模块综合检测(A)北师大版必修2
- 格式:doc
- 大小:126.65 KB
- 文档页数:4
模块综合测评第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.What are the speakers talking about?A.A film.B.A book.C.A record.2.What are the two speakers doing?A.Playing a ball game.B.Cheering for Oatch.3.Why will the man go to Edinburgh?A.To drive the woman there.B.To have a meeting in Glasgow.C.To meet some important people.4.What did the woman do yesterday evening?A.She ate out.B.She saw a film.C.She visited a friend.5.When is the pop show?A.At 7:30.B.At 8:20.C.At 8:30.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听第6段材料,回答第6、7题。
6.What is the man having trouble with?A.Money.B.Driving.C.Memory.7.How will the woman help the man?A.She’ll give him some advic e.B.She’ll drive him to the bank.C.She’ll remind him of money.听第7段材料,回答第8至10题。
模块综合测评(A )(满分:150分 时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线x 3-y3=1的倾斜角的大小为( )A .30°B .60°C .120°D .150° A [由x 3-y 3=1,得该直线的斜率k =33,故倾斜角为30°.]2.在空间直角坐标系中,点B 是A (1,2,3)在yOz 坐标平面内的射影,O 为坐标原点,则|OB |等于( )A.14B.13 C .2 3 D.11B [点A (1,2,3)在yOz 坐标平面内的投影为B (0,2,3), ∴|OB |=02+22+32=13.]3.点(a ,b )关于直线x +y +1=0的对称点是( ) A .(-a -1,-b -1) B .(-b -1,-a -1) C .(-a ,-b )D .(-b ,-a )B [设对称点为(x ′,y ′), 则⎩⎪⎨⎪⎧y ′-b x ′-a ×(-1)=-1,x ′+a 2+y ′+b 2+1=0,解得x ′=-b -1,y ′=-a -1.]4.已知M ,N 分别是正方体AC 1的棱A 1B 1,A 1D 1的中点,如图是过M ,N ,A 和D ,N ,C 1的两个截面截去两个角后所得的几何体,则该几何体的主视图为( )B [由主视图的性质知,几何体的正投影为一正方形,正面有可见的一棱和背面有不可见的一棱,故选B.]5.若{(x ,y )|ax +2y -1=0}∩{(x ,y )|x +(a -1)y +1=0}=∅,则a 等于( ) A.32B .2C .-1D .2或-1 B [依题意,两直线平行.由a (a -1)-2×1=0,得a 2-a -2=0,a =2或-1.又当a =-1时,两直线重合,故选B.]6.已知m 是平面α的一条斜线,点A ∉α,l 为过点A 的一条动直线,那么下列情形中可能出现的是( )A .l ∥m ,l ⊥αB .l ⊥m ,l ⊥αC .l ⊥m ,l ∥αD .l ∥m ,l ∥αC [如图,l 可以垂直m ,且l 平行α.]7.已知A ,B ,C ,D 是空间不共面的四个点,且AB ⊥CD ,AD ⊥BC ,则直线BD 与AC ( )A .垂直B .平行C .相交D .位置关系不确定A [过点A 作AO ⊥平面BCD ,垂足为O ,连接BO ,CO 并延长分别交CD ,BD 于F ,E 两点,连接DO .因为AB ⊥CD ,AO ⊥CD ,所以CD ⊥平面AOB ,所以BO ⊥CD , 同理DO ⊥BC ,所以O 为△BCD 的垂心,所以CO ⊥BD , 所以BD ⊥AC .故选A.]8.已知一个正六棱锥的体积为12,底面边长为2,则它的侧棱长为( ) A .4 B.433C. 6D .2A [由正六棱锥可知,底面是由六个正三角形组成的, ∴底面积S =6×12×2×3=63,∴体积V =13Sh =12,∴h =36S =3663=23,在直角三角形SOB 中, 侧棱长为SB =OB 2+h 2=4+12=4.故选A.]9.过点P (-3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A .(0°,30°]B .(0°,60°]C .[0°,30°]D .[0°,60°]D [如图,过点P 作圆的切线P A ,PB ,切点为A ,B . 由题意知|OP |=2,|OA |=1, 则sin α=12,所以α=30°,∠BP A =60°.故直线l 的倾斜角的取值范围是[0°,60°].选D.]10.若M (2,-1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程是( ) A .x -y -3=0 B .2x +y -3=0 C .x +y -1=0D .2x -y -5=0A [设圆心为C ,其坐标为(1,0).则AB ⊥CM ,k CM =-1, ∴k AB =1,∴直线AB 的方程为y -(-1)=1×(x -2), 即x -y -3=0,故选A.]11.过点P (-3,4)作圆x 2+y 2=4的两条切线,切点分别为A ,B ,则直线AB 的方程为( ) A .3x +4y -7=0 B .3x -4y +25=0 C .3x -4y +4=0D .3x -4y =0C [先求出以PO (O 为原点)为直径的圆C 的方程为⎝⎛⎭⎫x +322+(y -2)2=⎝⎛⎭⎫522,即x 2+y 2+3x -4y =0,再将两圆方程相减得3x -4y +4=0,因为这条直线经过两圆的交点即切点A ,B ,所以3x -4y +4=0就是直线AB 的方程,故选C.]12.若直线y =kx -1与曲线y =-1-(x -2)2有公共点,则k 的取值范围是( ) A.⎝⎛⎦⎤0,43 B.⎣⎡⎦⎤13,43C.⎣⎡⎦⎤0,12 D .[0,1]D [曲线y =-1-(x -2)2可化为(x -2)2+y 2=1它表示以(2,0)为圆心,1为半径的x 轴下方的半圆,直线y =kx -1过定点(0,-1),要使直线与曲线有公共点(如图),易知0≤k ≤1.]二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.已知一个正方体的所有顶点在一个球面上,若球的体积为9π2,则正方体的棱长为________.3 [设正方体的棱长为x ,其外接球的半径为R ,则由球的体积为9π2,得43πR 3=9π2,解得R =32.由2R =3x ,得x =2R3= 3.]14.在空间四边形ABCD 中,E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 的中点,对角线AC =BD =2,且AC ⊥BD ,则四边形EFGH 的面积为______.1 [如图,由条件,易判断EH 綊FG 綊12BD ,所以EH =FG =1,同样有EF 綊GH 綊12AC ,EF =GH =1,又BD ⊥AC ,所以EF ⊥EH ,所以四边形EFGH 是边长为1的正方形,其面积S =12=1.]15.已知圆O :x 2+y 2=5和点A (1,2),则过点A 且与圆O 相切的直线与两坐标轴围成的三角形的面积为______.254 [由题意知,点A 在圆上,切线斜率为-1k OA =-121=-12,用点斜式可直接求出切线方程为y -2=-12(x -1),即x +2y -5=0,从而求出在两坐标轴上的截距分别是5和52,所以所求面积为12×52×5=254.]16.如图,三棱柱ABC -A 1B 1C 1中,侧棱AA 1垂直于底面A 1B 1C 1,底面三角形A 1B 1C 1是正三角形,E 是BC 的中点,则下列叙述正确的是________.①CC 1与B 1E 是异面直线; ②AC ⊥平面ABB 1A 1;③AE 与B 1C 1是异面直线,且AE ⊥B 1C 1; ④A 1C 1∥平面AB 1E .③ [①中,直线CC 1与B 1E 都在平面BCC 1B 1中,不是异面直线;②中,平面ABC ⊥平面ABB 1A 1,而AC 与AB 不垂直,则AC 与平面ABB 1A 1不垂直; ③中,AE 与B 1C 1不平行也不相交,是异面直线,又由已知得平面ABC ⊥平面BCC 1B 1,由△ABC 为正三角形,且E 为BC 的中点知AE ⊥BC ,所以AE ⊥平面BCC 1B 1,则AE ⊥B 1C 1;④中,A 1C 1与平面AB 1E 相交,故错误.]三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)将圆心角为120°,面积为3π的扇形作为圆锥的侧面,求圆锥的表面积和体积.[解] 设扇形的半径和圆锥的母线都为l ,圆锥的半径为r ,则 120360πl 2=3π,l =3;2π3×3=2πr ,r =1; S 表面积=S 侧面+S 底面=πrl +πr 2=4π, V =13Sh =13×π×12×22=223π.18.(本小题满分12分)已知直线l 过两直线3x -y -10=0和x +y -2=0的交点,且直线l 与点A (1,3)和点B (5,2)的距离相等,求直线l 的方程.[解] 由⎩⎪⎨⎪⎧3x -y -10=0,x +y -2=0,得交点为(3,-1),当直线l 斜率存在时,设直线l 的方程为y +1=k (x -3), 则|-2k -4|k 2+1=|2k -3|k 2+1, 解得k =-14,所以直线l 的方程为y +1=-14(x -3),即x +4y +1=0;又当直线l 的斜率不存在时,其方程为x =3,也满足题意.故x +4y +1=0或x =3为所求方程.19.(本小题满分12分)如图所示,在三棱锥P -ABC 中,D ,E ,F 分别为棱PC ,AC ,AB 的中点,且P A ⊥AC ,P A =3,BC =4,DF =52.求证:(1)直线P A ∥平面DEF ; (2)平面BDE ⊥平面ABC .[证明] (1)∵在三棱锥P -ABC 中,D ,E 分别为棱PC ,AC 的中点,∴DE ∥P A . ∵DE平面DEF ,P A平面DEF ,∴直线P A ∥平面DEF .(2)∵DE ∥P A ,P A ⊥AC ,P A =3,∴DE ⊥AC ,且DE =12P A =32.∵E ,F 分别为AC ,AB 的中点,BC =4,∴EF =12BC =2.∵DF =52,∴DE 2+EF 2=DF 2,∴DE ⊥EF .又EF ∩AC =E ,EF ,AC 平面ABC ,∴DE ⊥平面ABC .∵DE平面BDE ,∴平面BDE ⊥平面ABC .20.(本小题满分12分)已知以点A (-1,2)为圆心的圆与直线l 1:x +2y +7=0相切,过点B (-2,0)的动直线l 与圆A 相交于M ,N 两点.