过氧化物酶同工酶的分离提取
- 格式:ppt
- 大小:1014.00 KB
- 文档页数:6
实验五聚丙烯酰胺凝胶垂直板电泳分析小麦幼苗过氧化物酶同工酶生物111班杨明轩1102040128一、研究背景及目的过氧化物酶是以过氧化氢为电子受体催化底物氧化的酶,具有消除过氧化氢和酚类、胺类毒性的双重作用。
它与呼吸作用、光合作用及生长素的氧化等都有关系,在种子萌动以前,它们的过氧化物酶同工酶很少,待幼芽长到0.5 -1 厘米以后,它们的过氧化物酶才得到充分的表达。
这说明植物过氧化物酶同工酶的多寡和有无,与植物不同发育时期,与植物的不同组织、器官的分化形成及特定的生理状态等均有密切关系。
而同工酶是指能催化同一种化学反应,但其酶蛋白本身的分子结构组成却有所不同的一组酶。
大多数基因性同工酶由于对底物亲和力不同和受不同因素的调节,常表现不同的生理功能。
它们存在于生物的同一种属或同一个体的不同发育阶段,或同一发育阶段的不同组织,在细胞发育和代谢调解中起重要作用。
在动、植物中,一种酶的同工酶在各组织、器官中的分布和含量不同,形成各组织特异的同工酶谱,体现各组织的特异功能,这一特点可用于研究物种进化、遗传变异、杂交育种和个体发育、组织分化等。
品种资源工作者借助同工酶分析品种的地理分布与亲缘关系来指导品种资源的收集与鉴定工作。
育种工作者常用同工酶来作为鉴定植物的种间杂交, 特别是远缘杂交的生化指标。
在医学方面,同工酶是研究癌瘤发生的重要手段。
要对同工酶展开研究,首先要实现对它的分离,因此要选择合适的分离技术。
基于“差异转化”的思路,层析和电泳是两种最为常见的大分子分离方法。
但由于二者技术细节上的差异,层析更常用于大分子的分离纯化,而电泳则主要用于大分子的分离检测。
因此在本次实验中,我们采用不连续的聚丙烯酰胺凝胶垂直板电泳分析小麦幼苗中的过氧化物酶同工酶。
同时本实验利用电泳现象对过氧化物同工酶进行分离纯化和分析鉴定,通过电泳技术的实际操作体会电泳技术的原理和特点,比较分析电泳技术和其它分离技术如层析技术的不同,进一步学习应用更为广泛和纯化水平更高的分离技术。
过氧化物酶同工酶电泳分析实验原理(1)凝胶板由上、下两层胶组成,两层凝胶的孔径不同。
上层为大孔径的浓缩胶,下层为小孔径的分离胶。
(2)缓冲液离子组成及各层凝胶的pH不同。
本实验采用碱性系统。
电极缓冲液为pH8.3的Tris-甘氨酸缓冲液,浓缩胶为pH6.7的Tris-HCl缓冲液。
而分离胶为pH8.9的Tris-HCl缓冲液。
(3)在电场中形成不连续的电位梯度。
在这样一个不连续的系统里,存在三种物理效应,即电荷效应、分子筛效应和浓缩效应。
在这三种效应的共同作用下,待测物质被很好地分离开来。
下面以本实验要分离的小麦苗过氧化物酶同工酶为例,分别说明三种效应的作用:(1)电荷效应:各种酶蛋白按其所带电荷的种类及数量,在电场作用下向一定电极,以一定速度泳动。
(2)分子筛效应:分子量小,形状为球形的分子在电泳过程中受到阻力较小,移动较快;反之,分子量大、形状不规则的分子,电泳过程中受到的阻力较大,移动较慢。
这种效应与凝胶过滤过程中的情况不同。
(3)浓缩效应:待分离样品中的各组分在浓缩胶中会被压缩成层,而使原来很稀的样品得到高度浓缩。
其原因如下:①由于两层凝胶孔径不同,酶蛋白向下移动到两层凝胶界面时,阻力突然加大,速度变慢。
使得在该界面处的待分离酶蛋白区带变窄,浓度升高。
②在聚丙烯酰胺凝胶中,虽然浓缩胶和分离胶用的都是Tris-HCl缓冲液,但上层浓缩胶为pH 6.7,下层分离胶为pH 8.9。
HCl是强电解质,不管在哪层胶中,HCl几乎都全部电离,Cl-布满整个胶板。
待分离的酶蛋白样品加在样品槽中,浸在pH8.3和Tris-甘氨酸缓冲液中。
电泳一开始,有效泳动率最大的Cl-迅速跑到最前边,成为快离子(前导离子)。
在pH6.7条件下解离度仅有0.1~1%的甘氨酸(pI = 6.0 )有效泳动率最低,跑在最后边,成为慢离子(尾随离子)。
这样,快离子和慢离子之间就形成了一个不断移动的界面。
在pH6.7条件下带有负电荷的酶蛋白,其有效泳动率介于快慢离子之间,被夹持分布于界面附近,逐渐形成一个区带。
实验二过氧化物酶同工酶的提取、分离苟亚峰摘要:本实验采用聚丙烯酰胺凝胶垂直板电泳技术,分离小麦幼苗过氧化物酶同工酶,通过染色方法显示出酶的不同区带,以鉴定玉米幼苗过氧化物酶同工酶,实验结果显示玉米幼苗中至少含有5种过氧化物同工酶。
关键词:过氧化物同工酶;PAGE;电泳分离引言同工酶是指催化同一种化学反应,但酶的分子结构组成却有所不同的一组酶。
同工酶与生物的遗传,生长发育,代谢调节及抗性等都有一定的关系,如过氧化物酶在细胞代谢过程中与呼吸作用,光合作用,及生长素的氧化等都有关系,测定POD活性或其同工酶,可以反映某一时期植物体内代谢变化。
电泳(electrophoresis,简称EP ) 指带电粒子在电场中向与其自身所带电荷相反的电极方向移动的现象。
1937年瑞典科学家Tiselius 成功地将血清蛋白质分成清蛋白、α1、α2、β和γ球蛋白5个主要成分,由于他的突出贡献,1948年荣获诺贝尔奖。
50年代,先后出现了以滤纸、醋酸纤维素薄膜、淀粉及琼脂作为支持物的电泳技术。
60年代,出现了聚丙烯酰胺凝胶电泳技术,在此基础上发展了SDS-聚丙烯酰胺凝胶电泳、等电聚焦电泳、双向电泳和印迹转移电泳等技术。
这些技术具有设备简单,操作方便,分辨率高等优点。
聚丙烯酰胺凝胶电泳是以聚丙烯胺凝胶作为载体的一种区带电泳。
这种凝胶是由丙烯酰胺单体(Acr)和交联剂N,N’-甲叉双丙烯酰胺(Bis)在催化剂作用下聚合而成的,Acr和Bis在具有自由基团体系时,就会聚合。
引发产生自由基的方法有两种:(1)化学法:引发剂是过硫酸铵(AP),催化剂N、N、N’、N’-四甲基乙二胺(TEMED),它的碱基催化AP产生自由硫酸基,其氧原子激活丙烯酰胺单体形成单体长链。
化学聚合形成的凝胶孔径较小,且重复性好,用来制备分离胶;(2)光聚合法:光聚合法的催化剂是核黄素(VB2),光聚合形成的凝胶孔径较大,且不稳定,适于制备大孔径的浓缩胶。