汽车车身电子网络控制系统
- 格式:doc
- 大小:27.00 KB
- 文档页数:3
什么是车身控制器(BCM)?车身控制模块(Body Control Module,BCM)是一个电子控制单元(ECU)。
BCM 通常位于车辆内部,在仪表板后面或座椅下面。
BCM负责驱动、监控和控制车辆的车身功能相关的电子控制单元 (ECU)。
BCM 充当车辆车身的大脑,负责管理照明、车窗、门锁、座椅控制等汽车功能。
BCM 使用各种协议(CAN/LIN /FlexRay等)与车辆中的其他 ECU 通信。
车身控制模块在现代汽车中起着至关重要的作用。
如果没有 BCM,车辆中的许多电气系统将无法正常或高效地运行。
车身控制模块有哪些功能?汽车中的 BCM 可以执行多种功能。
通过 CAN、LIN或以太网与其他模块和系统进行通信,根据输入信号控制以下电气设备,实现相应功能:▪车窗控制。
BCM可控制电动车窗升降。
▪照明控制。
BCM 管理外部和内部照明系统,包括自动头灯、尾灯、转向灯和灯光调光等功能。
▪电动门锁控制。
BCM接收门锁开关请求的信号,控制所有车门的上锁或解锁。
▪空调系统。
BCM 可协调暖气、通风和空调系统,允许驾驶员调节温度、HVAC 模式和风扇速度。
▪安全功能。
现在很多BCM都支持无钥匙进入系统、防盗和报警功能,以防止盗窃。
▪雨刷控制。
BCM 还控制雨刷功能,包括间歇性雨刷控制。
▪舒适性功能。
根据车辆的设计,BCM可控制汽车舒适性功能相关的执行器,如座椅、后视镜和电动调节。
▪诊断和故障报告。
BCM可存储诊断数据,并帮助客户识别电气系统中的问题并排除故障。
▪集成网关,通过车辆总线系统(CAN、LIN 或以太网)保持集成控制单元之间的通信。
▪能耗控制。
BCM 可优化电气零部件的工作模式,在不使用部件时降低功耗。
这提高了传统车辆的燃油效率,并延长了电动汽车的续航里程。
BCM的硬件架构BCM 架构由各种组件组成,这些组件相互配合,实现了车辆电气系统的集成和控制。
BCM的核心是一个微控制器单元(MCU),它根据各种传感器和开关的输入处理和执行命令。
汽车车身电控系统的组成汽车车身电控系统是现代汽车中的一个重要组成部分,它负责控制汽车车身的各项功能和操作。
这个系统由多个子系统和控制单元组成,通过电子设备和传感器来实现对汽车车身的控制和监测。
下面将介绍汽车车身电控系统的主要组成部分。
1. 车门控制系统:车门控制系统是汽车车身电控系统中的一个重要子系统,它负责控制汽车的车门开关、锁定和解锁功能。
通过电子开关和传感器,驾驶员可以方便地控制车门的开闭,并且可以实现一键锁车和解锁的功能,提高汽车的安全性和便利性。
2. 电动窗控制系统:电动窗控制系统是汽车车身电控系统中的另一个重要子系统,它负责控制汽车的电动窗的开合。
通过电子开关和传感器,驾驶员可以方便地控制车窗的升降,提供舒适的乘车环境。
3. 外后视镜控制系统:外后视镜控制系统是汽车车身电控系统中的一个重要子系统,它负责控制汽车外后视镜的调整和折叠功能。
通过电子开关和传感器,驾驶员可以方便地调整外后视镜的角度和位置,提供更好的视野和行驶安全。
4. 天窗控制系统:天窗控制系统是汽车车身电控系统中的另一个重要子系统,它负责控制汽车的天窗的开合和倾斜功能。
通过电子开关和传感器,驾驶员可以方便地控制天窗的开合和倾斜角度,提供更好的通风和视野。
5. 中央锁控制系统:中央锁控制系统是汽车车身电控系统中的一个重要子系统,它负责控制汽车的中央锁的开闭功能。
通过电子开关和传感器,驾驶员可以方便地控制车辆的中央锁定和解锁,提高汽车的安全性和便利性。
6. 防盗报警系统:防盗报警系统是汽车车身电控系统中的另一个重要子系统,它负责监测和报警汽车的非法入侵和盗窃行为。
