次函数y=(4﹣k)x+3,y随x的增大而减小,则k的取值范围是.15.(2022春•黄浦区校级期中)已知一次函数y=(2k﹣1)x+k的函数值y随x的值增大而增大,那么k 的取值范围是.16.(2022春•杨浦区校级期中)已知一次函数y=kx+k﹣1(其中k为常数且k≠0)的图象不经过第二象限,则k的取值范围是.四.一次函数图象上点的坐标特征(共8小题)17.(2022春•徐汇区期末)一次函数y=3(x﹣1)在y轴上的截距是()A.﹣1B.1C.﹣3D.318.(2022春•嘉定区校级期中)下列各点在直线y=﹣2x+1上的是()A.(1,0)B.(2,0)C.(0,1)D.(0,)19.(2021秋•金山区期末)已知正比例函数y=kx的图象经过点(2,﹣2),则y的值随着x的值增大而(填“增大”、“减小”、或“不变”).20.(2022春•杨浦区校级期中)一次函数y=3x+b的图象过坐标点(﹣2,4),则该函数的截距为.21.(2022春•普陀区校级期中)一次函数y=﹣4x﹣2的图象与x轴的交点坐标是.22.(2022春•浦东新区校级期中)已知一次函数y=x﹣1的图象上有点A(2,a)和点P,且PO=P A,则点P的坐标为.23.(2022春•普陀区校级期中)已知一次函数y=2x+4的图象与x轴、y轴分别相交于点A、点B,在直线x=4上有一点C,连接AC、BC,三角形ABC是等腰三角形,则点C的坐标为.24.(2022春•静安区校级期中)直线y=kx+b经过A(﹣20,5)、B(10,20)两点,求这条直线与两坐标轴围成的三角形的面积是.五.一次函数图象与几何变换(共8小题)25.(2022春•闵行区校级期末)将直线y=2x﹣3沿y轴向上平移6个单位后,所得直线的解析式是.26.(2022春•奉贤区校级期末)如果将函数y=2x﹣2的图象平移,且经过(0,3),那么所得图象的函数解析式是.27.(2022春•静安区期中)将直线y=﹣2x﹣4向上平移5个单位,所得直线的表达式是.28.(2022春•黄浦区校级期中)将直线y=3x+2沿y轴向下平移个单位,那么平移后直线就经过点(0,﹣1).29.(2022春•杨浦区校级期中)将直线y=﹣3x向上平移1个单位,则平移后的新直线一定不经过第象限.30.(2022春•浦东新区校级期中)将直线y=﹣x﹣1向上平移4个单位所得的直线表达式为.31.(2022春•静安区校级期中)已知:如图所示,直线y=﹣x+4的与x轴、y轴分别交于点B和点A,将这条直线平移后与x轴、y轴分别交于点C和点D,且BA=CB.(1)求点C的坐标;(2)求CD所在直线的函数解析式.32.(2022春•长宁区校级期中)如图,在平面直角坐标系xOy中,直线y=﹣x+4与x轴、y轴分别交于点A、点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)求AB的长;(2)求点C和点D的坐标;(3)y轴上是否存在一点P,使得S△P AB=S△OCD?若存在,直接写出点P的坐标;若不存在,请说明理由.【过关检测】一.选择题(共7小题)1.(2022春•徐汇区校级期中)以下函数中,属于一次函数的是()A.y=x2+2B.y=kx+b(k、b是常数)C.y=D.y=2.(2022春•徐汇区期末)一次函数y=3(x﹣1)在y轴上的截距是()A.﹣1B.1C.﹣3D.33.(2022春•静安区校级期中)如图,若k•b>0,且b+k>0,则一次函数y=kx+b的大致图象是()A.B.C.D.4.(2022春•嘉定区校级期中)下列各点在直线y=﹣2x+1上的是()A.(1,0)B.(2,0)C.(0,1)D.(0,)5.(2022春•徐汇区校级期中)函数y=x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(2022春•嘉定区校级期中)已知一次函数y=kx+b,k<0,b>0,那么下列判断中,正确的是()A.图象不经过第一象限B.图象不经过第二象限C.图象不经过第三象限D.图象不经过第四象限7.(2022春•普陀区校级期中)一次函数y=kx+k(k<0)的图象大致是()A.B.C.D.二.填空题(共20小题)8.若y=kx+4﹣x是一次函数,则k的取值范围是.9.