高中数学必修2模块综合检测(C)
- 格式:doc
- 大小:215.00 KB
- 文档页数:8
模块综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.过点A(3,-4),B(-2,m)的直线l的斜率为-2,则m的值为() A.6 B.1C.2 D.4【解析】由题意知k AB=m+4-2-3=-2,∴m=6.【答案】 A2.在x轴、y轴上的截距分别是-2、3的直线方程是() A.2x-3y-6=0 B.3x-2y-6=0C.3x-2y+6=0 D.2x-3y+6=0【解析】由直线的截距式得,所求直线的方程为x-2+y3=1,即3x-2y+6=0.【答案】 C3.已知正方体外接球的体积是323π,那么正方体的棱长等于()A.2 2 B.22 3C.423 D.433【解析】设正方体的棱长为a,球的半径为R,则43πR3=323π,∴R=2.又∵3a=2R=4,∴a=43 3.【答案】 D4.关于空间直角坐标系Oxyz中的一点P(1,2,3)有下列说法:①点P 到坐标原点的距离为13; ②OP 的中点坐标为⎝ ⎛⎭⎪⎫12,1,32;③与点P 关于x 轴对称的点的坐标为(-1,-2,-3); ④与点P 关于坐标原点对称的点的坐标为(1,2,-3); ⑤与点P 关于坐标平面xOy 对称的点的坐标为(1,2,-3). 其中正确的个数是( ) A .2 B .3 C .4D .5【解析】 点P 到坐标原点的距离为12+22+32=14,故①错;②正确;与点P 关于x 轴对称的点的坐标为(1,-2,-3),故③错;与点P 关于坐标原点对称的点的坐标为(-1,-2,-3),故④错;⑤正确,故选A.【答案】 A5.如图1,在长方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱BB 1、B 1C 1的中点,若∠CMN =90°,则异面直线AD 1和DM 所成角为( )图1A .30°B .45°C .60°D .90°【解析】 因为MN ⊥DC ,MN ⊥MC , 所以MN ⊥平面DCM . 所以MN ⊥DM .因为MN ∥AD 1,所以AD 1⊥DM . 【答案】 D6.(2015·福建高考)某几何体的三视图如图2所示,则该几何体的表面积等于( )图2A.8+2 2 B.11+2 2C.14+2 2 D.15【解析】由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.直角梯形斜腰长为12+12=2,所以底面周长为4+2,侧面积为2×(4+2)=8+22,两底面的面积和为2×12×1×(1+2)=3,所以该几何体的表面积为8+22+3=11+2 2.【答案】 B7.已知圆x2+y2+2x+2y+k=0和定点P(1,-1),若过点P的圆的切线有两条,则k的取值范围是()A.(-2,+∞) B.(-∞,2)C.(-2,2) D.(-∞,-2)∪(2,+∞)【解析】因为方程x2+y2+2x+2y+k=0表示一个圆,所以4+4-4k>0,所以k<2.由题意知点P(1,-1)在圆外,所以12+(-1)2+2×1+2×(-1)+k>0,解得k>-2,所以-2<k<2.【答案】 C8.在三棱柱ABC-A1B1C1中,各棱长相等,侧棱垂直于底面,点D是侧面BB1C1C的中心,则AD与平面BB1C1C所成角的大小是()A.30°B.45°C.60°D.90°【解析】如图,取BC的中点E,连接DE、AE、AD.依题设知AE⊥平面BB1C1C.故∠ADE为AD与平面BB1C1C所成的角.设各棱长为2,则AE=32×2=3,DE=1.∵tan∠ADE=AEDE=31=3,∴∠ADE=60°,故选C.【答案】 C9.(2015·开封高一检测)若m、n为两条不重合的直线,α、β为两个不重合的平面,则下列说法中正确的是()①若直线m、n都平行于平面α,则m、n一定不是相交直线;②若直线m、n都垂直于平面α,则m、n一定是平行直线;③已知平面α、β互相垂直,且直线m、n也互相垂直,若m⊥α,则n⊥β;④若直线m、n在平面α内的射影互相垂直,则m⊥n.A.②B.②③C.①③D.②④【解析】对于①,m与n可能平行,可能相交,也可能异面;对于②,由线面垂直的性质定理可知,m与n一定平行,故②正确;对于③,还有可能n∥β;对于④,把m,n放入正方体中,如图,取A1B为m,B1C为n,平面ABCD为平面α,则m与n在α内的射影分别为AB与BC,且AB⊥BC.而m与n所成的角为60°,故④错.因此选A.【答案】 A10.(2015·全国卷Ⅱ)已知三点A(1,0),B(0,3),C(2,3),则△ABC外接圆的圆心到原点的距离为()A.53 B.213C.253 D.43【解析】在坐标系中画出△ABC(如图),利用两点间的距离公式可得|AB|=|AC|=|BC|=2(也可以借助图形直接观察得出),所以△ABC为等边三角形.设BC的中点为D,点E为外心,同时也是重心.所以|AE|=23|AD|=233,从而|OE|=|OA|2+|AE|2=1+43=213,故选B.【答案】 B11.(2016·重庆高一检测)已知P(x,y)是直线kx+y+4=0(k>0)上一点,P A 是圆C:x2+y2-2y=0的一条切线,A是切点,若P A长度的最小值为2,则k的值是()【导学号:09960153】A.3 B.21 2C.2 2 D.2【解析】圆C:x2+y2-2y=0的圆心是(0,1),半径是r=1,∵P A 是圆C :x 2+y 2-2y =0的一条切线,A 是切点,P A 长度的最小值为2,∴圆心到直线kx +y +4=0的最小距离为5,由点到直线的距离公式可得|1+4|k 2+1=5,∵k >0,∴k =2,故选D. 【答案】 D12.(2016·德州高一检测)将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD =a ,则三棱锥D -ABC 的体积为( )A.212a 3 B.a 312 C.24a 3D.a 36【解析】 取AC 的中点O ,如图,则BO =DO =22a ,又BD =a ,所以BO ⊥DO ,又DO ⊥AC , 所以DO ⊥平面ACB , V D -ABC=13S △ABC ·DO =13×12×a 2×22a =212a 3. 【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.已知两条平行直线的方程分别是2x +3y +1=0,mx +6y -5=0,则实数m =________.【解析】 由于两直线平行,所以2m =36≠1-5,∴m =4.【答案】 414.一个横放的圆柱形水桶,桶内的水漫过底面周长的四分之一,那么当桶直立时,水的高度与桶的高度的比为________.【解析】 设圆柱形水桶的底面半径为R ,高为h ,桶直立时,水的高度为x . 横放时水桶底面在水内的面积为⎝ ⎛⎭⎪⎫14πR 2-12R 2,水的体积为V 水=⎝ ⎛⎭⎪⎫14πR 2-12R 2h .直立时水的体积不变,则有V 水=πR 2x , ∴x ∶h =(π-2)∶4π. 【答案】 (π-2)∶4π15.已知一个等腰三角形的顶点A (3,20),一底角顶点B (3,5),另一顶点C 的轨迹方程是________.【解析】 设点C 的坐标为(x ,y ), 则由|AB |=|AC |得 (x -3)2+(y -20)2 =(3-3)2+(20-5)2,化简得(x -3)2+(y -20)2=225.因此顶点C 的轨迹方程为(x -3)2+(y -20)2=225(x ≠3). 【答案】 (x -3)2+(y -20)2=225(x ≠3)16.(2015·湖南高考)若直线3x -4y +5=0与圆x 2+y 2=r 2(r >0)相交于A ,B 两点,且∠AOB =120°(O 为坐标原点),则r =__________.【解析】 如图,过点O 作OD ⊥AB 于点D ,则|OD |=532+(-4)2=1.∵∠AOB=120°,OA=OB,∴∠OBD=30°,∴|OB|=2|OD|=2,即r=2.【答案】 2三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)直线l1过点A(0,1),l2过点B(5,0),如果l1∥l2且l1与l2的距离为5,求l1,l2的方程.【解】若直线l1,l2的斜率都不存在,则l1的方程为x=0,l2的方程为x=5,此时l1,l2之间距离为5,符合题意;若l1,l2的斜率均存在,设直线的斜率为k,由斜截式方程得直线l1的方程为y=kx+1,即kx-y+1=0,由点斜式可得直线l2的方程为y=k(x-5),即kx-y-5k=0,在直线l1上取点A(0,1),则点A到直线l2的距离d=|1+5k|1+k2=5,∴25k2+10k+1=25k2+25,∴k=125.∴l1的方程为12x-5y+5=0,l2的方程为12x-5y-60=0.综上知,满足条件的直线方程为l1:x=0,l2:x=5或l1:12x-5y+5=0,l2:12x-5y-60=0.18.