通过电子设备和传感器,防盗报警系统可以及时检测到非法入侵行为,并通过声光报警器发出警报,提醒车主和周围人员。
7. 车身稳定控制系统:车身稳定控制系统是汽车车身电控系统中的一个重要子系统,它负责监测和控制汽车的横向和纵向稳定性。
通过电子设备和传感器,车身稳定控制系统可以实时监测汽车的姿态和动态参数,并通过制动系统和动力系统来实现对车身稳定性的控制,提高汽车的行驶安全性和稳定性。
汽车车身电控系统常见故障诊断与维修【摘要】汽车车身电控系统在现代汽车中起着至关重要的作用,它可以控制车辆的各种功能,如车门锁、车窗升降、灯光控制等。
随着汽车电子技术的不断发展,车身电控系统也面临着各种故障问题。
本文对汽车车身电控系统常见的故障进行了诊断与维修的探讨。
首先介绍了电控系统的组成部分,包括各种传感器、控制器和执行器。
然后分析了常见的故障现象及可能的原因,如电路短路、传感器损坏等。
接着介绍了故障诊断方法,包括使用诊断仪器和查找故障码。
针对不同的故障情况,提出了相应的维修措施,如更换零部件、修复电路等。
最后强调了预防措施的重要性,如定期检查维护电控系统,避免不必要的故障发生。
通过本文的研究,有助于提高汽车车身电控系统的稳定性和可靠性。
【关键词】汽车车身、电控系统、常见故障、诊断、维修、预防措施、组成部分1. 引言1.1 研究背景汽车车身电控系统是现代汽车的重要部分,它负责控制车身上的各种电子设备和功能,如车窗升降、中控屏操作、车灯控制等。
随着汽车科技的不断发展,车身电控系统也变得越来越复杂,其中包含了大量的传感器、控制模块和电子元件。
随着车身电控系统的复杂化,相关故障问题也日益频繁。
汽车车身电控系统故障会导致车辆无法正常行驶,甚至影响行车安全。
对汽车车身电控系统常见故障进行诊断与维修显得尤为重要。
目前,虽然汽车维修技术不断提升,但仍有许多车主对车身电控系统故障诊断与维修缺乏相关知识,导致维修过程中出现困难。
对汽车车身电控系统常见故障进行深入研究,总结故障诊断方法和维修措施,将有助于提升汽车维修技术水平,保障行车安全,提升驾驶体验。
1.2 研究目的研究目的:汽车车身电控系统作为汽车的重要组成部分,其稳定运行直接影响到行车安全和舒适性。
本文旨在通过对汽车车身电控系统常见故障的诊断与维修方法的研究,探索有效的解决方案,提高故障诊断与维修效率,确保汽车的正常运行。
通过深入分析电控系统的组成部分、常见故障现象及原因分析、以及相应的诊断和维修措施,旨在为汽车维修技术人员提供实用的指导,帮助他们更好地应对各类车身电控系统故障,提高维修水平,为车主提供更为安全可靠的驾驶体验。
CAN网络在汽车上的应用分析随着汽车行业的不断发展,CAN网络在汽车上的应用也越来越广泛。
CAN(Controller Area Network)网络是一种广泛应用于汽车领域的数据通信协议,它是一种串行总线系统,支持多个电子控制单元(ECU)之间的通信。
CAN网络在汽车上的应用主要可以分为以下几个方面:1.车身电子控制系统:CAN网络被广泛应用于车身电子控制系统,用于车门控制、窗户控制、座椅控制、后视镜控制等功能的实现。
通过CAN网络,各个电子控制单元可以互相通信,从而实现车身各部分之间的协调操作。
2.发动机控制系统:CAN网络在汽车的发动机控制系统中起着重要的作用。
通过CAN网络,发动机控制单元可以与其他电子控制单元进行数据交换,如与传感器、喷油器、点火系统等进行数据传输和命令控制,从而实现对发动机的精确控制,提高燃烧效率和减少排放。
3.制动系统:CAN网络也被广泛应用于汽车的制动系统中。