(2021秋•金山区期末)已知正比例函数y=kx的图象经过点(2,﹣2),则y的值随着x的值增大而(填“增大”、“减小”、或“不变”).10.(2022春•青浦区校级期末)一次函数y=kx+2x+k2,若函数值y随自变量x的增大而减小,那么k的取值范围是.11.(2022春•上海期中)一次函数y=2(x﹣1)+3的图象在y轴上的截距是.12.(2022春•嘉定区期中)若直线y=﹣x﹣1的图象过点A(4,m),则m=.13.(2022春•黄浦区校级期中)若直线y=mx﹣2经过点(4,2),则该直线与两坐标轴围成的三角形的面积为.14.(2022春•奉贤区校级月考)已知经过点(1,﹣2)的直线y=kx+b是由y=3x+1向下平移后得到的,那么这条直线的解析式是.15.(2022春•徐汇区校级期中)已知一次函数y=(2m+1)x﹣1,且y的值随着x的值增大而减小,则m 的取值范围是.16.(2022春•静安区期中)把函数y=2x的图象向下平移3个单位,再向左平移2个单位,得到的函数图象解析式为.17.(2022春•浦东新区校级期中)已知一次函数y=kx+4(k≠0)的图象与两坐标轴围成的三角形面积为4,则k=.18.(2022春•徐汇区校级期中)直线y=kx+2经过点A(2,4),且交x轴于点B,在x轴上有一点C,若△ABC的面积为12,则C点坐标为.19.(2022春•徐汇区校级期中)一次函数y=﹣x+4与x轴交于点A,与y轴交于点B,将线段AB绕A 点逆时针旋转90°,使B点落在M点处,则M的坐标为.20.(2022春•浦东新区校级期中)点(a,b)在直线y=﹣2x+3上,则4a+2b﹣1=.21.(2022春•杨浦区校级期中)若函数y=4x+b的图象与两坐标轴围成的三角形面积为6,那么b=.22.(2022春•普陀区校级期中)一次函数y=﹣3x﹣6的图象与x轴的交点坐标是.23.(2022春•闵行区校级期中)如果关于x的一次函数y=(m﹣3)x+m的图象不经过第三象限,那么m 的取值范围.24.(2022春•虹口区期中)点A(1,3)(填“在”或“不在”)直线y=﹣x+2上.25.(2022春•闵行区校级月考)如果点A(﹣1,a),B(1,b)在直线y=﹣2x+m上,那么a b (填“>”、“<”或“=”).26.(2022春•奉贤区校级期末)当x=2时,不论k取任何实数,函数y=k(x﹣2)+3的值为3,所以直线y=k(x﹣2)+3一定经过定点(2,3);同样,直线y=(k﹣2)x+4k一定经过的定点为.27.(2015春•闸北区期中)已知:如图所示,直线y=﹣x+交x轴于点A,交y轴于点B,若点P 从点A出发,沿射线AB做匀速运动,点Q从点B出发,沿射线BO做匀速直线运动,两点同时出发,运动速度也相同,当△BPQ为直角三角形时,则点Q的坐标为.三.解答题(共7小题)28.(2022春•奉贤区校级月考)如图,一次函数y=x+3的函数图象与x轴,y轴分别交于点A,B.(1)若点P(﹣2,m)为第三象限内一个动点,请问△OPB的面积会变化吗?若不变,请求出面积;若变化,请说明理由.(2)在(1)的条件下,试用含m的代数式表示四边形APOB的面积;若△APB的面积是6,求m的值.29.(2021春•嘉定区校级期中)如图,直线l:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)求△COM的面积S与M的移动时间t之间的函数关系式;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.30.(2021春•浦东新区期中)如图,在平面直角坐标系xOy中,直线y=﹣x+4与x轴、y轴分别交于点A、点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)求AB的长;(2)求点C和点D的坐标;(3)y轴上是否存在一点P,使得S△P AB=S△OCD?若存在,直接写出点P的坐标;若不存在,请说明理由.31.(2021春•嘉定区校级期中)若直线分别交x轴、y轴于A、B两点,点P是该直线上的一点,PC⊥x轴,C为垂足.(1)求△AOB的面积.(2)如果四边形PCOB的面积等△AOB的面积的一半,求出此时点P的坐标.32.