(本小题满分12分)已知圆C1:x2+y2-4x+2y=0与圆C2:x2+y2-2y-4=0.(1)求证:两圆相交;(2)求两圆公共弦所在直线的方程.【导学号:09960154】【解】(1)证明:圆C1:x2+y2-4x+2y=0与圆C2:x2+y2-2y-4=0化为标准方程分别为圆C1:(x-2)2+(y+1)2=5与圆C2:x2+(y-1)2=5,则圆心坐标分别为C1(2,-1)与C2(0,1),半径都为5,故圆心距为(2-0)2+(-1-1)2=22,又0<22<25,故两圆相交.(2)将两圆的方程作差即可得出两圆的公共弦所在直线的方程,即(x2+y2-4x +2y)-(x2+y2-2y-4)=0,得x-y-1=0.19.(本小题满分12分)如图3,在三棱锥A-BPC中,AP⊥PC,AC⊥BC,M 为AB中点,D为PB中点,且△PMB为正三角形.图3(1)求证:DM∥平面APC;(2)求证:平面ABC⊥平面APC.【证明】(1)∵M为AB的中点,D为PB的中点,∴MD∥AP.又∵DM⊄平面APC,AP⊂平面APC,∴DM∥平面APC.(2)∵△PMB为正三角形,D为PB中点,∴MD⊥PB.又∵MD∥AP,∴AP⊥PB.又∵AP⊥PC,PC∩PB=P,∴AP⊥平面PBC.∵BC⊂平面PBC,∴AP⊥BC.又∵AC⊥BC,且AC∩AP=A,∴BC⊥平面APC.又∵BC ⊂平面ABC ,∴平面ABC ⊥平面APC .20.(本小题满分12分)已知△ABC 的顶点A (0,1),AB 边上的中线CD 所在的直线方程为2x -2y -1=0,AC 边上的高BH 所在直线的方程为y =0.(1)求△ABC 的顶点B 、C 的坐标;(2)若圆M 经过A 、B 且与直线x -y +3=0相切于点P (-3,0),求圆M 的方程. 【解】 (1)AC 边上的高BH 所在直线的方程为y =0,所以AC 边所在直线的方程为x =0,又CD 边所在直线的方程为2x -2y -1=0, 所以C ⎝ ⎛⎭⎪⎫0,-12,设B (b,0),则AB 的中点D ⎝ ⎛⎭⎪⎫b 2,12,代入方程2x -2y -1=0, 解得b =2, 所以B (2,0).(2)由A (0,1),B (2,0)可得,圆M 的弦AB 的中垂线方程为4x -2y -3=0,① 由与x -y +3=0相切,切点为(-3,0)可得,圆心所在直线方程为y +x +3=0,②①②联立可得,M ⎝ ⎛⎭⎪⎫-12,-52,半径|MA |=14+494=502,所以所求圆方程为⎝ ⎛⎭⎪⎫x +122+⎝ ⎛⎭⎪⎫y +522=252.21.(本小题满分12分)如图4,在三棱柱ABC -A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,AA 1=AC =2,BC =1,E ,F 分别是A 1C 1,BC 的中点.图4(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E-ABC的体积.【解】(1)证明:在三棱柱ABC-A1B1C1中,BB1⊥底面ABC,所以BB1⊥AB.又因为AB⊥BC,所以AB⊥平面B1BCC1,又AB⊂平面ABE,所以平面ABE⊥平面B1BCC1.(2)证明:取AB的中点G,连接EG,FG.因为E,F分别是A1C1,BC的中点,所以FG∥AC,且FG=12AC.因为AC∥A1C1,且AC=A1C1,所以FG∥EC1,且FG=EC1,所以四边形FGEC1为平行四边形.所以C1F∥EG. 又因为EG⊂平面ABE,C1F⊄平面ABE,所以C 1F ∥平面ABE .(3)因为AA 1=AC =2,BC =1,AB ⊥BC ,所以AB =AC 2-BC 2= 3.所以三棱锥E -ABC 的体积V =13S △ABC ·AA 1=13×12×3×1×2=33.22.(本小题满分12分)已知圆M 过两点A (1,-1),B (-1,1),且圆心M 在x +y -2=0上.(1)求圆M 的方程;(2)设P 是直线3x +4y +8=0上的动点,PC 、PD 是圆M 的两条切线,C 、D 为切点,求四边形PCMD 面积的最小值.【导学号:09960155】【解】 (1)法一 线段AB 的中点为(0,0),其垂直平分线方程为x -y =0.解方程组⎩⎪⎨⎪⎧x -y =0,x +y -2=0.所以圆M 的圆心坐标为(1,1),半径r =(1-1)2+(-1-1)2=2. 故所求圆M 的方程为(x -1)2+(y -1)2=4.法二 设圆M 的方程为(x -a )2+(y -b )2=r 2,(r >0),根据题意得⎩⎪⎨⎪⎧ (1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,a +b -2=0.解得a =b =1,r =2. 故所求圆M 的方程为(x -1)2+(y -1)2=4.(2)由题知,四边形PCMD 的面积为S =S △PMC +S △PMD =12|CM |·|PC |+12|DM |·|PD |.又|CM |=|DM |=2,|PC |=|PD |,所以S =2|PC |,而|PC |=|PM |2-|CM |2 =|PM |2-4,即S =2|PM |2-4. 因此要求S 的最小值,只需求|PM |的最小值即可,即在直线3x +4y +8=0上找一点P ,使得|PM |的值最小,所以 |PM |min =|3×1+4×1+8|32+42=3,所以四边形PCMD 面积的最小值为S =2|PM |2-4=232-4=2 5.。
模块综合检测 (C)(时间: 120 分钟满分: 150 分 )一、选择题 (本大题共 12 小题,每题5 分,共 60 分 )1.如下图,桌面上放着一个圆锥和一个长方体,其俯视图是 ( )2.如下图,一个空间几何体的主视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为 1,那么这个几何体的体积为 ( )111A . 1B .2C . 3D . 6221,则 m 等于 ()3.直线 (2m + m -3)x + (m - m)y = 4m - 1 在 x 轴上的截距为 A . 1 B . 21 1C .- 2D .2 或-24.直线 4x - 3y - 2=0 与圆 x 2+ y 2-2ax + 4y + a 2-12= 0 总有两个不一样的交点,则a 的取值范围是 ( )A .- 3< a<7B .- 6<a<4C .- 7<a<3D .- 21<a<195.若 P 为平面 α外一点,则以下说法正确的选项是()A .过 P 只好作一条直线与平面α订交B .过 P 可能作无数条直线与平面 α垂直C .过 P 只好作一条直线与平面 α平行D .过 P 可作无数条直线与平面 α平行6.连结平面外一点 P 和平面 α内不共线的三点 A , B , C , A 1,B 1, C 1 分别在 PA ,PB ,PC 的延伸线上, A 1B 1, B 1C 1,A 1C 1 与平面 α分别交于 D ,E , F ,则 D , E ,F 三点 ()A .成钝角三角形B .成锐角三角形C .成直角三角形D .共线2 2上与直线 l :4x + 3y - 12= 0 的距离最小的点的坐标是()7.在圆 x + y = 48 6 8 6A . 5,5B . 5,-5C . -8, 6 D . -8,- 6 5 5 5 58.矩形 ABCD 的对角线 AC ,BD 成 60°角,把矩形所在的平面以 AC 为折痕,折成一个直二面角 D - AC - B ,连结 BD ,则 BD 与平面 ABC 所成角的正切值为 ( )7 21 3 7A .10B .7C.2D.29.若⊙ C 1: x 2+ y 2- 2mx + m 2= 4 和⊙ C 2:x 2+ y 2+ 2x -4my = 8- 4m 2 订交,则 m 的取值范围是 ()A . -12,- 2B .(0,2)5 5C . -12,- 2 ∪ (0,2)D . - 12, 255510.已知点 P 是直线 3x + 4y + 8= 0 上的动点, PA 是圆 C :x 2 +y 2-2x - 2y + 1= 0 的切线,A 为切点,则 |PA|的最小值为 ( )A . 1B . 2C . 2D .2 211.二面角 α- l - β的平面角为 120 °,在面 α内, AB ⊥ l 于 B ,AB = 2,在平面 β内,CD⊥ l 于 D , CD = 3, BD = 1, M 为棱 l 上的一个动点,则 AM + CM 的最小值为 ()A .2 5B .2 2C .2 6D . 26 12.假如圆 x 2+ ( y -1) 2=1 上随意一点 P(x , y)都能使 x + y + c ≥0建立,那么实数 c 的取值范围是 ( )A . c ≥- 2- 1B . c ≤- 2- 1C . c ≥ 2-1D . c ≤ 2-1二、填空题 (本大题共 4 小题,每题 5 分,共 20分)13.