制动系统的各个组件,如制动踏板传感器、制动盘传感器、刹车灯等,可以通过CAN网络与制动控制单元进行通信,实现对制动系统的监测和控制,提高行车安全性。
4.油耗监测与控制系统:CAN网络还可以用于汽车的油耗监测与控制。
通过CAN网络,车辆的燃油供给系统、发动机系统和车辆传感器可以互相通信,实时传输和处理数据,对车辆的油耗进行监测和控制,提供油耗信息给驾驶员,并根据驾驶行为和路况变化来调整发动机工作状态,降低油耗。
5.故障诊断系统:CAN网络也为汽车故障诊断系统提供了良好的通信基础。
通过CAN网络,各个电子控制单元可以实时传输各自的状态和故障码,集中于车辆故障诊断仪或相关诊断设备进行故障分析和判断,提高故障定位和排除的效率。
6.安全气囊系统:CAN网络在汽车的安全气囊系统中也发挥了重要作用。
通过CAN网络,安全气囊控制单元可以与车辆其他控制单元进行数据交换和通信,及时接收和处理相关故障信息和操作命令,确保在发生碰撞时安全气囊的快速响应和正确部署,提高乘员的安全性。
汽车车身电控系统的组成一、引言汽车车身电控系统是现代汽车的重要组成部分,它通过电子设备和传感器的配合,对汽车车身的各个部分进行监控和控制,以提供更安全、舒适、便利的驾驶体验。
本文将从多个方面介绍汽车车身电控系统的组成。
二、主要组成部分1. 中央控制器中央控制器是汽车车身电控系统的核心部件,它负责整合和处理来自各个传感器和执行器的信号和指令。
中央控制器通常由微处理器、存储器、输入输出接口等组成,具有强大的数据处理和决策能力。
2. 传感器传感器是车身电控系统中的重要组成部分,它能够感知车身各个部分的状态和环境信息,并将其转化为电信号传输给中央控制器进行处理。
常见的传感器包括温度传感器、湿度传感器、光照传感器、加速度传感器等。
3. 执行器执行器是车身电控系统的另一关键组成部分,它根据中央控制器的指令,对车身的各个部分进行控制和调节。
常见的执行器包括发动机控制单元、制动阀门、电动窗控制器、电动座椅调节器等。
4. 电源系统电源系统为车身电控系统提供电能,使其正常运行。
电源系统通常由蓄电池和发电机组成,蓄电池负责提供起动电能和短时供电,而发电机则在发动机运行时为整个系统提供稳定的电能。
5. 数据总线数据总线是各个电子设备之间进行信息交换的通道,它能够高效地传输大量的数据和指令。
常见的数据总线标准有CAN总线、LIN总线等,它们能够满足车身电控系统对数据传输速率和稳定性的要求。
6. 控制算法控制算法是车身电控系统的核心技术之一,它通过对传感器数据的分析和处理,以及对执行器的控制和调节,实现对车身各个部分的精确控制。
控制算法的优化和改进可以提升系统的性能和稳定性。
7. 人机交互界面人机交互界面是车身电控系统与驾驶员进行信息交互的桥梁,它通过显示屏、按钮、语音识别等方式,向驾驶员展示车身信息,并接受驾驶员的指令和操作。
优秀的人机交互界面设计可以提高驾驶员的操作便利性和安全性。
8. 安全系统安全系统是车身电控系统的重要组成部分,它通过传感器和执行器的配合,对车身的安全进行监控和保护。
汽车车身电控系统概述汽车车身电控系统是指一种集成了电子技术和控制系统的汽车部件,用于控制和协调汽车的各项功能和操作。
它主要负责管理车身各个部件的电子控制单元(ECU),包括车门、车窗、车灯、转向灯、雨刷、空调、座椅等。
车身电控系统通过传感器、执行器、连接线路和计算机等组成的系统,实现了汽车车身功能的自动化和智能化。
一、车身电控系统的架构和组成部分车身电控系统的架构通常由多个单元组成,每个单元负责控制特定的车身部件。
其中,最核心的组成部分是电子控制单元(ECU),它是整个系统的“大脑”,负责接收传感器信号、处理数据并发送控制信号给执行器。