(1)求圆A 的方程;(2)当|MN |=219时,求直线l 的方程.[解] (1)设圆A 的半径为r ,因为圆A 与直线l 1:x +2y +7=0相切,所以r =|-1+4+7|5=25,所以圆A 的方程为(x +1)2+(y -2)2=20.(2)设Q 是MN 的中点,所以AQ ⊥MN ,所以|AQ |2+⎝⎛⎭⎫12|MN |2=r 2,又因为|MN |=219,r =25,所以|AQ |=20-19=1.当直线l 与x 轴垂直时,直线l 的方程为x =-2,此时有|AQ |=|-2-(-1)|=1,即x =-2符合题意.当直线l 与x 轴不垂直时,设直线l 的斜率为k ,则直线l 的方程为y =k (x +2),即kx -y +2k =0,所以|AQ |=|k -2|k 2+1=1,得k =34,所以此时直线l 的方程为y =34(x +2),即3x -4y +6=0.综上所得,直线l 的方程为x =-2或3x -4y +6=0.21.(本小题满分12分)如图,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.[证明](1)因为ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC.又AD平面ABC,所以CC1⊥AD.又因为AD⊥DE,CC1,DE平面BCC1B1,CC1∩DE=E,所以AD⊥平面BCC1B1.又AD平面ADE,所以平面ADE⊥平面BCC1B1.(2)因为A1B1=A1C1,F为B1C1的中点,所以A1F⊥B1C1.因为CC1⊥平面A1B1C1,且A1F平面A1B1C1,所以CC1⊥A1F.又因为CC1,B1C1平面BCC1B1,CC1∩B1C1=C1,所以A1F⊥平面BCC1B1.由(1)知AD⊥平面BCC1B1,所以A1F∥AD.又AD平面ADE,A1F平面ADE,所以A1F∥平面ADE.22.(本小题满分12分)已知点A(-3,0),B(3,0),动点P满足|P A|=2|PB|.(1)若点P的轨迹为曲线C,求此曲线的方程;(2)若点Q在直线l1:x+y+3=0上,直线l经过点Q且与曲线C只有一个公共点M,求|QM|的最小值.[解](1)设点P的坐标为(x,y),则(x+3)2+y2=2(x-3)2+y2,化简可得(x-5)2+y2=16,此即为所求.(2)曲线C是以点(5,0)为圆心,4为半径的圆,如图,则直线l是此圆的切线,连接CQ,则|QM|=|CQ|2-|CM|2=|CQ|2-16.当CQ⊥l1时,|CQ|取最小值,|CQ|=|5+3|2=42,∴|QM|最小=4.。
模块综合检测(时间:100分钟满分:120分)第一部分阅读理解(共两节,满分40分)第一节(共15小题;每小题2分,满分30分)阅读下面短文,从每题所给的A、B、C、D四个选项中,选出最佳选项。
AHow to Study Smarter,Not HarderHere are some of our favourite study tips that will help any student study smarter,not harder:Recite As You StudyReciting—saying things out loud should first take place as you read through each paragraph or section.Test yourself.This will help you to understand as well as learn faster because it is more active than reading or listening.It will also help you to notice your mistakes and the topics you have trouble understanding.Take Fuller NotesNotes should be in your own words,brief and clear.They should be tidy and easy to read.Writing notes will help you better than just underlining as you read,since it forces you to rewrite ideas in your own words.Study the MiddleThe best time to review is soon after you’ve learned something.You are more likely to remember the material at the beginning and the end of the lesson,so make sure you focus on the middle when you review.Sleep on ItStudy before going to bed,unless you are very tired.It’s easier to remember material you’ve just learned after sleeping than after an equal period of daytime activity,because your brain continues to think even after you’ve fallen asleep.Combine Memory and UnderstandingThere are two ways to remember:by memorizing and byunderstanding.Multiplication tables,telephone numbers,and math formulas are better learned by rote.Ideas are best learned by understanding.The more ways you have to think about an idea,the more meaning it will have;the more meaningful the learning,the better you can remember it.Pay attention to similarities in ideas and concepts,and then try to understand how they fit in with things you already know.Never be satisfied with anything less than a completely clear understanding of what you are reading.If you are not able to follow the thought,go back to the place where you first got confused and try again.1You can notice your mistakes by .A.saying things out aloudB.taking notesC.studying the middleD.sleeping on it解析细节理解题。
模块综合测评(满分:150分 时间:120分钟)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量a =(cos 75°,sin 75°),b =(cos 15°,sin 15°),则|a -b |的值为( )A .12B .1C .2D .3B [如图,将向量a ,b 的起点都移到原点,即a =OA →,b =OB →,则|a -b |=|BA →|且∠xOA =75°,∠xOB =15°,于是∠AOB =60°,又因为|a |=|b |=1,则△AOB 为正三角形,从而|BA →|=|a -b |=1.]2.函数y =3sin ⎝ ⎛⎭⎪⎫π4-3x +3cos ⎝ ⎛⎭⎪⎫π4-3x 的最小正周期为( )A .2π3B .π3C .8D .4A [y =3sin ⎝ ⎛⎭⎪⎫π4-3x +3cos ⎝ ⎛⎭⎪⎫π4-3x=23sin ⎝ ⎛⎭⎪⎫5π12-3x ,所以T =2π|-3|=2π3.]3.已知cos (α+β)=13,cos (α-β)=15,则tan αtan β等于( )A .14B .-14C .16D .-16B[因为cos (α+β)=13,cos (α-β)=15,所以⎩⎪⎨⎪⎧cos αcos β-sin αsin β=13,cos αcos β+sin αsin β=15,解得⎩⎪⎨⎪⎧cos αcos β=415,sin αsin β=-115,所以tan αtan β=sin αsin βcos αcos β=-14.]4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若B =π2,a =6,sin 2B =2sin A sin C ,则△ABC 的面积S =( )A .32B .3C . 6D .6B [由sin 2B =2sin A sinC 及正弦定理,得b 2=2ac ,① 又B =π2,所以a 2+c 2=b 2.②联立①②解得a =c =6,所以S =12×6×6=3.]5.已知|p |=22,|q |=3,p ,q 的夹角为π4,如图,若AB →=5p +2q ,AC →=p -3q ,D 为BC 的中点,则|AD →|为( )A .152B .152C .7D .18A [∵AD →=12(AC →+AB →)=12(6p -q ),∴|AD →|=|AD →|2=12(6p -q )2=1236p 2-12p ·q +q 2 =1236×(22)2-12×22×3×cos π4+32=152.]6.若直线l 1和l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 与l 1,l 2都不相交B .l 与l 1,l 2都相交C .l 至多与l 1,l 2中的一条相交D .l 至少与l 1,l 2中的一条相交D [法一:由于l 与直线l 1,l 2分别共面,故直线l 与l 1,l 2要么都不相交,要么至少与l 1,l 2中的一条相交.若l ∥l 1,l ∥l 2,则l 1∥l 2,这与l 1,l 2是异面直线矛盾.故l 至少与l 1,l 2中的一条相交.法二:如图1,l 1与l 2是异面直线,l 1与l 平行,l 2与l 相交,故A ,B 不正确;如图2,l 1与l 2是异面直线,l 1,l 2都与l 相交,故C 不正确.]图1 图27.如图,在圆O 中,若弦AB =3,弦AC =5,则AO →·BC →的值是( )A .-8B .-1C .1D .8D [取BC 的中点D ,连接AD ,OD (图略),则有OD ⊥BC .∵AD →=12(AB →+AC →),AO →=AD →+DO →,BC →=AC →-AB →,∴AO →·BC →=(AD →+DO →)·BC →=AD →·BC →+DO →·BC →=AD →·BC →=12(AB →+AC →)·(AC →-AB →)=12(AC →2-AB →2)=12(52-32)=8,故选D.]8.