如下图,半径为 R 的半圆内的暗影部分以直径 AB 所在直线为轴,旋转一周获得 一几何体,∠ BAC = 30°,则此几何体的体积为 ________.14. P(0,- 1)在直线 ax +y - b = 0 上的射影为 Q(1,0),则 ax - y +b = 0 对于 x + y - 1=0对称的直线方程为 ________.15.由动点 P 向圆 x 2+ y 2= 1 引两条切线 PA 、 PB ,切点分别为 A , B ,∠ APB = 60°,则动点的轨迹方程为 ________.16.如下图的是正方体的表面睁开图,复原成正方体后, 此中完整同样的是 ________.三、解答题 (本大题共 6 小题,共 70 分 )17. (10 分 )已知点 P(- 4,2)和直线 l : 3x - y -7= 0.求:(1) 过点 P 与直线 l 平行的直线方程;(2)过点 P 与直线 l 垂直的直线方程.18. (12 分 ) 如下图,在棱锥 A- BPC 中, AP ⊥PC ,AC⊥ BC,M 为 AB 的中点, D 为 PB 的中点,且△ PMB 为正三角形.求证: (1)DM ∥平面 APC;(2)平面 ABC⊥平面 APC.19. (12 分 )已知一个几何体的三视图如下图,试求它的表面积和体积.(单位: cm) 20. (12 分 )已知圆过 P(4,- 2), Q(- 1,3)两点,且在 y 轴上截得的线段长为 4 3,求圆的方程.21. (12 分 )从点 A(- 4,1)出发的一束光芒 l ,经过直线 l 1:x - y +3= 0 反射,反射光芒恰巧经过点 B(1,6),求入射光芒 l 所在的直线方程.2 22. (12 分 )已知以点C t , t(t ∈ R , t ≠ 0)为圆心的圆与x 轴交于点 O 、 A ,与y 轴交于点O 、 B ,此中 O 为原点.(1) 求证:△ OAB 的面积为定值;(2) 设直线 y =- 2x + 4 与圆 C 交于点 M 、 N ,若 OM =ON ,求圆 C 的方程.模块综合检测 (C) 答案1. D 2. D3. D [令 y = 0,则2x 轴上的截距为4m - 1=1,(2m + m - 3)x = 4m - 1,因此直线在2m 2+ m - 3因此 m = 2 或 m =- 1. ]24. B [ 将圆的方程化为 (x - a)2+ (y + 2)2= 16.|4a +4|圆心 (a ,- 2)到直线的距离 d =.∵直线与圆有两个不一样交点,∴d<4,即 |4a + 4|,5 <4得- 6<a<4,应选 B . ]5. D[ 由于 D , E ,F 都在平面 A 1B 1 C 1 与平面 α的交线上. ] 6. D 7. A [ 经过圆心 O 且与直线 l 垂直的直线的方程是 3x -4y = 0.3x - 4y = 0,解方程组 2+ y 2= 4x8, x =- 8,x =55得6 或6y =5y =- 58 6 2 2 86画出图形,能够判断点5,5 是圆 x + y = 4 上到直线 l 距离最小的点,点 -5,- 5 是圆 x 2+ y 2= 4 上到直线 l 距离最大的点. ]8. B[ 圆 C 1 和 C 2 的圆心坐标及半径分别为 C 1(m,0) , r 1= 2, C 2(- 1,2m), r 2= 3.9. C由两圆订交的条件得3- 2<|C 1C 2|<3 + 2,即 1<5m 2+ 2m + 1<25 ,解得-12<m<- 2或5 50<m<2. ][圆 C :(x -1)2+ (y -1) 2=1 的半径为 1,要使 |PA|最小,只要 |PC|最小, |PC |min10. D |3+4+ 8| = 2 42 = 3.3 +故 |PA|min = 32- 12= 2 2. ]11. D [将图 (1) 中二面角 α- l - β展成平面,如图 (2)所示.连结 AC 交 l 于 M 则 AM + CM 最小值为 AC =BD 2+ AB + CD 2= 26.]12. C [ 对随意点 P(x , y)能使 x + y +c ≥0 建立, 等价于 c ≥[-(x +y)] max . 设 b =- (x + y),则 y =- x - b .∴圆心 (0,1)到直线 y =- x -b 的距离 d =|1+ b|2 ≤1,解得,- 2- 1≤b ≤ 2- 1.∴ c ≥ 2- 1.]5 313. 6πR4πR 3,内部两个圆锥的体积之和为 分析 半圆旋转一周形成一个球体,其体积为V 球=31 21 32π 3,V 锥= 3πCD ·AB =3π·2 R ·2R = 2R4 3 π 35 3∴所求几何体的体积为 3πR - 2R= 6πR .14. x - y +1= 0分析 ∵ k PQ ·(- a)=- 1,∴ a = 1, Q(1,0)代入 x + y - b = 0 得 b = 1,将其代入ax - y + b =0,得 x - y +1= 0,此直线与 x +y - 1= 0 垂直, ∴其对于 x + y - 1= 0 的对称的直线是其自己.2215. x + y = 4分析 在 Rt △ AOP 中,∵∠ APB =60°,∴∠ APO = 30°,x 2+y 2= 4.∴ |PO|= 2|OA|= 2,动点的轨迹是以原点为圆心, 2 为半径的圆,方程为 16. (2)(3)(4)分析 由正方体的平面睁开图可得: (2)(3)(4) 是同样的.17. 解 (1)设所求直线的方程是 3x - y + m = 0(m ≠- 7),∵点 P(- 4,2)在直线上,∴ 3×(- 4)- 2+m = 0,∴ m =14,即所求直线方程是 3x - y + 14= 0.(2) 设所求直线的方程是 x + 3y + n = 0,∵点 P(- 4,2)在直线上, ∴- 4+ 3×2+ n = 0,∴ n =- 2,即所求直线方程是 x + 3y - 2=0. 18. 证明 (1)∵ M 为 AB 的中点, D 为 PB 中点, ∴ DM ∥ AP .又∵ DM ?平面 APC ,AP? 平面 APC ,∴ DM ∥平面 APC .(2) ∵△ PMB 为正三角形, D 为 PB 中点,∴ DM ⊥ PB . 又∵ DM ∥ AP ,∴ AP ⊥ PB .又∵ AP ⊥ PC , PC ∩PB =P ,∴ AP ⊥平面 PBC . ∵ BC? 平面 PBC ,∴ AP ⊥BC .又∵ AC ⊥ BC ,且 AC ∩AP = A , ∴ BC ⊥平面 APC .又∵ BC? 平面 ABC ,∴平面 ABC ⊥平面 APC .19. 解由三视图可知,该几何体的直观图能够当作是一个圆台和圆柱的组合体,则圆台的高为 h ′= 1 cm ,上底半径为 r = 1 21 252 cm ,下底半径为 R = 1 cm ,母线 l 为1+ 1-2= 21(cm),圆柱的底面半径为 R = 1 cm ,高 h 为 2 cm ,∴该几何体的体积为 V =V 圆台 +V 圆柱= 1 底 面 ·h = 1 π× 1 2 2π×1 221=13( S 上 + S 下 + S 上 ·S 下 )h ′+ S 3 2 + π×1 +2×π ×1 + π×1 ×123 32 π (cm).该几何体的表面积为S 表面 = πr 221 2+π×1 2+π× 1+ 1× 5++ πR + π(R + r ) ·l + 2πRh = π× 2 2 21=9+3 522π×1×4π (cm) .2∴该几何体的体积为133,表面积为 9+ 352.12π cm 2 24 π cm20. 解 方法一 设圆的方程为x + y + Dx + Ey + F = 0① 将 P , Q 坐标代入①得4D - 2E +F =- 20 ②D -3E -F = 10③令 x = 0,由①得 y 2+ Ey + F = 0 ④据题设知 |y 1- y 2|= 4 3,此中 y 1, y 2 是④的两根.因此 (y 1 -y 2)2= (y 1+ y 2) 2- 4y 1 y 2= E 2 -4F = 48 ⑤解由②③⑤构成的方程组得D =- 2,E =0,F =- 12 或 D =- 10, E =- 8, F = 4. 故所求圆的方程为x 2+ y 2- 2x - 12= 0 或 x 2+ y 2- 10x - 8y + 4= 0.方法二 易求 PQ 的中垂线方程为 x - y - 1=0 ①由于所求圆的圆心 C 在直线①上,故可设其坐标为 (a , a -1).又圆 C 的半径 r = |CP |= a - 2+a + 2② 由已知圆 C 截 y 轴所得的线段长为 4 3,而点 C 到 y 轴的距离为 |a|,∴ r 2=a2+ 4 3 2,将②式代入得a 2- 6a + 5= 0.2因此有 a 1= 1, r 1 = 13或 a 2= 5, r 2=37,即( x - 1)2+ y 2= 13 或 (x - 5)2+ (y - 4)2=37.21. 解 设 B(1,6)对于直线 l 1 :x - y + 3= 0 的对称点为 B ′(x , y0) ,0 y 0- 6 x 0- 1·1=- 1,则x 0+ 1 y 0+ 62 -+3=0,2x 0= 3,解得y 0=4.∴ B ′(3,4).依题意知 B ′在入射光芒上.又 A(- 4,1)也在入射光芒上,∴所求方程为 3x - 7y + 19= 0.22. (1)证明∵圆 C 过原点 O ,2 24∴ r =t + t 2.22 2 24设圆 C 的方程是 (x - t)+ y - t = t + t 2,令 x = 0,得 y 1 =0, y 2= 4;令 y = 0,得 x 1=0, x 2= 2t . t11 4×|2t|= 4,∴ S △OAB =OA ×OB = ×t 2 2即△ OAB 的面积为定值.(2) 解 ∵ OM =ON , CM =CN ,∴ OC 垂直均分线段 MN .∵ k MN =- 2,∴ k OC =1. 21∴直线 OC 的方程是 y = x .2 1∴ t = 2t .解得 t = 2 或 t =- 2.当 t =2 时,圆心 C 的坐标为 (2,1), OC = 5,此时 C 到直线 y =- 2x + 4 的距离 d = 1< 5, 5圆 C 与直线 y =- 2x + 4 订交于两点.当 t =- 2 时,圆心 C 的坐标为 (-2,- 1), OC =5,此时 C 到直线 y =- 2x + 4 的距离 d =9> 5,5圆 C 与直线 y =- 2x + 4 不订交, ∴ t =- 2 不切合题意,舍去.∴圆 C 的方程为 (x - 2) 2+ (y - 1)2= 5.。