车身电控系统还包括以下组成部分:1.传感器:传感器是车身电控系统的信息输入部分,用于感知车身各个部件的状态和环境信息。
例如,车门开关、车窗升降器、雨量传感器等。
传感器将采集的数据转化为电信号,传输给ECU进行处理。
2.执行器:执行器是车身电控系统的输出部分,用于根据ECU的指令控制和调节车身各个部件的运行状态。
例如,电动车窗装置、车灯控制器、空调控制器等。
执行器接收ECU发送的信号,通过执行相应的动作,实现对车身部件的控制。
3.连接线路:连接线路是车身电控系统的信息传递通道,用于将传感器采集的数据传输给ECU,并将ECU发送的控制信号传输给执行器。
连接线路通常采用专用的电缆和连接器,保证信号的传输可靠性和稳定性。
4.计算机系统:计算机系统是车身电控系统的核心处理单元,用于接收传感器的信号、处理数据、生成控制策略并发送控制信号给执行器。
计算机系统通常由多个计算芯片、存储器和接口电路构成,通过硬件和软件协同工作来执行控制功能。
二、车身电控系统的功能和优势车身电控系统通过电子化和智能化的手段,实现了对汽车车身各个部件的控制和管理。
它具有以下优势和功能:1.自动化控制:车身电控系统能够通过传感器感知车身各个部件和环境的状态,通过计算机系统处理数据分析,并发送相应的控制信号给执行器,实现车身部件的自动化控制。
汽车电子控制系统概述汽车电子控制系统是现代汽车中的一种重要系统,其通过电子技术控制汽车的行驶、安全、舒适等方面,不止于传统的机械控制系统。
汽车电子控制系统又分为多个子系统,包括发动机控制系统、变速器控制系统、电子制动系统、车身控制系统等。
本文将对这些子系统进行介绍。
1. 发动机控制系统发动机控制系统是汽车电子控制系统中最重要的一部分,它通过传感器获得发动机工作状态的信息,然后控制喷油、点火等系统的工作,保证发动机在各种工况下的正常工作。
发动机控制系统的核心是发动机控制单元(ECU),它可以实时监测发动机的工作情况,并根据传感器的反馈信号进行调整,以达到最佳的发动机性能和燃油经济性。
2. 变速器控制系统变速器控制系统是汽车电子控制系统中的另一个重要子系统,它通过控制变速器的换挡和锁死等,使得车辆的行驶更加顺畅和稳定。
变速器控制系统通过传感器感知车速、转速、油门踏板等数据,从而精确计算出应该处于的挡位并进行换挡。
3. 电子制动系统电子制动系统是一种智能化的制动系统,通过电子信号控制制动压力,有助于避免车轮抱死,保持制动的平衡状态,从而大大提高了行驶安全性能。
电子制动系统通常包括电子制动控制单元(EBCU)、电子控制制动压力分配系统(EBD)、电子稳定控制系统(ESC)和刹车助力系统(BAS)等。
EBCU可根据汽车各方面的数据,实现自适应制动、防滑、防抱死、刹车平衡等功能,使驾驶员在各种路况下行驶更为安全、舒适。
4. 车身控制系统车身控制系统是一种通过各种传感器感知车辆行驶状态,然后进行控制的系统,能够提供诸如车道保持、智能巡航、盲区监测等功能。
车身控制系统通过各种传感器,如探头、摄像头、雷达等获取信息,识别路面状况以及车辆周围的障碍物等,并在此基础上进行决策,实现自动驾驶等新技术。
综上所述,汽车电子控制系统是现代汽车中一种不可或缺的系统,它通过各种传感器和控制单元实现对汽车各种功能的控制,会对汽车的性能、舒适性、安全性等方面有重要的影响。
汽车车身电子网络控制系统
CAN(Controller Area Network)总线是一种有效支持分布式控制和实时控制的串行通讯网络。
目前已经在国外汽车的电器网络中得到了广泛的应用。
为了满足国产汽车车身控制总线的迫切需求,我们设计了一种基于CAN总线的整车管理系统的硬件方案。
本方案重点对系统的总体结构、车身控制系统CAN总线的节点设置、节点及中央控制与CAN总线的接口电路进行了设计。