函数y =⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫x +π4+sin ⎝⎛⎭⎪⎫x +π4[cos (x +π4)-sin (x +π4)]在一个周期内的图象是( )A BC DB [y =(22cos x -22sin x +22sin x +22cos x )·(22cos x -22sin x -22sinx -22cos x )=2cos x ·(-2sin x )=-2sin x cos x =-sin 2x ,故选B.]二、选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求.全部选对得5分,部分选对得3分,有选错的得0分.9.已知复数z =i1-2i ,则以下说法正确的是( )A .复数z 的虚部为i5B .z 的共轭复数z -=25-i5C .|z |=55D .在复平面内与z 对应的点在第二象限CD [∵z =i 1-2i =i (1+2i )(1-2i )(1+2i )=-25+15i ,∴复数z 的虚部为15,z 的共轭复数z -=-25-i 5,|z |=⎝ ⎛⎭⎪⎫-252+⎝ ⎛⎭⎪⎫152=55,复平面内与z 对应的点的坐标为⎝ ⎛⎭⎪⎫-25,15,在第二象限.故选CD.]10.已知A ,B ,C 表示不同的点,l 表示直线,α,β表示不同的平面,则下列推理正确的是( )A .A ∈l ,A ∈α,B ∈l ,B ∈α⇒l ⊂αB .A ∈α,A ∈β,B ∈α,B ∈β⇒α∩β=ABC .l ⊄α,A ∈l ⇒A ∉αD .A ∈α,A ∈l ,l ⊄α⇒l ∩α=AABD [对于选项A :由基本事实2知,l ⊂α,故选项A 正确;对于选项B :因为α,β表示不同的平面,由基本事实3知,平面α,β相交,且α∩β=AB ,故选项B 正确;对于选项C :l ⊄α分两种情况:l 与α相交或l ∥α.当l 与α相交时,若交点为A ,则A ∈α,故选项C 错误;对于选项D :由基本事实2逆推可得结论成立,故选项D 成立;故选ABD.] 11.已知函数f ()x =2cos 22x -2,下列命题中的真命题有( ) A .∃β∈R ,f ()x +β为奇函数B .∃α∈⎝⎛⎭⎪⎫0,3π4,f ()x =f ()x +2α对x ∈R 恒成立C .∀x 1,x 2∈R ,若||f ()x 1-f ()x 2=2,则||x 1-x 2的最小值为π4D .∀x 1,x 2∈R ,若f ()x 1=f ()x 2=0,则x 1-x 2=k π()k ∈Z BC [由题意f ()x =2cos 22x -2=cos4x -1; ∵f ()x =cos 4x -1的图象如图所示;函数f ()x +β的图象是f ()x 的图象向左或向右平移||β个单位, 它不会是奇函数的,故A 错误;若 f ()x =f ()x +2α,∴cos 4x -1=cos ()4x +8α-1,∴8α=2k π,∴α=k π4,k ∈Z ;又∃α∈⎝⎛⎭⎪⎫0,3π4,∴取α=π4或π2时,f ()x =f ()x +2α对x ∈R 恒成立,故B 正确;||f ()x 1-f ()x 2=||cos 4x 1-cos 4x 2=2时,||x 1-x 2的最小值为T2=2π2×4=π4,故C 正确;当f ()x 1=f ()x 2=0时, x 1-x 2=kT =k ·2π4=k π2()k ∈Z ,故D 错误;故选BC.]12.如图,在四棱锥P ABCD 中,PC ⊥底面ABCD ,四边形ABCD 是直角梯形,AB ∥CD ,AB ⊥AD ,AB =2AD =2CD =2,F 是AB 的中点,E 是PB 上的一点,则下列说法正确的是( )A .若PB =2PE ,则EF ∥平面PACB .若PB =2PE ,则四棱锥P ABCD 的体积是三棱锥E ACB 体积的6倍C .三棱锥P ADC 中有且只有三个面是直角三角形D .平面BCP ⊥平面ACEAD [对于选项A ,因为PB =2PE ,所以E 是PB 的中点, 因为F 是AB 的中点,所以EF ∥PA ,因为PA ⊂平面PAC ,EF ⊄平面PAC ,所以EF ∥平面PAC ,故A 正确; 对于选项B ,因为PB =2PE ,所以V P ABCD =2V E ABCD , 因为AB ∥CD ,AB ⊥AD ,AB =2AD =2CD =2,所以梯形ABCD 的面积为12()CD +AB ·AD =12×()1+2×1=32,S △ABC =12AB ·AD =12×2×1=1,所以V E ABCD =32V E ABC ,所以V P ABCD =3V E ABC ,故B 错误;对于选项C ,因为PC ⊥底面ABCD ,所以PC ⊥AC ,PC ⊥CD ,所以△PAC ,△PCD 为直角三角形,又AB ∥CD ,AB ⊥AD ,所以AD ⊥CD ,则△ACD 为直角三角形, 所以PA 2=PC 2+AC 2=PC 2+AD 2+CD 2,PD 2=CD 2+PC 2,则PA2=PD2+AD2,所以△PAD是直角三角形,故三棱锥PADC的四个面都是直角三角形,故C错误;对于选项D,因为PC⊥底面ABCD,所以PC⊥AC,在Rt△ACD中,AC=AD2+CD2=2,在直角梯形ABCD中,BC=AD2+()AB-CD2=2,所以AC2+BC2=AB2,则AC⊥BC,因为BC∩PC=C,所以AC⊥平面BCP,因为AC⊂平面ACE,所以平面BCP⊥平面ACE,故D正确,故选AD.]三、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.已知复数z满足(1+2i)z=-3+4i,则|z|=________.5 [∵(1+2i)z=-3+4i,∴|1+2i|·|z|=|-3+4i|,则|z|=(-3)2+4212+22= 5.]14.设向量a=(3,3),b=(1,-1).若(a+λb)⊥(a-λb),则实数λ=________.±3 [因为a+λb=(3+λ,3-λ),a-λb=(3-λ,3+λ),又(a+λb)⊥(a -λb),所以(a+λb)·(a-λb)=(3+λ)·(3-λ)+(3-λ)(3+λ)=0,解得λ=±3.]15.如图所示,在正方体ABCDA1B1C1D1中,E、F、G、H分别为AA1、AB、BB1、B1C1的中点,则异面直线EF与GH所成的角等于________.60°[如图,取A 1B1的中点M,连接GM,HM.由题意易知EF∥GM,且△GMH为正三角形.∴异面直线EF与GH所成的角即为GM与GH的夹角∠HGM.而在正三角形GMH中∠HGM=60°.]16.关于函数f (x )=cos ⎝ ⎛⎭⎪⎫2x -π3+cos ⎝⎛⎭⎪⎫2x +π6,有下列说法:①y =f (x )的最大值为2;②y =f (x )是以π为最小正周期的周期函数;③y =f (x )在区间⎝ ⎛⎭⎪⎫π24,13π24上是减少的; ④将函数y =2cos 2x 的图象向左平移π24个单位长度后,将与已知函数的图象重合.其中正确说法的序号是________.①②③ [f (x )=cos (2x -π3)+cos (2x +π6)=cos (2x -π3)+cos [π2+(2x -π3)] =cos (2x -π3)-sin (2x -π3)=2cos (2x -π3+π4)=2cos (2x -π12),所以①②③正确,④错误.]四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)设向量e 1,e 2的夹角为60°且|e 1|=|e 2|=1,如果AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2).(1)证明:A ,B ,D 三点共线;(2)试确定实数k 的值,使k 的取值满足向量2e 1+e 2与向量e 1+k e 2垂直. [解] (1)证明:因为AB →=e 1+e 2,BD →=BC →+CD →=5e 1+5e 2,所以BD →=5AB →,即AB →,BD →共线,又AB →,BD →有公共点B ,所以A ,B ,D 三点共线. (2)因为(2e 1+e 2)⊥(e 1+k e 2),所以(2e 1+e 2)·(e 1+k e 2)=0,2e 21+2k e 1·e 2+e 1·e 2+k e 22=0,即2+k +12+k =0,解得k =-54.18.(本小题满分12分)已知α∈⎝ ⎛⎭⎪⎫π2,π,且sin α2+cos α2=62.(1)求cos α的值;(2)若sin (α-β)=-35,β∈⎝ ⎛⎭⎪⎫π2,π,求cos β的值.[解] (1)因为sin α2+cos α2=62,两边同时平方,得sin α=12.又π2<α<π,所以cos α=-32.(2)因为π2<α<π,π2<β<π,所以-π<-β<-π2,故-π2<α-β<π2.又sin (α-β)=-35,所以cos (α-β)=45.cos β=cos [α-(α-β)]=cos αcos (α-β)+sin αsin (α-β) =-32×45+12×⎝ ⎛⎭⎪⎫-35=-43+310.19.(本小题满分12分)已知函数f (x )=4tan x sin (π2-x )cos ⎝⎛⎭⎪⎫x -π3- 3.(1)求f (x )的定义域与最小正周期;(2)讨论f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的单调性.[解] (1)f (x )的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠π2+k π,k ∈Z .f (x )=4tan x cos x cos ⎝ ⎛⎭⎪⎫x -π3-3=4sin x cos (x -π3)-3=4sin x ⎝⎛⎭⎪⎪⎫12cos x +32sin x -3=2sin x cos x +23sin 2x -3=sin2x +3(1-cos 2x )-3=sin 2x -3cos 2x =2sin ⎝⎛⎭⎪⎫2x -π3.所以f (x )的最小正周期为T =2π2=π.(2)令z =2x -π3,则函数y =2sin z 的递增区间是[-π2+2k π,π2+2k π](k ∈Z ).由-π2+2k π≤2x -π3≤π2+2k π(k ∈Z ),得-π12+k π≤x ≤5π12+k π(k ∈Z ).设A =⎣⎢⎡⎦⎥⎤-π4,π4,B ={x ⎪⎪⎪-π12+k π≤x ≤5π12+k π,k ∈Z },易知A ∩B =[-π12,π4].所以当x ∈[-π4,π4]时,f (x )在区间[-π12,π4]上是递增的,在区间[-π4,-π12]上是递减的.20.(本小题满分12分)如图,在三棱锥S ABC 中,平面SAB ⊥平面SBC ,AB ⊥BC ,AS =AB .过A 作AF ⊥SB ,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.求证:(1)平面EFG ∥平面ABC ; (2)BC ⊥SA .[证明] (1)因为AS =AB ,AF ⊥SB ,垂足为F ,所以F 是SB 的中点. 又因为E 是SA 的中点,所以EF ∥AB .因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以EF ∥平面ABC . 同理EG ∥平面ABC .又EF ∩EG =E ,所以平面EFG ∥平面ABC .(2)因为平面SAB ⊥平面SBC ,且交线为SB ,又AF ⊂平面SAB ,AF ⊥SB ,所以AF ⊥平面SBC .