人教版高中数学选择性必修第二册全册模块综合检测2(原卷版)(时间:120分钟,分值:150分)一、单项选择题(本题共8小题,每小题5分,共40分)1.已知函数f(x)=e2x+1,则f′(0)=()A.0B.eC.2e D.e22.在等差数列{a n}中,a1+a4+a7=36,a2+a5+a8=33,则a3+a6+a9的值为() A.27B.30C.33D.363.已知a>0,b>0,a,b的等比中项为2,则a+1b+b+1a的最小值为()A.3B.4 C.5D.424.函数y=x-12x+1在(1,0)处的切线与直线l:y=ax垂直,则a=() A.-3B.3C.13D.-135.已知等差数列{a n}的前n项和S n满足:S37-S23=a,则S60=()A.4a B.307aC.5a D.407a6.函数f(x)=(x2+2x)e2x的图象大致是()7.《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,则芒种日影长为()A.一尺五寸B.二尺五寸C.三尺五寸D.四尺五寸8.已知函数f(x)=x3-x和点P(1,-1),则过点P与该函数图象相切的直线条数为() A.1B.2C.3D.4二、多项选择题(本题共4小题,每小题5分,共20分)9.已知数列{a n}的前n项和为S n,S n=2a n-2,若存在两项a m,a n,使得a m a n=64,则() A.数列{a n}为等差数列B.数列{a n}为等比数列C.a21+a22+…+a2n=4n-13D.m+n为定值10.若函数e x f(x)(e=2.7182…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数为()A.f(x)=2-x B.f(x)=3-xC.f(x)=x3D.f(x)=x2+211.设等比数列{a n}的公比为q,其前n项和为S n,前n项积为T n,并且满足条件a1>1,a6a7>1,a6-1<0,则下列结论正确的是()a7-1A.0<q<1B.a6a8>1C.S n的最大值为S7D.T n的最大值为T612.设f′(x)为函数f(x)的导函数,已知x2f′(x)+xf(x)=ln x,f(1)=12,则下列结论正确的是()A.xf(x)在(1,+∞)单调递增B.xf(x)在(0,1)单调递减C.xf(x)在(0,+∞)上有极大值12D.xf(x)在(0,+∞)上有极小值12三、填空题(本题共4小题,每小题5分,共20分)13.已知等差数列{a n}中,a4=8,a8=4,则其通项公式a n=________.a1a9,则a n=________,数列14.已知正项等比数列{a n}满足a1=1,a2a6a7=116{log2a n}的前n项和为________.15.函数f(x)=12x2-ln x的单调递减区间是________.16.已知函数f(x)=ln x+mx,若函数f(x)的极小值不小于0,则实数m的取值范围为________.四、解答题(本题共6小题,共70分)17.(10分)等比数列{a n}中,已知a1=2,a4=16.(1)求数列{a n}的通项公式a n;(2)若a3,a5分别是等差数列{b n}的第4项和第16项,求数列{b n}的通项公式及前n项和S n.18.(12分)已知函数f(x)=12x2-3ln x.(1)求f(x)在(1,f(1))处的切线方程;(2)试判断f(x)在区间(1,e)上有没有零点.若有,判断零点的个数.19.(12分)设数列{a n}是等差数列,其前n项和为S n,且a3=2,S9=54.(1)求数列{a n}的通项公式;(2)证明:1a1+3+1a2+3+1a3+3+…+1a100+3>13.20.(12分)设函数f(x)=e x-ax-1(a∈R).(1)若a=2,求函数f(x)在区间[0,2]上的最大值和最小值;(2)当x≥0时,f(x)≥0,求a的取值范围.21.(12分)等差数列{a n}中,S3=21,S6=24,(1)求数列{a n}的前n项和公式S n;(2)求数列{|a n|}的前n项和T n.22.(12分)已知a,b∈R,设函数f(x)=e x-ax-b x2+1.(1)若b=0,求f(x)的单调区间;(2)当x∈[0,+∞)时,f(x)的最小值为0,求a+5b的最大值.注:e=2.71828…为自然对数的底数.人教版高中数学选择性必修第二册全册模块综合检测2(解析版)(时间:120分钟,分值:150分)一、单项选择题(本题共8小题,每小题5分,共40分)1.已知函数f (x )=e 2x +1,则f ′(0)=()A .0B .e C .2e D .e 2C解析:∵f (x )=e 2x +1,∴f ′(x )=2e 2x +1,∴f ′(0)=2e.故选C .2.在等差数列{a n }中,a 1+a 4+a 7=36,a 2+a 5+a 8=33,则a 3+a 6+a 9的值为()A .27B .30C .33D .36B解析:因为a 1+a 4+a 7=3a 4=36,所以a 4=12.因为a 2+a 5+a 8=33,所以a 5=11.所以d=a 5-a 4=-1,所以a 3+a 6+a 9=3a 6=3(a 5+d )=30.故选B .3.已知a >0,b >0,a ,b 的等比中项为2,则a +1b +b +1a 的最小值为()A .3B .4C .5D .42C解析:∵a +1b +b +1a =(a +b )+a +b ab=(a +b =54(a +b )≥54·2ab =5,等号成立当且仅当a =b =2,原式的最小值为5.4.函数y =x -12x +1在(1,0)处的切线与直线l :y =ax 垂直,则a =()A .-3B .3C .13D .-13A解析:∵y ′=3(2x +1)2,∴y ′|x =1=13,∴函数在(1,0)处的切线的斜率是13,所以,与此切线垂直的直线的斜率是-3,∴a =-3.故选A .5.已知等差数列{a n }的前n 项和S n 满足:S 37-S 23=a ,则S 60=()A .4aB .307a C .5aD .407aB 解析:因为S 37-S 23=a 24+a 25+…+a 37=a 24+a 372×14=7(a 24+a 37)=a .所以S 60=a 1+a 602×60=30(a 24+a 37)=307a .故选B .6.函数f (x )=(x 2+2x )e 2x 的图象大致是()A 解析:由于f ′(x )=2(x 2+3x +1)·e 2x ,而y =x 2+3x +1的判别式Δ=9-4=5>0,所以y=x 2+3x +1开口向上且有两个根x 1,x 2.不妨设x 1<x 2,所以f (x )在(-∞,x 1),(x 2,+∞)上递增,在(x 1,x 2)上递减.所以C ,D 选项不正确.当x <-2时,f (x )>0,所以B 选项不正确.由此得出A 选项正确.故选A .7.《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,则芒种日影长为()A .一尺五寸B .二尺五寸C .三尺五寸D .四尺五寸B解析:由题知各节气日影长依次成等差数列,设为{a n },S n 是其前n 项和,则S 9=9(a 1+a 9)2=9a 5=85.5,所以a 5=9.5,由题知a 1+a 4+a 7=3a 4=31.5,所以a 4=10.5,所以公差d =a 5-a 4=-1.所以a 12=a 5+7d =2.5尺.故选B .8.已知函数f (x )=x 3-x 和点P (1,-1),则过点P 与该函数图象相切的直线条数为()A .1B .2C .3D .4B解析:因为f (1)=13-1=0,所以点P (1,-1)没有在函数的图象上.设切点坐标为(x 0,y 0),则y 0=x 30-x 0,则f ′(x )=3x 2-1.