(2021春•徐汇区校级月考)在平面直角坐标系中,直线y=kx+b(k≠0)向上平移2个单位后与直线y=x重合,且直线y=kx+b(k≠0)与x轴交于点A,与y轴交于点B.(1)写出点B的坐标,求直线AB的表达式;(2)求△AOB的面积.33.(2021春•松江区月考)已知一次函数y=(2﹣k)x﹣k2+4.(1)k为何值时,y随x的增大而减小?(2)k为何值时,它的图象经过原点?34.(2021春•徐汇区期中)已知把直线y=kx+b(k≠0)沿着y轴向上平移3个单位后,得到直线y=﹣2x+5.(1)求直线y=kx+b(k≠0)的解析式;(2)求直线y=kx+b(k≠0)与坐标轴围成的三角形的周长.。
《数学思维与能力训练》辅导讲义
姓名 辅导时间
一次函数的定义与图像
【知识要点】
1、一次函数的定义
形如y = kx + b (k ≠0) 的函数叫做一次函数;它的定义域是一切实数。
2、常值函数
函数y = c (c 为常数) 叫做常值函数;它的自变量由所讨论的问题确定 3、一次函数的图像
一次函数y = kx + b (k ≠0) 的图像是一条直线,一次函数y = kx + b 的图像也称为直线y = kx + b ,这时,我们把一次函数的解析式y = kx + b 称为一直线的表达式 4、直线的截距
一条直线与y 轴的交点的纵坐标叫做这条直线在y 轴上的截距,简称直线的截距;直线y = kx + b (k ≠0) 与y 轴的交点坐标是 (0,b),直线y = kx + b (k ≠0) 的截距是b 。
5、直线的平移与平行
一次函数y = kx + b (b ≠0) 图像可由正比例函数y = kx 的图像平移得到。
当b > 0时,向上平移b 个单位;当b < 0时,向下平移 | b | 个单位
如果b 1≠b 2,那么直线 y = kx + b 1与直线y = kx + b 2 平行;反之,如果直线y = k 1x + b 1与直线y = k 2x + b 2 平行,那么k 1 = k 2,b 1≠b 2 【夯实基础】 一.填空题
1.已知一次函数()31f x x =+,若()5f a =-,则=a .
2.已知1
2(2)2k y k k x k -=-++是一次函数,则k = .
3.已知y 与4x -1成正比例,且当x = 3时,y = 6,写出y 与x 的函数关系式 .
4.对于一次函数32--=x y ,当x _______时,图象在x 轴下方.
5.函数2(5)y x =+的图象是由2y x =向______平移______个单位而得到.
6.直线b kx y +=与15+-=x y 平行,且经过(2,1),则k= ,b= .
7.已知一次函数y x a =-+与y x b =+的图象相交于点(m ,8),则a b +=_________.
8.已知直线b kx y +=的截距是-2,且它与x 轴的交点是(4,0),则此直线与坐标轴围成的三角形的面积是 .
9.将直线14+=x y 的图象向下平移3个单位长度,得到直线___ ________
10.如图,一次函数y kx b =+的图象经过A 、B 两点, 与x 轴交于点C ,则此一次函数的解析式为__________, △AOC 的面积为_________
二.选择题
1.下列函数中,一次函数是( )
()1
2A y x
=
+ ()50B s t -= ()221C y x =+ ()D y k x b =+ 2.下列给出的四个点中,不在直线23y x =-上的是( )
()(1,1)A - ()(0,3)B - ()(2,1)C ()(1,5)D -
3.直线24y x =+与y 轴交点的坐标是( )
()(2,0)A ()(2,0)B - ()(0,4)C ()(0,4)D -
三.简答题
1.已知函数2(1)1y m x m =++-
(1)当m 取什么值时,y 是x 的正比例函数? (2)当m 取什么值时,y 是x 的一次函数?
2.已知直线b kx y +=经过(0,5),-且与坐标轴所围成的三角形的面积为4
25
,求该直线的表达式?
3.已知一次函数的图像如图所示, (1)当4y <时,求自变量x 的取值范围. (2)当1x >-时,求y 的取值范围 (3)在x 轴上方的点的横坐标的取值范围
(4)在点P 下一侧的直线上的点的纵坐标的取值范围。