因为BC ⊂平面SBC ,所以AF ⊥BC .又因为AB ⊥BC ,AF ∩AB =A ,AF ⊂平面SAB ,AB ⊂平面SAB ,所以BC ⊥平面SAB . 因为SA ⊂平面SAB ,所以BC ⊥SA .21.(本小题满分12分)在平面四边形ABCD 中,∠ADC =90°,∠A =45°,AB =2,BD =5.(1)求cos ∠ADB ; (2)若DC =22,求BC .[解] (1)在△ABD 中,由正弦定理得BD sin A =ABsin ∠ADB ,由题设知,5sin 45°=2sin ∠ADB ,所以sin ∠ADB =25.由题设知,∠ADB <90°,所以cos ∠ADB =1-225=235.(2)由题设及(1)知,cos ∠BDC =sin ∠ADB =25.在△BCD 中,由余弦定理得BC 2=BD 2+DC 2-2BD ·DC ·cos ∠BDC =25+8-2×5×22×25=25,所以BC =5.22.(本小题满分12分)如图,在三棱柱ABC A 1B 1C 1中,AA 1⊥平面ABC ,AC =BC ,AB =2A 1A =4,以AB ,BC 为邻边作平行四边形ABCD ,连接A 1D ,DC 1.(1)求证:DC 1∥平面A 1ABB 1; (2)若二面角A 1-DC -A 为45°; ①求证:平面A 1C 1D ⊥平面A 1AD ;②求直线AB 1与平面A 1AD 所成角的正切值.[解] (1)证明:连接AB 1,∵AD ∥BC ∥B 1C 1且AD =BC =B 1C 1, ∴四边形ADC 1B 1为平行四边形,∴AB 1∥DC 1,又∵AB 1⊂平面A 1ABB 1,DC 1⊄平面A 1ABB 1,∴DC 1∥平面A 1ABB 1. (2)①证明:取DC 的中点M ,连接A 1M ,AM .易知Rt △A 1AD ≌Rt △A 1AC ,∴A 1D =A 1C ,∴A 1M ⊥DC ,又AM ⊥DC ,∴∠A 1MA 为二面角A 1DC A 的平面角,∴∠A 1MA =45°. ∴在Rt △A 1AM 中,AA 1=AM =2,∴AD =AC =22, ∴AC 2+AD 2=DC 2,∴AC ⊥AD ,又∵AC ⊥AA 1,AD ∩AA 1=A , ∴AC ⊥平面A 1AD ,又∵AC ∥A 1C 1,∴A 1C 1⊥平面A 1AD . ∵A 1C 1⊂平面A 1C 1D ,∴平面A 1C 1D ⊥平面A 1AD . ②∵AB 1∥C 1D ,∴C 1D 与平面A 1AD 所成角与AB 1与平面A 1AD 所成角相等. 由①知C 1A 1⊥平面A 1AD ,∴A 1D 为C 1D 在平面A 1AD 内的射影, 故∠A 1DC 1为直线DC 1与平面A 1AD 所成角,在Rt △A 1DC 1中,tan ∠A 1DC 1=A 1C 1A 1D =63,∴直线AB 1与平面A 1AD 所成角的正切值为63.。
模块综合测评(时间:120分钟满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设等差数列{a n }的公差为2,前n 项和为S n ,则下列结论正确的是()A.S n =na n -2n (n-1)B.S n =na n +2n (n-1)C.S n =na n -n (n-1)D.S n =na n +n (n-1)等差数列{a n }的公差为2,前n 项和为S n ,∴S n =na 1+n (n -1)2×2=na n -n (n-1).2.如图,直线l 是曲线y=f (x )在x=2处的切线,则f'(2)=()A.1B.2C.3D.4l 与曲线y=f (x )相切的切点为(2,3),直线l 经过点(0,1), 可得直线l 的斜率为k=3-12-0=1,由导数的几何意义可得f'(2)=k=1.3.已知函数f (x )=2x 3-6x 2-18x+1在区间(m ,m 2-2m )内单调递减,则实数m 的取值X 围是 ()A.(-3,0)B.[-1,0)C.(3,5)D.(5,7)f (x )=2x 3-6x 2-18x+1,∴f'(x )=6x 2-12x-18=6(x-3)(x+1),令f'(x )<0,则-1<x<3,即函数f (x )的单调递减区间为(-1,3).∵f (x )在区间(m ,m 2-2m )上单调递减,∴{m 2-2m >m ,m ≥-1,m 2-2m ≤3,解得-1≤m<0.∴实数m 的取值X 围是[-1,0).4.已知S n 是等差数列{a n }的前n 项和,若a 1=-2 019,S 20192019−S20042004=15,则S 2 020=()A.2 020B.2 019C.0D.-2 020{a n}的公差为d,∵S20192019−S20042004=a1+20182d-a1+20032d=152d=15,∴d=2,∴S2020=2020×(-2019)+2020×20192×2=0.5.若a,b是函数f(x)=x2-px+q(p>0,q>0)的两个不同的零点,a,b,-2这三个数适当排序后可成等比数列,点(a,2b)在直线2x+y-10=0上,则p+q的值等于()A.6B.7C.8D.9a+b=p,ab=q,∵p>0,q>0,可得a>0,b>0,又a,b,-2这三个数适当排序后可成等比数列,∴ab=4.∵点(a,2b)在直线2x+y-10=0上,∴2a+2b-10=0,即a+b=5,∴p=5,q=4,∴p+q=9.6.已知函数f(x)的定义域为R,且f(2)=1,对任意x∈R,f(x)+xf'(x)<0,则不等式xf(x+1)>2-f(2)·f(x+1)的解集是()A.(-∞,1)B.(-∞,2)C.(1,+∞)D.(2,+∞)g(x)=xf(x),则g(2)=2f(2)=2,因为任意x∈R,f(x)+xf'(x)<0,所以g'(x)=f(x)+xf'(x)<0恒成立,即g(x)在R上单调递减,由xf(x+1)>2-f(2)·f(x+1)可得(x+1)f(x+1)>g(2),即g(x+1)>g(2),所以x+1<2,即x<1.7.意大利著名数学家斐波那契在研究兔子的繁殖问题时,发现有这样的一列数:1,1,2,3,5,8,….该数列的特点是:前两个数均为1,从第三个数起,每一个数都等于它前面两个数的和.人们把这样的一列数所组成的数列{a n}称为“斐波那契数列”,则(a1a3-a22)+(a2a4-a32)+(a3a5-a42)+…+(a2 013a2 015-a20142)=()A.1B.0C.1 007D.-1 006a1a3-a22=1×2-1=1,a 2a 4-a 32=1×3-22=-1, a 3a 5-a 42=2×5-32=1.所以(a 1a 3-a 22)+(a 2a 4-a 32)+(a 3a 5-a 42)+…+(a 2013a 2015-a 20142)=1+(-1)+1+(-1)+…+1=1.8.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若函数f (x )=13x 3+12bx 2+14(a 2+c 2-ac )x 存在极值,则角B 的取值X 围是() A.0,π3 B.π6,π3C.π3,π D.π6,πf (x )=13x 3+12bx 2+14(a 2+c 2-ac )x ,∴f'(x )=x 2+bx+14(a 2+c 2-ac ),∵f (x )存在极值,∴f'(x )=0有两个不相等的实数根, ∴Δ=b 2-4×14(a 2+c 2-ac )>0,即a 2+c 2-b 2<ac ,由余弦定理知,cos B=a 2+c 2-b 22ac<ac 2ac=12,∵B ∈(0,π),∴B ∈π3,π.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知等比数列{a n }的公比为q ,前4项的和为a 1+14,且a 2,a 3+1,a 4成等差数列,则q 的值可能为 ()A.1B.1C.2D.3a 2,a 3+1,a 4成等差数列,所以a 2+a 4=2(a 3+1),因此,a 1+a 2+a 3+a 4=a 1+3a 3+2=a 1+14, 故a 3=4.又{a n }是公比为q 的等比数列, 所以由a 2+a 4=2(a 3+1), 得a 3q+1q=2(a 3+1),即q+1q=52,解得q=2或12.10.已知定义在0,π2上的函数f (x ),f'(x )是f (x )的导函数,且恒有cos xf'(x )+sin xf (x )<0成立,则() A.fπ6>√2fπ4 B.√3f π6>fπ3C.fπ6>√3fπ3D.√2fπ6>√3fπ4解析根据题意,令g(x)=f(x)cosx ,x∈0,π2,则其导数g'(x)=f'(x)·cosx+sinx·f(x)cos2x,又由x∈0,π2,且恒有cos x·f'(x)+sin x·f(x)<0, 则有g'(x)<0,即函数g(x)为减函数,又由π6<π3,则有gπ6>gπ3,即f(π6)cosπ6>f(π3)cosπ3,分析可得fπ6>√3fπ3;又由π6<π4,则有gπ6>gπ4,即f(π6)cosπ6>f(π4)cosπ4,分析可得√2fπ6>√3fπ4.11.设正项等差数列{a n}满足(a1+a10)2=2a2a9+20,则()A.a2a9的最大值为10B.a2+a9的最大值为2√10C.1a22+1a92的最大值为15D.a24+a94的最小值为200正项等差数列{a n}满足(a1+a10)2=2a2a9+20=(a2+a9)2,∴a22+a92=20.①a2a9≤12(a22+a92)=10,当且仅当a2=a9=√10时,等号成立,故A选项正确.②∵a2+a922≤12(a22+a92)=10,∴a2+a92≤√10,a2+a9≤2√10,当且仅当a2=a9=√10时,等号成立,故B选项正确.③1a22+1a92=a22+a92a22a92=20a22a92≥20(a22+a922)2=20102=15,当且仅当a2=a9=√10时,等号成立,∴1a22+1a92的最小值为15,故C选项错误.④结合①的结论,有a24+a94=(a22+a92)2-2a22a92≥400-2×102=200,当且仅当a2=a9=√10时,等号成立,故D选项正确.12.关于函数f(x)=1x+ln x,下列说法正确的是()A.f(1)是f(x)的极小值B.函数y=f(x)-x有且只有1个零点C.f(x)在(-∞,1)内单调递减D.设g(x)=xf(x),则g1e<g(√e)函数f(x)的定义域为{x|x>0},故C错误.f'(x)=-1x2+1x=-1+xx2在(0,1)上f'(x)<0,f(x)单调递减, 在(1,+∞)上,f'(x)>0,f(x)单调递增, 所以f(x)极小值=f(1)=1,故A正确.②y=f(x)-x=1x+ln x-x,y'=-1x2+1x-1=-x2+x-1x2=-(x-12)2-34x2<0,所以函数y=f(x)-x=1x+ln x-x,在(0,+∞)上单调递减,x=1时y=0,所以y=f(x)-x有且只有一个零点,故B正确.③g(x)=xf(x)=1+x ln x,g'(x)=x·1x+ln x=1+ln x,所以在(e-1,+∞)上,g'(x)>0,g(x)单调递增,在(0,e-1)上,g'(x)<0,g(x)单调递减,所以g(x)最小值=g(e-1)=g1e,所以g1e<g(√e),故D正确.三、填空题:本题共4小题,每小题5分,共20分.13.已知f(x)=x3+x2f'(1)+2x,则f'(1)的值为.5,f(x)=x3+x2f'(1)+2x,其导数f'(x)=3x2+2f'(1)x+2,令x=1,得f'(1)=3+2f'(1)+2,所以f'(1)=-5.14.