随着汽车电子技术的发展及汽车性能的不断提高,汽车上的电子装置越来越多。
传统的电器系统大多采用点对点的单一通信方式,相互之间很少有联系,这样必然造成庞大的布线系统。
目前,国外许多整车制造厂和汽车电器制造厂家在整车管理系统中采用了网络技术,如CAN和LIN、SAEJ1850等。
其中,CAN的使用较为广泛。
CAN总线是德国BOSCH公司于20世纪80年代初提出的,它将汽车上各种信号的接线只用2根简洁的电缆线取代,汽车上的各种电子装置通过CAN控制器挂到这2根电缆上,设备之间利用电缆进行数据通讯和数据共享,从而大大减少了汽车上的线束。
CAN总线结构独特,性能可靠,被公认为是最有前途的现场控制总线之一。
由于客观条件的限制,目前我国的整车制造厂和汽车电子电器厂几乎没有涉及到汽车电器网络化设计的领域。
但随着我国汽车工业和电子工业的发展,进行汽车电器的网络化研究与开发已经成为十分重要的课题。
1、整车管理系统总体结构设计
汽车上各种电器对网络信息传输延迟的敏感性差别很大,发动机控制器、自动变速器控制器、ABS控制器、安全气囊控制器等之间的协调关系所要求的实时性很强,而前后车灯的开关、车门开闭、座位调节等简单事件对信息传输延迟的要求要宽松得多(传输延迟允10ms-100ms),如果将这些功能简单的节点都挂在高速总线上,势必会提高对节点的技术要求和成本,故有必要进行多路总线设计。
考虑到与国际上标准的一致性这里采用2条CAN 总线。
图1为整车管理系统总体结构
汽车驱动系统中采用高速CAN,信息传输速度达500K-1M bps,其主要连接对象是:发动机、自动变速器、ABS/ASR、安全气囊、主动悬架、巡航系统、电动转向系统及组合仪表信号的采集系统等。
驱动系统CAN的控制对象都是与汽车行驶控制直接相关的系统,对信号的传输要求有很强的实时性,它们之间存在着较多的信息交流,而且很多都是连续的和高速的。
车身系统中采用低速CAN,信息传输速率为100K pbs,主要连接对象是:前后车灯控制开关、电动坐椅控制开关、中央门锁与防盗控制开关、电动后视镜控制开关、电动车窗升降开关、气候(空调)控制开关、故障诊断系统、组合开关及驾驶员操纵信号采集系统、仪表显示器等。
车身系统CAN的控制对象主要是低速电机、电磁阀和开关器件,它们对信息传输的实时性要求不高,但数量较多,将这些电控单元与汽车驱动系统分开有利于保证驱动系统的实时性;采用低速CAN总线还能增加总线的传输距离,提高抗干扰能力,降低硬件成本。
两条CAN总线相互独立,通过网关服务器进行数据交换和资源共享。
中央控制器是整车管理系统的控制核心,也是整车综合控制的基础,主要功能是对各种信息进行分析处理,并
发出指令,协调汽车各控制单元及电器设备的工作。
同时,中央控制器也是高速CAN总线和低速CAN总线的网关服务器。
2、节点的设置
本设计以低速CAN总线为基础的车身控制系统为重点,为了将汽车上各类原始信号转换为可在CAN总线上进行传输的数字量信号,同时也为了提高系统的可靠性,在低速总线上设置了节点。
节点的功能是:接收传感器输出的模拟信号、数字信号或开关信号,经ECU 进行处理,转换为可在CAN总线上通讯的数据报文格式,经ECU内的CAN控制器发送到CAN总线上,同时将从CAN总线上接收到的数据信息转换成能够驱动执行器或照明灯的模拟信号或数字信号.节点的设置原则仅仅考虑各电器元件在汽车上的物理位置,节点结构见图2。
节点1:主要控制前部车灯和汽车喇叭,位于驾驶室前部。
节点2:采集组合开关及其他位于仪表板附近的操纵开关的信号,位于仪表板附近。
节点3:将需要在仪表上显示的内容处理后,输出并显示,位于仪表板内部。