由导数的几何意义可知,过切点的斜率为k =3x 20-1,过P (1,-1)和切点的斜率表示为k =y 0+1x 0-1,-x0,3x20-1,化简可得x20(2x0-3)=0,所以x0=0或x0=32.所以切点有两个,因而有两条切线方程.故选B.二、多项选择题(本题共4小题,每小题5分,共20分)9.已知数列{a n}的前n项和为S n,S n=2a n-2,若存在两项a m,a n,使得a m a n=64,则() A.数列{a n}为等差数列B.数列{a n}为等比数列C.a21+a22+…+a2n=4n-13D.m+n为定值BD解析:由题意,当n=1时,S1=2a1-2,解得a1=2,当n≥2时,S n-1=2a n-1-2,所以S n-S n-1=a n=2a n-2-(2a n-1-2)=2a n-2a n-1,所以a na n-1=2,数列{a n}是以a1=2为首项,q=2为公比的等比数列,a n=2n,故选项A错误,选项B正确;数列{a2n}是以a21=4为首项,q1=4为公比的等比数列,所以a21+a22+…+a2n=a21(1-q n1)1-q1=4×(1-4n)1-4=4n+1-43,故选项C 错误;a m a n=2m2n=2m+n=64=26,所以m+n=6为定值,故选项D正确.故选BD.10.若函数e x f(x)(e=2.7182…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数为()A.f(x)=2-x B.f(x)=3-xC.f(x)=x3D.f(x)=x2+2AD解析:对于选项A,f(x)=2-x,则g(x)=e x f(x)=e x·2-x为实数集上的增函数;对于选项B,f(x)=3-x,则g(x)=e x f(x)=e x·3-x为实数集上的减函数;对于选项C,f(x)=x3,则g(x)=e x f(x)=e x·x3,g′(x)=e x·x3+3e x·x2=e x(x3+3x2)=e x·x2(x+3),当x<-3时,g′(x)<0,∴g(x)=e x f(x)在定义域R上先减后增;对于选项D,f(x)=x2+2,则g(x)=e x f(x)=e x(x2+2),g′(x)=e x(x2+2)+2x e x=e x(x2+2x+2)>0在实数集R上恒成立,∴g(x)=e x f(x)在定义域R上是增函数.故选AD.11.设等比数列{a n}的公比为q,其前n项和为S n,前n项积为T n,并且满足条件a1>1,a6a7>1,a6-1a7-1<0,则下列结论正确的是()A.0<q<1B.a6a8>1C.S n的最大值为S7D.T n的最大值为T6AD 解析:易知q >0,若q >1,则a 6>1,a 7>1,与a 6-1a 7-1>0矛盾,故0<q <1.所以0<a 7<1.所以a 6a 8=a 27<1.因为a 7>0,a 8>0,所以S n 的最大值一定不为S 7.因为0<a 7<1,a 6>1,所以T n 的最大值为T 6,故选AD .12.设f ′(x )为函数f (x )的导函数,已知x 2f ′(x )+xf (x )=ln x ,f (1)=12,则下列结论正确的是()A .xf (x )在(1,+∞)单调递增B .xf (x )在(0,1)单调递减C .xf (x )在(0,+∞)上有极大值12D .xf (x )在(0,+∞)上有极小值12ABD解析:由x 2f ′(x )+xf (x )=ln x 得x >0,则xf ′(x )+f (x )=ln x x ,由[xf (x )]′=ln xx .设g (x )=xf (x ),即g ′(x )=ln xx>0得x >1.由g ′(x )<0得0<x <1,即xf (x )在(1,+∞)单调递增,在(0,1)单调递减,即当x =1时,函数g (x )=xf (x )取得极小值g (1)=f (1)=12.故选ABD .三、填空题(本题共4小题,每小题5分,共20分)13.已知等差数列{a n }中,a 4=8,a 8=4,则其通项公式a n =________.12-n 解析:∵等差数列{a n }中,a 4=8,a 8=4,4=a 1+3d =8,8=a 1+7d =4,解得a 1=11,d =-1,∴a n =11+(n -1)×(-1)=12-n .14.已知正项等比数列{a n }满足a 1=1,a 2a 6a 7=116a 1a 9,则a n =________,数列{log 2a n }的前n 项和为________.2-n +1-n (n -1)2解析:由a 1=1,a 2a 6a 7=1161a 9得a 5=a 1q 4=116,q =12,a n -1=2-n+1.而log 2a n =-n +1,所以{log 2a n }的前n 项和为-n (n -1)2.15.函数f (x )=12x 2-ln x 的单调递减区间是________.(0,1]解析:f (x )=12x 2-ln x ,则f ′(x )=x -1x =x 2-1x =(x +1)(x -1)x≤0,故0<x ≤1.16.已知函数f (x )=ln x +mx,若函数f (x )的极小值不小于0,则实数m 的取值范围为________.1e,+∞解析:由f (x )=ln x +m x 得f ′(x )=1x -m x 2=x -mx2,定义域为(0,+∞).当m ≤0时,f ′(x )>0,函数y =f (x )单调递增,函数无极值;当m >0时,令f ′(x )=0⇒x =m ,当x ∈(0,m )时,f ′(x )<0,函数y =f (x )单调递减;当x ∈(m ,+∞)时,f ′(x )>0,函数y =f (x )单调递增.所以当x =m 时,函数y =f (x )取极小值,且为f (m )=ln m +1.依题意有ln m +1≥0⇒m ≥1e ,因此,实数m 的取值范围是1e ,+∞四、解答题(本题共6小题,共70分)17.(10分)等比数列{a n }中,已知a 1=2,a 4=16.(1)求数列{a n }的通项公式a n ;(2)若a 3,a 5分别是等差数列{b n }的第4项和第16项,求数列{b n }的通项公式及前n 项和S n .解:(1)设{a n }的公比为q ,由已知得16=2q 3,解得q =2,所以a n =2n .(2)由(1)得a 3=8,a 5=32,则b 4=8,b 16=32.设{b n }的公差为d b 1+3d =8,b 1+15d =32,b 1=2,d =2.从而b n =2+2(n -1)=2n .所以数列{b n }的前n 项和S n =(2+2n )n2=n 2+n .18.(12分)已知函数f (x )=12x 2-3ln x .(1)求f (x )在(1,f (1))处的切线方程;(2)试判断f (x )在区间(1,e)上有没有零点.若有,判断零点的个数.解:(1)由已知得f ′(x )=x -3x ,有f ′(1)=-2,f (1)=12,∴在(1,f (1))处的切线方程为y -12=-2(x -1),化简得4x +2y -5=0.(2)由(1)知f ′(x )=(x -3)(x +3)x ,因为x >0,令f ′(x )=0,得x = 3.所以当x ∈(0,3)时,有f ′(x )<0,则(0,3)是函数f (x )的单调递减区间;当x ∈(3,+∞)时,有f ′(x )>0,则(3,+∞)是函数f (x )的单调递增区间;当x ∈(1,e)时,函数f (x )在(1,3)上单调递减,在(3,e)上单调递增.又因为f (1)=12,f (e)=12e 2-3>0,f (3)=32(1-ln 3)<0,所以f (x )在区间(1,e)上有两个零点.19.(12分)设数列{a n }是等差数列,其前n 项和为S n ,且a 3=2,S 9=54.(1)求数列{a n }的通项公式;(2)证明:1a 1+3+1a 2+3+1a 3+3+…+1a 100+3>13.(1)解:设数列{a n }的公差为d ,∵S 9=9a 5=54,∴a 5=6,∴d =a 5-a 35-3=2,∴a n =a 3+(n -3)d =2n -4.(2)证明:∵1a n +3=12n -1>22n -1+2n +1=2n +1-2n -1,∴1a 1+3+1a 2+3+1a 3+3+…+1a 100+3>(3-1)+(5-3)+…+(201-199)=201-1>14-1=13,∴1a 1+3+1a 2+3+1a 3+3+…+1a 100+3>13.20.(12分)设函数f (x )=e x -ax -1(a ∈R ).(1)若a =2,求函数f (x )在区间[0,2]上的最大值和最小值;(2)当x ≥0时,f (x )≥0,求a 的取值范围.解:(1)f (x )=e x -2x -1,取f ′(x )=e x -2=0,即x =ln 2,函数在[0,ln 2]上单调递减,在(ln 2,2]上单调递增,且f (0)=0,f (2)=e 2-5,f (ln 2)=1-2ln 2,故函数的最大值为f (2)=e 2-5,最小值为f (ln 2)=1-2ln 2.