设S n是等比数列{a n}的前n项和,S n+S n+4=2S n+2(n∈N+),且S1=2,则a2 020+a2 021=.或4{a n}的公比为q,由S n+S n+4=2S n+2可得S n+4-S n+2=S n+2-S n,即a n+4+a n+3=a n+1+a n+2,∴q2(a n+2+a n+1)=a n+2+a n+1,若a n+2+a n+1=0,则q=-1,此时a n=2·(-1)n-1,若a n+2+a n+1≠0,则q=1,此时a n=2,故a2020+a2021=0或a2020+a2021=4.15.将自然数1,2,3,4,…排成数阵(如图所示),在2处转第一个弯,在3处转第二个弯,在5处转第三个弯,……,则转第100个弯处的数是.1起每一个转弯时递增的数字,可发现为“1,1,2,2,3,3,4,4,…”,即第一、二个转弯时递增的数字都是1,第三、四个转弯时递增的数字都是2,第五、六个转弯时递增的数字都是3,第七、八个转弯时递增的数字都是4,……故在第100个转弯处的数为:1+2(1+2+3+ (50)=1+2×50(1+50)2=2551.16.已知f(x)=x3-4x,若过点A(-2,0)的动直线l与f(x)有三个不同交点,这三个交点自左向右分别为A,B,C,设线段BC的中点是E(m,t),则m=;t的取值X围为.-3,24),作出如下的函数图象,设B (x 1,y 1),C (x 2,y 2),l :y=k (x+2), 由x 3-4x=k (x+2),得(x+2)(x 2-2x-k )=0,所以x 1,x 2是方程x 2-2x-k=0的两个根,所以m=x 1+x 22=22=1.因为f (x )=x 3-4x ,所以f'(x )=3x 2-4,过点A 作f (x )的切线,设切点为P (x 0,y 0)(x 0≠-2), 则f'(x 0)=y 0-0x 0+2=x 03-4x 0x 0+2,即x 02+x 0-2=0,解得x 0=1或-2(舍负),此时切线的斜率为f'(1)=-1,切线方程l 1为y-0=-(x+2),即y=-x-2,因为f'(-2)=8,所以函数f (x )在点A 处的切线方程l 2为y-0=8(x+2),即y=8x+16, 因为两条切线l 1和l 2与x=m=1的交点纵坐标分别为-3和24, 所以t 的取值X 围为(-3,24).四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知函数f (x )=ax 3+12x 2-2x ,其导函数为f'(x ),且f'(-1)=0.(1)求曲线y=f (x )在点(1,f (1))处的切线方程; (2)求函数f (x )在[-1,1]上的最大值和最小值.函数f (x )=ax 3+12x 2-2x ,可得f'(x )=3ax 2+x-2,∵f'(-1)=0,∴3a-1-2=0,解得a=1, ∴f (x )=x 3+12x 2-2x ,f'(x )=3x 2+x-2, ∴f (1)=-12,f'(1)=2.∴曲线y=f (x )在点(1,f (1))处的切线方程为4x-2y-5=0.(2)由(1),当f'(x )=0时,解得x=-1或x=23,当x 变化时,f (x ),f'(x )的变化情况如下表:-1,2323,1) -0+∴f (x )的极小值为f23=-2227,又f (-1)=32,f (1)=-12,∴f (x )max =f (-1)=32,f (x )min =f23=-2227.18.(12分)已知数列{a n }的前n 项和为S n =-n 2+2kn (其中k ∈N +),且S n 的最大值为16. (1)求常数k 的值;(2)求数列{a n }的通项公式; (3)记数列9-a n 2n的前n 项和为T n ,证明:T n <4.S n =-n 2+2kn=-(n-k )2+k 2,∵k ∈N +,∴当n=k 时,S n 取得最大值k 2,∴k 2=16, ∴k=4.(2)由(1)得,S n =-n 2+8n ,∴当n=1时,a 1=S 1=7;当n ≥2时,a n =S n -S n-1=9-2n ,∵a 1=7符合上式,故{a n }的通项公式为a n =9-2n (n ∈N +). (3)由(2)得9-a n 2n =n 2n -1.∴T n =120+221+322+…+n 2n -1,∴12T n =121+222+323+…+n -12n -1+n2n ,两式相减得,12T n =120+121+122+…+12n -1−n2n =1×(1-12n )1-12−n 2n =2-12n -1−n2n ,∴T n =4-n+22n -1<4.故命题得证.19.(12分)已知函数f (x )=ln(ax )-x (a>0)在(0,+∞)上有极值2. (1)某某数a 的值;(2)若f (x )≤tx+3恒成立,某某数t 的取值X 围.f'(x )=1x -1=1-x x,当0<x<1时,f'(x )>0,函数单调递增,当x>1时,f'(x )<0,函数单调递减, 故当x=1时,函数取得极大值f (1)=ln a-1=2, 故a=e 3.(2)由f (x )≤tx+3恒成立可得,ln x ≤(t+1)x ,即t+1≥lnx x,令g (x )=lnx x,则g'(x )=1-lnx x 2,由g'(x )>0可得0<x<e,故g (x )在(0,e)内单调递增,在(e,+∞)内单调递减, 所以g (x )max =g (e)=1e , 故t+1≥1e ,所以t ≥1e -1.20.(12分)等差数列{a n }(n ∈N +)中,a 1,a 2,a 3分别是如表第一、二、三行中的某一个数,且其中的任何两个数不在如表的同一列.行数 列数第一列 第二列 第三列(1)请选择一个可能的{a1,a2,a3}组合,并求数列{a n}的通项公式.(2)记(1)中您选择的数列{a n}的前n项和为S n,判断是否存在正整数k,使得a1,a k,S k+2成等比数列.若有,请求出k的值;若没有,请说明理由.由题意可知,有两种组合满足条件:①a1=8,a2=12,a3=16,此时等差数列{a n},a1=8,d=4,所以其通项公式为a n=8+4(n-1)=4n+4.②a1=2,a2=4,a3=6,此时等差数列{a n},a1=2,d=2,所以其通项公式为a n=2n.=2n2+6n.(2)若选择①,S n=n(8+4n+4)2则S k+2=2(k+2)2+6(k+2)=2k2+14k+20.若a1,a k,S k+2成等比数列,则a k2=a1·S k+2,即(4k+4)2=8(2k2+14k+20),整理,得5k=-9,此方程无正整数解,故不存在正整数k,使a1,a k,S k+2成等比数列.=n2+n,若选择②,S n=n(2+2n)2则S k+2=(k+2)2+(k+2)=k2+5k+6,若a1,a k,S k+2成等比数列,则a k2=a1·S k+2,即(2k)2=2(k2+5k+6),整理得k2-5k-6=0,因为k为正整数,所以k=6.故存在正整数k=6,使a1,a k,S k+2成等比数列.21.(12分)函数f(x)满足:对任意α,β∈R,都有f(αβ)=αf(β)+βf(α),且f(2)=2,数列{a n}满足a n=f(2n)(n∈N+).为等差数列,并求数列{a n}的通项公式;(1)证明数列a n2n,是否存在正整数m,使得(m+1)(S m-4)+19b m<0成立?若存在,(2)记数列{b n}前n项和为S n,且b n=n(n+1)a n求m的最小值;若不存在,请说明理由.∵数列{a n}满足a n=f(2n)(n∈N+),∴a1=f(2)=2.又∵对任意α,β∈R,都有f(αβ)=αf(β)+βf(α),∴a n+1=f (2n+1)=2f (2n )+2n f (2)=2a n +2n+1,两边同时除以2n+1得,a n+12n+1−a n 2n=1,∴数列a n 2n为等差数列,首项为a12=1,公差为1,∴an 2n =n ,即a n =n ·2n .(2)由(1)可知b n =n (n+1)a n=n+12n,得S n =2×12+3×122+4×123+…+n×12n -1+(n+1)×12n ,12S n =2×122+3×123+…+n×12n +(n+1)×12n+1, 两式相减得12S n =121+122+…+12n -(n+1)×12n+1+12=32−n+32n+1,∴S n =3-n+32n .假设存在正整数m ,使得(m+1)(S m -4)+19b m <0成立,即2m +m-16>0, 由指数函数与一次函数单调性知,F (m )=2m +m-16,m ∈N +为增函数. 又∵F (3)=23+3-16=-5<0,F (4)=24+4-16=4>0,∴当m ≥4时恒有F (m )=2m +m-16>0成立.故存在正整数m ,使得(m+1)(S m -4)+19b m <0成立,m 的最小值为4. 22.(12分)已知函数f (x )=e x -ln(x+m ).(1)设x=0是f (x )的极值点,求m 的值,并讨论f (x )的单调性; (2)证明:e x -ln(x+2)>0.(x )=e x -1x+m,由题意可得,f'(0)=1-1m=0,解得m=1, f'(x )=e x-1x+1=e x (x+1)-1x+1,令g (x )=e x (x+1)-1,则g'(x )=(x+2)e x >0, 故g (x )在(-1,+∞)上单调递增且g (0)=0, 当x>0时,g (x )>0,即f'(x )>0,函数f (x )单调递增, 当-1<x<0时,g (x )<0,即f'(x )<0,函数f (x )单调递减.h (x )=e x -ln(x+2),则h'(x )=e x -1x+2在(-2,+∞)内单调递增,因为h'(-1)<0,h'(0)>0,所以h'(x )=0在(-2,+∞)存在唯一实数根x 0,且x 0∈(-1,0), 当x ∈(-2,x 0)时,h'(x )<0,当x ∈(x 0,+∞)时,h'(x )>0, 当x=x 0时,函数h (x )取得最小值, 因为e x 0=12+x 0,即x 0=-ln(2+x 0),故h (x )≥h (x 0)=e x 0-ln(2+x 0)=12+x 0+x 0=(1+x 0)22+x 0>0,所以e x -ln(x+2)>0.。