节点4:采集空调、中央门锁、驾驶室翻转等开关的状态信号,控制空调、防盗与遥控门锁、刮雨器等的动作,位于驾驶室内手套箱附近。
节点5:驾驶员车门控制节点,采集各开关信号,控制驾驶员一侧的门锁、车窗和电动后视镜的动作,位于驾驶员车门上。
节点6:乘客侧车门控制节点,位于乘客侧车门上。
节点7:采集仪表显示信号及驾驶员操纵信号,包括燃油量、冷却液温度、机油压力、电源电压、空挡开关、倒车开关等,位于仪表板附近。
节点8:整车管理系统的中央控制器,协调和管理整车各系统的工作,并起网关的作用,连接高速和低速总线,位于仪表板附近。
节点9:采集驱动系统中与仪表显示有关的信号,如车速、发动机转速、冷却液温度等,位于驾驶室内手套箱附近。
节点10:电动坐椅节点,采集坐椅开关信号并控制坐椅动作,位于驾驶员坐椅上。
节点11:控制汽车后部车灯,倒车喇叭和防撞雷达监视器,位于汽车后部。
3、节点与CAN总线的接口设计
整车管理系统是由许多节点通过CAN总线相连而组成的一个局域网,因此CAN总线的设计就显得极为重要。
其中CAN控制器、CAN收发器的选取以及抗干扰措施将成为设计的关键。
接口电路见图3。
(1)CAN控制器的选取
为了满足系统功能和进一步扩展的需要,CAN控制器采用MICROCHIP公司内部带CAN引擎的微控制器(单片机)PIC18F248,其片上带5路10bit A/D转换器、1个8bit,两个16bit 定时/计数器、1-4路PWM输出控制器以及22个I/O端口,它除了可以进行模拟、数字量的采集、控制外,还可以通过脉冲宽度调制(PWM)方式控制各种执行电机的速度。
(2)CAN收发器的选取
CAN收发器选用MICROCHIP公司的MCP2551,这是一种应用广泛的CAN控制器与物理总线间的接口芯片,能够对总线的信息进行差动发送和接收。
它能增大通信距离、提高系统的瞬间抗干扰能力、保护总线、降低射频干扰等。
(3)光电隔离
汽车上电磁干扰较厉害,对系统的抗干扰能力要求较高,为了进一步提高系统的抗干扰
能力,在CAN控制器(单片机)和驱动总线的CAN收发器MCP2551之间增加了由高速隔离器件6N137构成的光电隔离电路,电源也采用微型DC/DC模块来进行隔离。
4、中央控制器(网关服务器)与CAN总线的接口设计
中央控制器选用: 选用带两路CAN控制器、支持CAN2.0B通信协议的数字信号处理(DSP)芯片作为节点控制核心。
这样可以增加系统的控制速度,增强系统控制的灵活性以及提高系统的可靠性。
这里选用MICROCHIP公司的dsPIC30F系列的16位定点DSP芯片:dsPIC30F6010,其最高处理能力可达30MIPS,工作温度范围可达(-40-- +125)的汽车级别,具有16通道的10bit 高速A/D转换器、5个16bit定时/计数器、8个通用的PMW控制器和8个专用的马达控制PWM控制器。
此外该芯片还具有MCU+DSP双CPU内核以及多达68个I/O端口。
中央控制器与CAN总线的互连结构见图4。
由于dsPIC30F6010内部具有双CAN引擎,所以可以很好地在高速CAN通道和低速CAN通道之间担当起网关的功能,同时其DSP的处理速度和丰富的外围接口资源,使得它足以应付汽车电控单元不断升级的需求。
5、结束语
该整车管理系统是针对国产轿车、越野车以及轻型货车而设计的。
重点设计了基于CAN 总线的整车管理系统的总体结构、车身控制系统、CAN总线的节点布置、节点与CAN总线的接口及中央控制器与CAN总线的接口电路。
将该系统应用于汽车控制系,可明显减少汽车上的线束,更好地控制和协调汽车的各个系统,以减少对驾驶者本身素质的依赖性,使国产汽车跟上国际技术潮流,在未来市场角逐中具有更强的竞争力。