(2)f (x )=e x -ax -1,f ′(x )=e x -a ,f (0)=0.当a ≤0时,f ′(x )=e x -a >0,函数单调递增,故f (x )≥f (0)=0,成立;当a >0时,f ′(x )=e x -a =0,即x =ln a ,故函数在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增,故f (ln a )<f (0)=0,不成立.综上所述,a 的取值范围为(-∞,0].21.(12分)等差数列{a n }中,S 3=21,S 6=24,(1)求数列{a n }的前n 项和公式S n ;(2)求数列{|a n |}的前n 项和T n .解:(1)设{a n }首项为a 1,公差为d ,由S 3=21,S 6=24,a 1+3×22d =21,a 1+6×52d =24,1=9,=-2.∴S n =n ×9+n (n -1)2×(-2)=-n 2+10n .(2)由(1)知,a n =9+(n -1)×(-2)=-2n +11,由a n ≥0得-2n +11≥0,即n ≤112.当n ≤5时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =S n =-n 2+10n ;当n ≥6时,T n =|a 1|+…+|a 5|+|a 6|+…+|a n |=(a 1+a 2+…+a 5)-(a 6+…+a n )=S 5-(S n -S 5)=n 2-10n +50.综上,T nn 2+10n (n ≤5),2-10n +50(n ≥6).22.(12分)已知a ,b ∈R ,设函数f (x )=e x -ax -b x 2+1.(1)若b =0,求f (x )的单调区间;(2)当x ∈[0,+∞)时,f (x )的最小值为0,求a +5b 的最大值.注:e =2.71828…为自然对数的底数.解:(1)f (x )=e x -ax ,f ′(x )=e x -a ,当a ≤0时,f ′(x )=e x -a ≥0恒成立,函数单调递增;当a >0时,f ′(x )=e x -a =0,x =ln a ,当x ∈(-∞,ln a )时,f ′(x )<0,函数单调递减;当x ∈(ln a ,+∞)时,f ′(x )>0,函数单调递增.综上所述,a ≤0时,f (x )在R 上单调递增;a >0时,f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增.(2)f (x )=e x-ax -bx 2+1≥0在x ∈[0,+∞)上恒成立,=e -12a -52b ≥0,故a +5b ≤2e ,现在证明存在a ,b ,a +5b =2e ,使f (x )的最小值为0.取a =3e 4,b =5e 4(此时可使f 0),f ′(x )=e x -a -bx x 2+1,f ″(x )=e x -b (x 2+1)x 2+1,b =5e 4<1,故当x ∈[0,+∞)时,(x 2+1)x 2+1≥1,e x ≥1,故f ″(x )≥0,f ′(x )在[0,+∞)上单调递增,f 0,故f (x )在0f (x )min =0.综上所述,a +5b 的最大值为2 e.。
数学人教A 版必修2模块测试卷(C)(全卷满分100分,考试时间100分钟)参考公式S 柱体侧=ch (c 表示柱体的底面周长,h 表示柱体的高) S 锥体侧=12cl (c 表示锥体的底面周长,l 表示锥体的斜高) S 台体侧=12(c 1+c 2)l (c 1、c 2表示台体的上、下底面周长,l 表示台体的斜高) S 球面=24R π(R 表示球半径) V 球=343R π(R 表示球半径) V 柱体=Sh (S 表示柱体的底面积,h 表示柱体的高) V 锥体=13Sh (S 表示锥体的底面积,h 表示锥体的高) V 台体=131212()S S S S ++⋅h (S 1、S 2表示台体的上、下底面积,h 表示台体的高) 一、选择题:(本大题共12小题,每小题5分,共60分)1.若直线的倾斜角为1200,则直线的斜率为:A .3B .-3C .33 D .33- 2.下列命题中,错误的是:A .平行于同一条直线的两个平面平行.B .平行于同一个平面的两个平面平行.C .一个平面与两个平行平面相交,交线平行.D .一条直线与两个平行平面中的一个相交,则必与另一个平面相交. 3.若图中直线123,,l l l 的斜率分别为k1,k2,k3,则 A.k2<k1<k3 B.k3<k2<k1 C.k2<k3<k1 D.k1<k3<k24.如图所示,用符号语言可表达为 A .α∩β=m ,n ⊂α,m ∩n =A B .α∩β=m ,n ∈α,m ∩n =AC .α∩β=m ,n ⊂α,A ⊂m ,A ⊂ nD .α∩β=m ,n ∈α,A ∈m ,A ∈ n 5.给出下列四个命题:① 若两条直线和第三条直线所成的角相等,则这两条直线互相平行.② 若两条直线都与第三条直线垂直,则这两条直线互相平行.βαAnm③ 若两条直线都与第三条直线平行,则这条直线互相平行.④ 若两条直线都与同一平面平行,则这条直线互相平行. 其中正确的命题的个数是: A .1个 B .2个 C .3个 D .4个6.在正方体ABCD-A 1B 1C 1D 1中,与BD 1所成的角为900的表面的对角线有A .4条B .5条C .6条D .8条 7.下列直线中,斜率为43-,且不经过第一象限的是 A .3x +4y +7=0 B .4x +3y +7=0 C .4x +3y-42=0 D .3x +4y-42=08.已知两直线1:(3)453l a x y a ++=-与2:2(5)8l x a y ++=平行,则a 等于 A . 17--或 B .17或 C .7- D .1-9.下列命题中正确的是(其中a 、b 、c 为不相重合的直线,α为平面)①若b ∥a ,c ∥a ,则b ∥c②若b ⊥a ,c ⊥a ,则b ∥c ③若a ∥α,b ∥α,则a ∥b ④若a ⊥α,b ⊥α,则a ∥b A .①、②、③、④ B .①,④C .①D .④ A10.已知三棱锥A BCD -的棱长都相等,,E F 分别是棱,AB CD 的中点,则EF BC 与所成的角是:A .030B .45oC .60oD .90o11.过点(1,2),且在两坐标轴上的截距相等的直线有 A. 1条 B. 2条 C. 3条 D. 4条12.设γβα,,为两两不重合的平面,n m l ,,为两两不重合的直线,给出下列四个命题: ①若γα⊥,γβ⊥,则//αβ;②若α⊂m ,α⊂n ,//m β,//n β,则//αβ;③若//αβ,α⊂l ,则//l β; ④若l =βαI,m =γβI ,n =αγI ,//l γ,则//m n 。
数学必修2综合测试题及答案(C )说明:本试卷满分100分。
另有附加题10分,附加题得分不计入总分。
一、选择题(12×3分=36分)(请将答案填在下面的答题框内) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1、下列命题为真命题的是( )A. 平行于同一平面的两条直线平行;B.与某一平面成等角的两条直线平行;C. 垂直于同一平面的两条直线平行;D.垂直于同一直线的两条直线平行。
2、下列命题中错误的是:( )A. 如果α⊥β,那么α内一定存在直线平行于平面β;B. 如果α⊥β,那么α内所有直线都垂直于平面β;C. 如果平面α不垂直平面β,那么α内一定不存在直线垂直于平面β;D. 如果α⊥γ,β⊥γ,α∩β=l,那么l ⊥γ.3、右图的正方体ABCD-A ’B ’C ’D ’中,异面直线AA ’与BC 所成的角是( ) A. 300 B.450 C. 600 D. 900 4、右图的正方体ABCD- A ’B ’C ’D ’中, 二面角D ’-AB-D 的大小是( )A. 300B.450C. 600D. 9005、直线5x-2y-10=0在x 轴上的截距为a,在y 轴上的截距为b,则( ) A.a=2,b=5; B.a=2,b=-5; C.a=-2,b=5; D.a=-2,b= -5.6、直线2x-y=7与直线3x+2y-7=0的交点是( ) A (3,-1) B (-1,3) C (-3,-1) D (3,1)7、过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是( ) A 4x+3y-13=0 B 4x-3y-19=0 C 3x-4y-16=0 D 3x+4y-8=08、正方体的全面积为a,它的顶点都在球面上,则这个球的表面积是:( ) A.3aπ; B.2aπ; C.a π2; D.a π3.9、已知一个铜质的五棱柱的底面积为16cm 2,高为4cm ,现将它熔化后铸成一个正方体的铜块(不计损耗),那么铸成的铜块的棱长是( ) A. 2cm; B.cm 34; C.4cm; D.8cm 。