模块综合检测(三)Ⅰ.阅读理解(共15小题;每小题2.5分,满分37.5分)ABorn in 1965,Shania Twain was the second of five children in her family.At the age of two,she moved with her mother and two sisters to Timmins,a town north of Toronto.When Shania was eight years old,her mother took her to many different bars,clubs and concerts to perform.In high school,Shania joined a local band,with which she often performed.After that,Shania moved to Toronto,where she continued singing.When Shania was 21 years old,her parents were killed in a car accident.She had to take over the role of parent to her younger siblings(兄弟姐妹).Taking care of two teenage brothers and a sister was a Gordian knot.Suddenly,she had to pay the bills,keep food on the table,and make a living.Anyway,Shania managed to pay the bills by singing here and there.In 1991,Shania went to Nashville,the home of the country music industry.In 1993,she recorded Shania Twain,her first CD.In 1995,her next CD,The Woman in Me,which had eight hit songs,sold more than ten million copies.Her third CD,Come on Over,was also popular and she had another hit song.Shania and Robert Lange,a famous producer,got married in 1993.After finishing her 2000 world tour,she decided to take a break from performing.In August 2001,they had a lovely son,whom they named Eja.After September 11th,Shania decided to spend more time on her family and stayed at home until the fall of 2002.Her reappearance in the music world put her face on magazine covers and country music publications.She also began to promote her new CD,Up,on TV shows.【语篇解读】本文是一篇记叙文。
最新(新课标)北师大版高中数学必修二模块综合测评(一)(时间:90分钟 满分:120分) 第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,共50分.1.过点(-1,3)且垂直于直线x -2y +3=0的直线方程是( ) A .x -2y +7=0 B .2x +y -1=0 C .x -2y -5=0D .2x +y -5=0解析:设所求直线方程为-2x -y +m =0,则-2×(-1)-3+m =0,所以m =1,即-2x -y +1=0,故直线方程为2x +y -1=0.答案:B2.已知某几何体的三视图如图所示,则该几何体的体积为( )A.8π3B .3πC.10π3D .6π解析:显然由三视图我们易知原几何体为一个圆柱体的一部分,并且由正视图知是一个34的圆柱体,底面圆的半径为1,圆柱体的高为4,则V=34×π×12×4=3π. 答案:B3.长方体一个顶点上的三条棱长分别为3、4、5,若它的八个顶点都在同一个球面上,则这个球的表面积是( )A .202πB .252πC .50πD .200π解析:设长方体的体对角线长为l ,球半径为R ,则⎩⎪⎨⎪⎧l =2R ,l 2=32+42+52,所以R =522,所以S 球=4πR 2=50π.答案:C4.在空间直角坐标系中,O 为坐标原点,设A ⎝ ⎛⎭⎪⎪⎫12,12,12,B ⎝ ⎛⎭⎪⎪⎫12,12,0,C ⎝ ⎛⎭⎪⎪⎫13,13,13,则( ) A .OA ⊥AB B .AB ⊥AC C .AC ⊥BCD .OB ⊥OC解析:|AB|=12,|AC|=36,|BC|=66,因为|AC|2+|BC|2=|AB|2,所以AC⊥BC.答案:C5.已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是( )A.若m∥α,n∥α,则m∥nB.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥βD.若m⊥α,n⊥α,则m∥n解析:A中还可能m,n相交或异面,所以A不正确;B、C中还可能α,β相交,所以B、C不正确.很明显D正确.答案:D6.若P(2,-1)为圆(x-1)2+y2=25的弦AB的中点,则直线AB的方程为( )A.x-y-3=0 B.2x+y-3=0C.x+y-1=0 D.2x-y-5=0解析:设圆心为C(1,0),则AB⊥CP,∵k CP=-1,∴k AB=1,∴y+1=x -2,即x-y-3=0.答案:A7.在三棱柱ABC-A1B1C1中,各棱长相等,侧棱垂直于底面,点D是侧面BB1C1C的中心,则AD与平面BB1C1C所成角的大小是( ) A.30°B.45°C .60°D .90°解析:过A 作AE ⊥BC 于点E ,则易知AE ⊥面BB 1C 1C ,则∠ADE 即为所求,又tan ∠ADE =AEDE=3,故∠ADE =60°.答案:C8.过点M(-2,4)作圆C :(x -2)2+(y -1)2=25的切线l ,且直线l 1:ax +3y +2a =0与l 平行,则l 1与l 间的距离是( )A.85B.25C.285D.125解析:因为点M(-2,4)在圆C 上,所以切线l 的方程为(-2-2)(x -2)+(4-1)(y -1)=25,即4x -3y +20=0.因为直线l 与直线l 1平行,所以-a 3=43,即a =-4,所以直线l 1的方程是-4x +3y -8=0,即4x -3y +8=0.所以直线l 1与直线l 间的距离为|20-8|42+(-3)2=125. 答案:D9.当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以C 为圆心,半径为5的圆的方程为( )A .x 2+y 2-2x +4y =0B .x 2+y 2+2x +4y =0C .x 2+y 2+2x -4y =0D .x 2+y 2-2x -4y =0解析:令a =0,a =1,得方程组⎩⎪⎨⎪⎧ -x -y +1=0,-y +2=0.解得⎩⎪⎨⎪⎧x =-1,y =2,所以C(-1,2).则圆C 的方程为(x +1)2+(y -2)2=5,即x 2+y 2+2x -4y =0.答案:C10.设P(x ,y)是圆x 2+(y +4)2=4上任意一点,则(x -1)2+(y -1)2的最小值为( )A.26+2B.26-2 C .5D .6解析:如图,设A(1,1),(x -1)2+(y -1)2=|PA|,则|PA|的最小值为|AC|-r =26-2.答案:B第Ⅱ卷(非选择题,共70分)二、填空题:本大题共4小题,每小题5分,共20分.11.如图所示,Rt △A ′B ′C ′为水平放置的△ABC 的直观图,其中A′C ′⊥B ′C ′,B ′O ′=O ′C ′=1,则△ABC 的面积为__________.解析:由直观图画法规则将△A ′B ′C ′还原为△ABC ,如图所示,则有BO =OC =1,AO =2 2.∴S △ABC =12BC ·AO=12×2×2 2 =2 2.答案:2 212.经过点P(1,2)的直线,且使A(2,3),B(0,-5)到它的距离相等的直线方程为__________.解析:x =1显然符合条件;当A(2,3),B(0,-5)在所求直线同侧时,所求直线与AB 平行,∵k AB =4,∴y -2=4(x -1),即4x -y -2=0. 答案:4x -y -2=0或x =113.与x 轴相切并和圆x 2+y 2=1外切的圆的圆心的轨迹方程是__________.解析:设M(x ,y)为所求轨迹上任一点,则由题意知1+|y|=x 2+y 2,化简得x 2=2|y|+1.答案:x 2=2|y|+114.圆x 2+y 2+Dx +Ey +F =0关于直线l 1:x -y +4=0与直线l 2:x +3y =0都对称,则D =__________,E =__________.解析:由题设知直线l 1,l 2的交点为已知圆的圆心.由⎩⎪⎨⎪⎧ x -y +4=0,x +3y =0,得⎩⎪⎨⎪⎧x =-3,y =1,所以-D 2=-3,D =6,-E2=1,E =-2.答案:6;-2三、解答题:本大题共4小题,满分50分.15.(12分)直线l 经过点P(2,-5),且到点A(3,-2)和B(-1,6)的距离之比为1∶2,求直线l 的方程.解:∵直线l 过P(2,-5),∴可设直线l 的方程为y +5=k ·(x -2), 即kx -y -2k -5=0.(2分) ∴A(3,-2)到直线l 的距离为 d 1=|k ·3-(-2)-2k -5|k 2+1=|k -3|k 2+1. B(-1,6)到直线l 的距离为d 2=|k ·(-1)-6-2k -5|k 2+1=|3k +11|k 2+1. (6分)∵d 1∶d 2=1∶2,∴|k -3||3k +11|=12.化简得k 2+18k +17=0.(10分) 解得k 1=-1,k 2=-17.∴所求直线方程为x +y +3=0或17x +y -29=0.(12分)16.(12分)如图所示,已知四棱锥P-ABCD的底面是边长为a的菱形,且∠ABC=120°,PC⊥平面ABCD,PC=a,E为PA的中点.(1)求证:平面EBD⊥平面ABCD;(2)求点E到平面PBC的距离.(1)证明:如图所示,连接AC,设AC∩BD=O,连接OE,在△PAC中,E为PA的中点,O为AC的中点,∴OE∥PC.(2分)又PC⊥平面ABCD,∴OE⊥平面ABCD.又OE⊂平面EBD,∴平面EBD⊥平面ABCD.(4分)(2)解:∵OE∥PC,PC⊂面PBC,而OE⊄面PBC,∴OE∥面PBC,∴E到平面PBC的距离等于O到平面PBC的距离.过O在底面ABCD内作OG⊥BC于G,又平面PBC⊥面ABCD,且面PBC ∩面ABCD=BC,∴OG ⊥面PBC ,即线段OG 的长度为点O 到平面PBC 的距离.(8分) 在菱形ABCD 中,∵∠ABC =120°,∴∠BCD =60°,∴△BCD 为正三角形,且BC =a ,由余弦定理可得AC =3a , ∴OB =a 2,OC =32a.(10分)在Rt △BOC 中,OG ·BC =OB ·OC , 即OG ·a =a 2·32a ,∴OG =34a.即E 到平面PBC 的距离为34a.(12分)17.(12分)已知圆C :(x -1)2+y 2=9内有一点P(2,2),过点P 作直线l 交圆C 于A 、B 两点.(1)当l 经过圆心C 时,求直线l 的方程; (2)当弦AB 被点P 平分时,写出直线l 的方程; (3)当直线l 的倾斜角为45°时,求弦AB 的长.解:(1)已知圆C :(x -1)2+y 2=9的圆心为C(1,0),因直线l 过点P 、C ,所以直线l 的斜率为2.故直线l 的方程为y =2(x -1),即2x -y -2=0.(4分)(2)当弦AB 被点P 平分时,l ⊥PC ,直线l 的方程为y -2=-12(x -2),即x +2y -6=0.(8分)(3)当直线l 的倾斜角为45°时,其斜率为1,直线l 的方程为y -2=x -2,即x -y =0,圆心C 到直线l 的距离为12,圆的半径为3,弦AB 的长为232-⎝ ⎛⎭⎪⎪⎫122=34.(12分)18.(14分)如图,在斜三棱柱ABC -A 1B 1C 1中,点O 、E 分别是A 1C 1、AA 1的中点,AO ⊥平面A 1B 1C 1.已知∠BCA =90°,AA 1=AC =BC =2.(1)证明:OE ∥平面AB 1C 1;(2)求异面直线AB 1与A 1C 所成的角; (3)求A 1C 1与平面AA 1B 1所成角的正弦值. (1)证明:∵点O 、E 分别是A 1C 1、AA 1的中点, ∴OE ∥AC 1,又∵EO ⊄平面AB 1C 1,AC 1⊂平面AB 1C 1, ∴OE ∥平面AB 1C 1.(4分)(2)解:∵AO ⊥平面A 1B 1C 1,∴AO ⊥B 1C 1, 又∵A 1C 1⊥B 1C 1,且A 1C 1∩AO =O ,∴B 1C 1⊥平面A 1C 1CA , ∴A 1C ⊥B 1C 1. 又∵AA 1=AC ,∴四边形A 1C 1CA 为菱形, ∴A 1C ⊥AC 1,且B 1C 1∩AC 1=C 1, ∴A 1C ⊥平面AB 1C 1,∴AB 1⊥A 1C ,即异面直线AB 1与A 1C 所成的角为90°.(9分) (3)解:设点C 1到平面AA 1B 1的距离为d , ∵VA -A 1B 1C 1=VC 1-AA 1B 1,即13·12·A 1C 1·B 1C 1·AO =13·S △AA 1B 1·d. 又∵在△AA 1B 1中,A 1B 1=AB 1=22, ∴S △AA 1B 1=7. ∴d =2217,∴A 1C 1与平面AA 1B 1所成角的正弦值为217.(14分)。
模块综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线x 3-y 3=1的倾斜角的大小为( ) A.30°B.60°C.120°D.150° 【解析】 由x 3-y 3=1,得该直线的斜率k =33,故倾斜角为30°. 【答案】 A2.在空间直角坐标系中,点B 是A (1,2,3)在yOz 坐标平面内的射影,O 为坐标原点,则|OB |等于( ) A.14 B.13 C.2 3 D.11【解析】 点A (1,2,3)在yOz 坐标平面内的投影为B (0,2,3), ∴|OB |=02+22+32=13.【答案】 B3.点(a ,b )关于直线x +y +1=0的对称点是( )A.(-a -1,-b -1)B.(-b -1,-a -1)C.(-a ,-b )D.(-b ,-a ) 【解析】 设对称点为(x ′,y ′),则⎩⎪⎨⎪⎧ y ′-b x ′-a ×(-1)=-1,x ′+a 2+y ′+b 2+1=0,解得:x′=-b-1,y′=-a-1.【答案】 B4.已知M,N分别是正方体AC1的棱A1B1,A1D1的中点,如图1是过M,N,A和D,N,C1的两个截面截去两个角后所得的几何体,则该几何体的主视图为()图1【解析】由主视图的性质知,几何体的正投影为一正方形,正面有可见的一棱和背面有不可见的一棱,故选B.【答案】 B5.若{(x,y)|ax+2y-1=0}∩{(x,y)|x+(a-1)y+1=0}=∅,则a等于()【导学号:39292136】A.32 B.2C.-1D.2或-1【解析】依题意,两直线平行.由a(a-1)-2×1=0,得a2-a-2=0,a =2或-1.又当a=-1时,两直线重合,故选B.【答案】 B6.已知m是平面α的一条斜线,点A∉α,l为过点A的一条动直线,那么下列情形中可能出现的是()A.l∥m,l⊥αB.l⊥m,l⊥αC.l⊥m,l∥αD.l∥m,l∥α【解析】如图l可以垂直m,且l平行α.。
模块综合检测(时间:90分钟满分:120分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2016·临沂高一检测)过点A(3,-4),B(-2,m)的直线l的斜率为-2,则m的值为( )A.6 B.1 C.2 D.42.(2016·温州高一检测)直线y-2=mx+m经过一定点,则该点的坐标为( )A.(-1,2) B.(2,-1)C.(1,2) D.(2,1)3.在空间直角坐标系中,点B是A(1,2,3)在yOz坐标平面内的射影,O为坐标原点,则|OB|等于( )A.14B.13 C.2 3 D.114.过点(1,2)且与原点距离最大的直线方程是( )A.x+2y-5=0 B.2x+y-4=0C.x+3y-7=0 D.x-2y+3=05.(2015·广东高考)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交6.动点P到点A(8,0)的距离是到点B(2,0)的距离的2倍,则动点P的轨迹方程为( ) A.x2+y2=32 B.x2+y2=16C.(x-1)2+y2=16 D.x2+(y-1)2=167.某几何体的三视图如图所示,它的体积为( )A.72π B.48π C.30π D.24π8.(2015·浙江高考)设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β.( )A.若l⊥β,则α⊥β B.若α⊥β,则l⊥mC.若l∥β,则α∥β D.若α∥β,则l∥m9.设长方体的长,宽,高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为( )A.3πa2 B.6πa2C.12πa2 D.24πa2l1:ax+3y+2a=0与l平行,则l1与l间的距离是( )A.285B.125C.85D.2511.过点P(1,1)的直线,将圆形区域{(x,y)|x2+y2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( )A.x+y-2=0 B.y-1=0C.x-y=0 D.x+3y-4=012.(2015·新课标全国卷Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=( )A.1 B.2 C.4 D.8二、填空题(本大题共4小题,每小题5分,共20分)13.(2016·宁波高一检测)若直线l1:ax+y+2a=0与l2:x+ay+3=0互相平行,则实数a=________.14.(2015·江苏高考)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx-y-2m-1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为________.15.(2015·湖南高考)若直线3x-4y+5=0与圆x2+y2=r2(r>0)相交于A,B两点,且∠AOB=120°(O为坐标原点),则r=________.16.将正方形ABCD沿对角线BD折成直二面角ABDC,有如下三个结论.①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角.说法正确的命题序号是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知两条直线l1:mx+8y+n=0和l2:2x+my-1=0,试确定m、n的值,使(1)l1与l2相交于点(m,-1);(2)l1∥l2;(3)l1⊥l2,且l1在y轴上的截距为-1.18.(本小题满分12分)(2015·新课标全国卷Ⅱ)如图,长方体ABCDA1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.19.(本小题12分)如图,在直三棱柱ABCA1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.20.(本小题满分12分)如图,在平面直角坐标系xOy中,A(a,0)(a>0),B(0,a),C(-4,0),D(0,4),设△AOB的外接圆圆心为E.(1)若⊙E与直线CD相切,求实数a的值;(2)设点P 在⊙E 上,使△PCD 的面积等于12的点P 有且只有三个,试问这样的⊙E 是否存在?若存在求出⊙E 的标准方程;若不存在,说明理由.21.(本小题满分12分)(2015·四川高考)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(1)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由); (2)判断平面BEG 与平面ACH 的位置关系,并证明你的结论; (3)证明:直线DF ⊥平面BEG .22.(本小题满分12分)(2015·广东高考)已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B .(1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L :y =k (x -4)与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.答案1.解析:选A 由题意知k AB =m +4-2-3=-2,∴m =6.2.解析:选A 将直线方程化为y -2=m (x +1),则当x =-1时,y =2,即直线过定点(-1,2).3.解析:选B 点A (1,2,3)在yOz 坐标平面内的射影为B (0,2,3),∴|OB |=02+22+32=13.4.解析:选A 结合图形可知,所求直线为过点(1,2)且与原点和点(1,2)连线垂直的直线,其斜率为-12,直线方程为y -2=-12(x -1),即x +2y -5=0.5.解析:选D 由直线l 1和l 2是异面直线可知l 1与l 2不平行,故l 1,l 2中至少有一条与l 相交.6.解析:选B 设P (x ,y ),则由题意可得: 2x -2+y 2=x -2+y 2,化简整理得x 2+y 2=16,故选B.7.解析:选C 根据三视图知该几何体是由半球与圆锥构成,球的半径R =3,圆锥半径R =3,高为4,所以V 组合体=V 半球+V 圆锥=12×43π×33+13π×32×4=30π.8.解析:选A A 中,由面面垂直的判定,故正确;选项B 中,当α⊥β时,l ,m 可以垂直,也可以平行,也可以异面;选项C 中,l ∥β时,α、β可以相交;选项D 中,α∥β时,l ,m 也可以异面,故选A.9.解析:选B 由题可知,球的直径等于长方体的体对角线的长度,故2R =4a 2+a 2+a 2,解得R =62a ,所以球的表面积S =4πR 2=6πa 2. 10.解析:选B 直线l 1的斜率k =-a3,l 1∥l ,又l 过P (-2,4),∴l 的直线方程为y -4=-a3(x +2),即ax +3y +2a -12=0.又直线l 与圆相切, ∴|2a +3×1+2a -12|a 2+9=5,∴a =-4,∴l 1与l 的距离为d =125.11.解析:选A 圆心O 与P 点连线的斜率k =1,∴直线OP 垂直于x +y -2=0,故选A.12.解析:选B 由正视图和俯视图可知,该几何体是一个半球和一个半圆柱的组合体,圆柱的半径和球的半径都为r ,圆柱的高为2r ,其表面积为12×4πr 2+πr ×2r +πr 2+2r ×2r =5πr 2+4r 2=16+20π,解得r =2,故选B.13.解析:由两直线平行的条件A 1B 2-A 2B 1=0且A 1C 2-A 2C 1≠0得⎩⎨⎧a 2-1=0,3a -2a ≠0,得a=±1.