模块综合检测()(时间:分钟满分:分)一、选择题(本大题共小题,每小题分,共分).如图所示,桌面上放着一个圆锥和一个长方体,其俯视图是().如图所示,一个空间几何体的主视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为,那么这个几何体的体积为().....直线(+-)+(-)=-在轴上的截距为,则等于()...-.或-.直线--=与圆+-++-=总有两个不同的交点,则的取值范围是().-<<.-<<.-<<.-<<.若为平面α外一点,则下列说法正确的是().过只能作一条直线与平面α相交.过可能作无数条直线与平面α垂直.过只能作一条直线与平面α平行.过可作无数条直线与平面α平行.连接平面外一点和平面α内不共线的三点,,,,,分别在,,的延长线上,,,与平面α分别交于,,,则,,三点().成钝角三角形.成锐角三角形.成直角三角形.共线.在圆+=上与直线:+-=的距离最小的点的坐标是().....矩形的对角线,成°角,把矩形所在的平面以为折痕,折成一个直二面角--,连接,则与平面所成角的正切值为().....若⊙:+-+=和⊙:++-=-相交,则的取值范围是()..().∪() ..已知点是直线++=上的动点,是圆:+--+=的切线,为切点,则的最小值为().....二面角α--β的平面角为°,在面α内,⊥于,=,在平面β内,⊥于,=,=,为棱上的一个动点,则+的最小值为().....如果圆+(-)=上任意一点(,)都能使++≥成立,那么实数的取值范围是().≥--.≤--.≥-.≤-二、填空题(本大题共小题,每小题分,共分).如图所示,半径为的半圆内的阴影部分以直径所在直线为轴,旋转一周得到一几何体,∠=°,则此几何体的体积为..(,-)在直线+-=上的射影为(),则-+=关于+-=对称的直线方程为..由动点向圆+=引两条切线、,切点分别为,,∠=°,则动点的轨迹方程为.。
(新课标)2018-2019学年苏教版高中数学必修二模块综合检测(C)(时间:120分钟满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.如图所示,一个空间几何体的主视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为________.2.直线(2m2+m-3)x+(m2-m)y=4m-1在x轴上的截距为1,则m=________.3.直线4x-3y-2=0与圆x2+y2-2ax+4y+a2-12=0总有两个不同的交点,则a 的取值范围是____________.4.若P为平面α外一点,则下列说法正确的是______(填序号).①过P只能作一条直线与平面α相交;②过P可能作无数条直线与平面α垂直;③过P只能作一条直线与平面α平行;④过P可作无数条直线与平面α平行.5.在圆x2+y2=4上与直线l:4x+3y-12=0的距离最小的点的坐标是______________.6.矩形ABCD的对角线AC,BD成60°角,把矩形所在的平面以AC为折痕,折成一个直二面角D-AC-B,连结BD,则BD与平面ABC所成角的正切值为________.7.若⊙C1:x2+y2-2mx+m2=4和⊙C2:x2+y2+2x-4my=8-4m2相交,则m的取值范围是______________.8.已知点P是直线3x+4y+8=0上的动点,PA是圆C:x2+y2-2x-2y+1=0的切线,A为切点,则PA的最小值为________.9.二面角α-l-β的平面角为120°,在面α内,AB⊥l于B,AB=2,在平面β内,CD⊥l 于D,CD=3,BD=1,M为棱l上的一个动点,则AM+CM的最小值为__________.10.如果圆x2+(y-1)2=1上任意一点P(x,y)都能使x+y+c≥0成立,那么实数c的取值范围是__________.11.如图所示,半径为R的半圆内的阴影部分以直径AB所在直线为轴,旋转一周得到一几何体,∠BAC=30°,则此几何体的体积为________.12.P(0,-1)在直线ax+y-b=0上的射影为Q(1,0),则ax-y+b=0关于x+y-1=0对称的直线方程为________.13.由动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A,B,∠APB=60°,则动点的轨迹方程为________.14.如图所示的是正方体的表面展开图,还原成正方体后,其中完全一样的是________.二、解答题(本大题共6小题,共90分)15.(14分)已知点P(-4,2)和直线l:3x-y-7=0.求:(1)过点P与直线l平行的直线方程;(2)过点P与直线l垂直的直线方程.16.(14分) 如图所示,在棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB的中点,D为PB的中点,且△PMB为正三角形.求证:(1)DM∥平面APC;(2)平面ABC⊥平面APC.17.(14分)已知一个几何体的三视图如图所示,试求它的表面积和体积.(单位:cm)18.(16分)已知圆过P(4,-2),Q(-1,3)两点,且在y轴上截得的线段长为43,求圆的方程.19.(16分)从点A(-4,1)出发的一束光线l,经过直线l1:x-y+3=0反射,反射光线恰好通过点B(1,6),求入射光线l所在的直线方程.20.(16分)已知以点C ⎝ ⎛⎭⎪⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.(1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M 、N ,若OM =ON ,求圆C 的方程.模块综合检测(C) 答案1.162.2或-12解析 令y =0,则(2m 2+m -3)x =4m -1,所以直线在x 轴上的截距为4m -12m 2+m -3=1,所以m =2或m =-12.3.-6<a<4解析 将圆的方程化为(x -a)2+(y +2)2=16. 圆心(a ,-2)到直线的距离d =|4a +4|5.∵直线与圆有两个不同交点, ∴d<4,即|4a +4|5<4,得-6<a<4. 4.④5.⎝ ⎛⎭⎪⎫85,65解析 经过圆心O 且与直线l 垂直的直线的方程是3x -4y =0.解方程组⎩⎪⎨⎪⎧3x -4y =0,x 2+y 2=4得⎩⎪⎨⎪⎧ x =85,y =65或⎩⎪⎨⎪⎧x =-85,y =-65画出图形,可以判断点⎝ ⎛⎭⎪⎫85,65是圆x 2+y 2=4上到直线l 距离最小的点,点⎝ ⎛⎭⎪⎫-85,-65是圆x 2+y 2=4上到直线l 距离最大的点.6.2177.⎝ ⎛⎭⎪⎫-125,-25∪(0,2)解析 圆C 1和C 2的圆心坐标及半径分别为 C 1(m,0),r 1=2,C 2(-1,2m),r 2=3. 由两圆相交的条件得3-2<C 1C 2<3+2,即1<5m 2+2m +1<25,解得-125<m<-25或0<m<2.8.22解析 圆C :(x -1)2+(y -1)2=1的半径为1,要使PA 最小,只需PC 最小, (PC)min =|3+4+8|32+42=3.故(PA)min =32-12=22.9.26解析 将图(1)中二面角α-l -β展成平面,如图(2)所示.连结AC 交l 于M 则AM +CM 最小值为AC =BD 2+(AB +CD )2=26.10.c ≥2-1解析 对任意点P(x ,y)能使x +y +c ≥0成立,等价于c ≥[-(x +y)]max . 设b =-(x +y),则y =-x -b .∴圆心(0,1)到直线y =-x -b 的距离d =|1+b|2≤1,解得,-2-1≤b ≤2-1.∴c ≥2-1.11.56πR 3解析 半圆旋转一周形成一个球体,其体积为V 球=43πR 3,内部两个圆锥的体积之和为V 锥=13πCD 2·AB =13π·⎝ ⎛⎭⎪⎪⎫32R 2·2R =π2R 3, ∴所求几何体的体积为43πR 3-π2R 3=56πR 3. 12.x -y +1=0解析 ∵k PQ ·(-a)=-1,∴a =1,Q(1,0)代入x +y -b =0得b =1,将其代入ax -y +b =0,得x -y +1=0,此直线与x +y -1=0垂直,∴其关于x +y -1=0的对称的直线是其本身. 13.x 2+y 2=4解析 在Rt △AOP 中,∵∠APB =60°, ∴∠APO =30°,∴PO =2OA =2,动点的轨迹是以原点为圆心,2为半径的圆,方程为x 2+y 2=4. 14.(2)(3)(4)解析 由正方体的平面展开图可得:(2)(3)(4)是相同的. 15.解 (1)设所求直线的方程是 3x -y +m =0(m ≠-7), ∵点P(-4,2)在直线上, ∴3×(-4)-2+m =0,∴m =14,即所求直线方程是3x -y +14=0. (2)设所求直线的方程是x +3y +n =0, ∵点P(-4,2)在直线上, ∴-4+3×2+n =0,∴n =-2,即所求直线方程是x +3y -2=0. 16.证明 (1)∵M 为AB 的中点,D 为PB 中点, ∴DM ∥AP .又∵DM ⊄平面APC ,AP ⊂平面APC , ∴DM ∥平面APC .(2)∵△PMB 为正三角形,D 为PB 中点, ∴DM ⊥PB .