答案:±114.解析:直线mx -y -2m -1=0恒过定点(2,-1),当切点为(2,-1)时,半径最大为-2+-1-2=2,此时圆的方程为(x -1)2+y 2=2.答案:(x -1)2+y 2=215.解析:由直线与圆的位置及圆的性质,可求得圆心(0,0)到直线3x -4y +5=0的距离为r 2,∴|5|32+42=r2,∴r =2.答案:2 16.解析:如图所示,①取BD 中点E ,连接AE ,CE ,则BD ⊥AE ,BD ⊥CE ,而AE ∩CE =E ,∴BD ⊥平面AEC ,AC ⊂平面AEC ,故AC ⊥BD ,故①正确.②设正方形的边长为a ,则AE =CE =22a .由①知∠AEC 是直二面角A BD C 的平面角,∴∠AEC =90°,∴AC =a ,∴△ACD 是等边三角形,故②正确.③由题意及①知,AE ⊥平面BCD ,故∠ABE 是AB 与平面BCD 所成的角,而∠ABE =45°,所以③不正确.答案:①②17.解:(1)因为l 1与l 2相交于点(m ,-1),所以点(m ,-1)在l 1、l 2上,将点(m ,-1)代入l 2,得2m -m -1=0,解得m =1. 又因为m =1,把(1,-1)代入l 1,所以n =7. 故m =1,n =7.(2)要使l 1∥l 2,则有⎩⎪⎨⎪⎧m 2-16=0,m --2n ≠0,解得⎩⎪⎨⎪⎧m =4,n ≠-2或⎩⎪⎨⎪⎧m =-4,n ≠2.(3)要使l 1⊥l 2,则有m ·2+8·m =0,得m =0. 则l 1为y =-n8,由于l 1在y 轴上的截距为-1, 所以-n8=-1,即n =8.故m =0,n =8.18.解:(1)交线围成的正方形EHGF 如图所示.(2)作EM ⊥AB ,垂足为M ,则AM =A 1E =4,EB 1=12,EM =AA 1=8. 因为EHGF 为正方形,所以EH =EF =BC =10. 于是MH =EH 2-EM 2=6,AH =10,HB =6. 故S 四边形A 1EHA =12×(4+10)×8=56,S 四边形EB 1BH =12×(12+6)×8=72.因为长方体被平面α分成两个高为10的直棱柱, 所以其体积的比值为97⎝ ⎛⎭⎪⎫79也正确. 19.证明:(1)∵B 1C 1CB 为正方形,∴E 为B 1C 的中点,又D 为AB 1中点,∴DE 为△B 1AC 的中位线,∴DE ∥AC ,又DE ⊄平面A 1C 1CA ,AC ⊂平面A 1C 1CA ,∴DE ∥平面AA 1C 1C .(2)在直三棱柱中,平面ACB ⊥平面B 1C 1CB ,又平面ACB ∩平面B 1C 1CB =BC ,AC ⊂平面ABC ,且AC ⊥BC ,∴AC ⊥平面B 1C 1CB , ∴AC ⊥BC 1, 又B 1C 1CB 为正方形, ∴B 1C ⊥BC 1,AC ∩B 1C =C ,∴BC 1⊥平面ACB 1,又AB 1⊂平面ACB 1,∴BC 1⊥AB 1.20.解:(1)直线CD 的方程为y =x +4,圆心E ⎝ ⎛⎭⎪⎫a 2,a 2,半径r =22a .由题意得⎪⎪⎪⎪⎪⎪a 2-a 2+42=22a ,解得a =4. (2)∵|CD |=-2+42=42,∴当△PCD 面积为12时,点P 到直线CD 的距离为3 2.又圆心E 到直线CD 距离为22(定值),要使△PCD 的面积等于12的点P 有且只有三个,需⊙E 的半径2a2=52,解得a =10, 此时,⊙E 的标准方程为(x -5)2+(y -5)2=50. 21.解:(1)点F ,G ,H 的位置如图所示. (2)平面BEG ∥平面ACH .证明如下:因为ABCD EFGH 为正方体,所以BC ∥FG ,BC =FG . 又FG ∥EH ,FG =EH ,所以BC ∥EH ,BC =EH , 于是四边形BCHE 为平行四边形,所以BE ∥CH .又CH ⊂平面ACH ,BE ⊄平面ACH , 所以BE ∥平面ACH . 同理BG ∥平面ACH . 又BE ∩BG =B ,所以平面BEG ∥平面ACH .(3)证明:连接FH ,与EG 交于点O ,连接BD . 因为ABCD EFGH 为正方体, 所以DH ⊥平面EFGH .因为EG ⊂平面EFGH ,所以DH ⊥EG .又EG ⊥FH ,DH ∩FH =H ,所以EG ⊥平面BFH D. 又DF ⊂平面BFHD ,所以DF ⊥EG . 同理DF ⊥BG . 又EG ∩BG =G , 所以DF ⊥平面BEG .22.解:(1)把圆C 1的方程化为标准方程得(x -3)2+y 2=4,∴圆C 1的圆心坐标为C 1(3,0). (2)设M (x ,y ),∵A ,B 为过原点的直线l 与圆C 1的交点,且M 为AB 的中点, ∴由圆的性质知:MC 1⊥MO ,∴=0.又∵=(3-x ,-y ),=(-x ,-y ),∴由向量的数量积公式得x 2-3x +y 2=0.易知直线l 的斜率存在,∴设直线l 的方程为y =mx , 当直线l 与圆C 1相切时,d =|3m -0|m 2+1=2, 解得m =±255.把相切时直线l 的方程代入圆C 1的方程化简得9x 2-30x +25=0,解得x =53.当直线l 经过圆C 1的圆心时,M 的坐标为(3,0). 又∵直线l 与圆C 1交于A ,B 两点,M 为AB 的中点, ∴53<x ≤3. ∴点M 的轨迹C 的方程为x 2-3x +y 2=0,其中53<x ≤3,其轨迹为一段圆弧.(3)由题意知直线L 表示过定点(4,0),斜率为k 的直线,把直线L 的方程代入轨迹C的方程x 2-3x +y 2=0,其中53<x ≤3,化简得(k 2+1)x 2-(3+8k 2)x +16k 2=0, 其中53<x ≤3,记f (x )=(k 2+1)x 2-(3+8k 2)x +16k 2, 其中53<x ≤3.若直线L 与曲线C 只有一个交点,令f (x )=0.当Δ=0时,解得k 2=916,即k =±34,此时方程可化为25x 2-120x +144=0,即(5x -12)2=0,解得x =125∈⎝ ⎛⎦⎥⎤53,3,∴k =±34满足条件.当Δ>0时,①若x =3是方程的解,则f (3)=0⇒k =0⇒另一根为x =0<53,故在区间⎝ ⎛⎦⎥⎤53,3上有且仅有一个根,满足题意.②若x =53是方程的解,则f ⎝ ⎛⎭⎪⎫53=0⇒k =±257⇒另外一根为x =6423,53<6423≤3,故在区间⎝ ⎛⎦⎥⎤53,3上有且仅有一个根,满足题意.③若x =3和x =53均不是方程的解,则方程在区间⎝ ⎛⎭⎪⎫53,3上有且仅有一个根,只需f ⎝ ⎛⎭⎪⎫53·f (3)<0⇒-257<k <257.故在区间⎝ ⎛⎦⎥⎤53,3上有且仅有一个根,满足题意. 综上所述,k 的取值范围是⎩⎨⎧⎭⎬⎫-34,34∪-257,257时,直线L :y =k (x -4)与曲线C只有一个交点.。
高中数学必修二期末测试题
本试题分为第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间120分钟。
一、选择题(本大题共12小题,每小题5分,共60分)
1.直线x =tan 60°的倾斜角是( )
A .90°
B .60°
C .30°
D .不存在
2.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程是( )
A .x 2+(y -2)2=1
B .x 2+(y +2)2=1
C .(x -1)2+(y -3)2=1
D .x 2+(y -3)2=1
3.方程y =ax +1a
表示的直线可能是( )
4.若l 、m 、n 是互不相同的空间直线,α、β是不重合的平面,则下列命题中为真命题的是( )
A .若α∥β,l ⊂ α,n ⊂ β,则l∥n
B .若α⊥β,l ⊂α,则l⊥β
C .若l ⊥n ,m ⊥n ,则l ∥m
D .若l ⊥α,l ∥β,则α⊥β
5.直线x -2y -3=0与圆(x -2)2+(y +3)2=9交于E ,F 两点,则△EOF (O 是原点)的
面积为( )
A .32
B .34
C .2 5
D .655
6.直线x -2y +1=0关于直线x =1对称的直线方程是( )
A .x +2y -1=0
B .2x +y -1=0
C .2x +y -3=0
D .x +2y -3=0
7.过圆x 2+y 2=4外一点M (4,-1)引圆的两条切线,则经过两切点的直线方程是( )
A .4x -y -4=0
B .4x +y -4=0
C .4x +y +4=0
D .4x -y +4=0
8.以等腰直角三角形ABC 斜边BC 上的高AD 为折痕,将△ABC 折成二面角C -AD -B 为多大时,在折成的图形中,△ABC 为等边三角形.( )
A .90°
B .60°
C .45°
D .30°
9.经过点M (1,1)且在两坐标轴上截距相等的直线是( )
A .x +y =2
B .x +y =1
C .x =1或y =1
D .x +y =2或x =y
10.若圆x 2+y 2-2x -4y =0的圆心到直线x -y +a =0的距离为22
,则a 的值为( ) A .-2或或2 B .12或23
C .2或0
D .-2或0
11.直线3x +y -23=0截圆x 2+y 2=4得的劣弧所对的圆心角是( )
A .30°
B .45°
C .60°
D .90°
12.在平面直角坐标系中,与点A (1,2)距离为1,且与点B (3,1)的距离为2的直线共有( )
A .1条
B .2条
C .3条
D .4条
二、填空题(本大题共4小题,每小题5分,共20分)
13.已知点A(-2,3,4),在y轴上有一点B,且|AB|=35,则点B的坐标为________.14.圆x2+y2+x-6y+3=0上两点P、Q关于直线kx-y+4=0对称,则k=________.15.如图,某几何体的三视图,其中主视图是腰长为2的等腰三角形,左视图是半径为1的半圆,则该几何体的体积为________.
16.已知圆C:x2+y2-4x-6y+8=0,若圆C和坐标轴的交点间的线段恰为圆C′直径,则圆C′的标准方程为__________________.
三、解答题(本大题共6小题,共70分)
17.(10分)已知△ABC三边所在直线方程为AB:3x+4y+12=0,BC:4x-3y+16=0,CA:2x+y-2=0.求AC边上的高所在的直线方程.
18.(12分)求经过点P(6,-4)且被定圆O:x2+y2=20截得的弦长为62的直线AB的方程.
19.(12分) 如图所示,在四棱锥P-ABCD中,底面ABCD为正方形,E为侧棱PC的中点,求证PA∥平面EDB.
20.(12分)如图所示,在四棱柱(侧棱垂直于底面的四棱柱)ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.
(1)求证D1C⊥AC1;
(2)设E是DC上一点,试确定E的位置,使D1E∥平面A1BD,并说明理由.
21.(12分)已知M 与两定点O (0,0)、A (3,0)的距离之比为12
. (1)求M 点的轨迹方程;
(2)若M 的轨迹为曲线C ,求C 关于直线2x +y -4=0对称的曲线C ′的方程.
22.(12分) 如图,在五面体ABC -DEF 中,四边形ADEF 是正方形,FA ⊥平面ABCD ,BC ∥AD ,CD =1,AD =22,∠BAD =∠CDA =45°.
(1)求异面直线CE 与AF 所成角的余弦值;
(2)证明CD ⊥平面ABF ;
(3)求二面角B -EF -A 的正切值.。