又∵DM ∥AP ,∴AP ⊥PB .又∵AP ⊥PC ,PC ∩PB =P ,∴AP ⊥平面PBC . ∵BC ⊂平面PBC , ∴AP ⊥BC .又∵AC ⊥BC ,且AC ∩AP =A , ∴BC ⊥平面APC .又∵BC ⊂平面ABC ,∴平面ABC ⊥平面APC .17.解 由三视图可知,该几何体的直观图可以看成是一个圆台和圆柱的组合体,则圆台的高为h ′=1 cm ,上底半径为r =12 cm ,下底半径为R =1 cm ,母线l 为12+⎝ ⎛⎭⎪⎫1-122=52(cm ),圆柱的底面半径为R =1 cm ,高h 为12cm ,∴该几何体的体积为V =V 圆台+V 圆柱 =13(S 上+S 下+S 上·S 下)h ′+S 底面·h=13⎣⎢⎢⎡⎦⎥⎥⎤π×⎝ ⎛⎭⎪⎫122+π×12+π×⎝ ⎛⎭⎪⎫122×π×1+π×12×12=1312π(cm 3).该几何体的表面积为S 表面=πr 2+πR 2+π(R +r)·l +2πRh =π×⎝ ⎛⎭⎪⎫122+π×12+π×⎝ ⎛⎭⎪⎫1+12×52+2π×1×12=9+354π(cm 2).∴该几何体的体积为1312πcm 3,表面积为9+354πcm 2.18.解 方法一 设圆的方程为 x 2+y 2+Dx +Ey +F =0 ① 将P ,Q 坐标代入①得⎩⎪⎨⎪⎧4D -2E +F =-20 ②D -3E -F =10 ③令x =0,由①得y 2+Ey +F =0 ④ 据题设知|y 1-y 2|=43,其中y 1,y 2是④的两根.所以(y 1-y 2)2=(y 1+y 2)2-4y 1y 2=E 2-4F =48⑤解由②③⑤组成的方程组得D =-2,E =0,F =-12或D =-10,E =-8,F =4. 故所求圆的方程为x 2+y 2-2x -12=0或x 2+y 2-10x -8y +4=0. 方法二 易求PQ 的中垂线方程为x -y -1=0 ① 因为所求圆的圆心C 在直线①上, 故可设其坐标为(a ,a -1). 又圆C 的半径r =CP =(a -4)2+(a +1)2 ②由已知圆C 截y 轴所得的线段长为43,而点C 到y 轴的距离为|a|,∴r 2=a 2+⎝ ⎛⎭⎪⎪⎫4322,将②式代入得a 2-6a +5=0. 所以有a 1=1,r 1=13或a 2=5,r 2=37,即(x -1)2+y 2=13或(x -5)2+(y -4)2=37.19.解 设B(1,6)关于直线l 1:x -y +3=0的对称点为B ′(x 0,y 0),则⎩⎪⎨⎪⎧y 0-6x 0-1·1=-1,x 0+12-y 0+62+3=0,解得⎩⎪⎨⎪⎧x 0=3,y 0=4.∴B ′(3,4).依题意知B ′在入射光线上. 又A(-4,1)也在入射光线上, ∴所求方程为3x -7y +19=0.20.(1)证明 ∵圆C 过原点O ,∴r 2=t 2+4t 2.设圆C 的方程是(x -t)2+⎝ ⎛⎭⎪⎫y -2t 2=t 2+4t 2,令x =0,得y 1=0,y 2=4t ;令y =0,得x 1=0,x 2=2t .∴S △OAB =12OA ×OB =12×⎪⎪⎪⎪⎪⎪4t ×|2t|=4,即△OAB 的面积为定值. (2)解 ∵OM =ON ,CM =CN , ∴OC 垂直平分线段MN . ∵k MN =-2,∴k OC =12.∴直线OC 的方程是y =12x .∴2t =12t .解得t =2或t =-2. 当t =2时,圆心C 的坐标为(2,1),OC =5, 此时C 到直线y =-2x +4的距离d =15<5,圆C 与直线y =-2x +4相交于两点. 当t =-2时,圆心C 的坐标为(-2,-1), OC =5,此时C 到直线y =-2x +4的距离d =95>5, 圆C 与直线y =-2x +4不相交, ∴t =-2不符合题意,舍去. ∴圆C 的方程为(x -2)2+(y -1)2=5.。
模块综合测评(满分:150分 时间:120分钟)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量a =(cos 75°,sin 75°),b =(cos 15°,sin 15°),则|a -b |的值为( )A .12B .1C .2D .3B [如图,将向量a ,b 的起点都移到原点,即a =OA →,b =OB →,则|a -b |=|BA →|且∠xOA =75°,∠xOB =15°,于是∠AOB =60°,又因为|a |=|b |=1,则△AOB 为正三角形,从而|BA →|=|a -b |=1.]2.函数y =3sin ⎝ ⎛⎭⎪⎫π4-3x +3cos ⎝ ⎛⎭⎪⎫π4-3x 的最小正周期为( )A .2π3B .π3C .8D .4A [y =3sin ⎝ ⎛⎭⎪⎫π4-3x +3cos ⎝ ⎛⎭⎪⎫π4-3x=23sin ⎝ ⎛⎭⎪⎫5π12-3x ,所以T =2π|-3|=2π3.]3.已知cos (α+β)=13,cos (α-β)=15,则tan αtan β等于( )A .14B .-14C .16D .-16B[因为cos (α+β)=13,cos (α-β)=15,所以⎩⎪⎨⎪⎧cos αcos β-sin αsin β=13,cos αcos β+sin αsin β=15,解得⎩⎪⎨⎪⎧cos αcos β=415,sin αsin β=-115,所以tan αtan β=sin αsin βcos αcos β=-14.]4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若B =π2,a =6,sin 2B =2sin A sin C ,则△ABC 的面积S =( )A .32B .3C . 6D .6B [由sin 2B =2sin A sinC 及正弦定理,得b 2=2ac ,① 又B =π2,所以a 2+c 2=b 2.②联立①②解得a =c =6,所以S =12×6×6=3.]5.已知|p |=22,|q |=3,p ,q 的夹角为π4,如图,若AB →=5p +2q ,AC →=p -3q ,D 为BC 的中点,则|AD →|为( )A .152B .152C .7D .18A [∵AD →=12(AC →+AB →)=12(6p -q ),∴|AD →|=|AD →|2=12(6p -q )2=1236p 2-12p ·q +q 2 =1236×(22)2-12×22×3×cos π4+32=152.]6.若直线l 1和l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 与l 1,l 2都不相交B .l 与l 1,l 2都相交C .l 至多与l 1,l 2中的一条相交D .l 至少与l 1,l 2中的一条相交D [法一:由于l 与直线l 1,l 2分别共面,故直线l 与l 1,l 2要么都不相交,要么至少与l 1,l 2中的一条相交.若l ∥l 1,l ∥l 2,则l 1∥l 2,这与l 1,l 2是异面直线矛盾.故l 至少与l 1,l 2中的一条相交.法二:如图1,l 1与l 2是异面直线,l 1与l 平行,l 2与l 相交,故A ,B 不正确;如图2,l 1与l 2是异面直线,l 1,l 2都与l 相交,故C 不正确.]图1 图27.如图,在圆O 中,若弦AB =3,弦AC =5,则AO →·BC →的值是( )A .-8B .-1C .1D .8D [取BC 的中点D ,连接AD ,OD (图略),则有OD ⊥BC .∵AD →=12(AB →+AC →),AO →=AD →+DO →,BC →=AC →-AB →,∴AO →·BC →=(AD →+DO →)·BC →=AD →·BC →+DO →·BC →=AD →·BC →=12(AB →+AC →)·(AC →-AB →)=12(AC →2-AB →2)=12(52-32)=8,故选D.]8.函数y =⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫x +π4+sin ⎝⎛⎭⎪⎫x +π4[cos (x +π4)-sin (x +π4)]在一个周期内的图象是( )A BC DB [y =(22cos x -22sin x +22sin x +22cos x )·(22cos x -22sin x -22sinx -22cos x )=2cos x ·(-2sin x )=-2sin x cos x =-sin 2x ,故选B.]二、选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求.全部选对得5分,部分选对得3分,有选错的得0分.9.已知复数z =i1-2i ,则以下说法正确的是( )A .复数z 的虚部为i5B .z 的共轭复数z -=25-i5C .|z |=55D .在复平面内与z 对应的点在第二象限CD [∵z =i 1-2i =i (1+2i )(1-2i )(1+2i )=-25+15i ,∴复数z 的虚部为15,z 的共轭复数z -=-25-i 5,|z |=⎝ ⎛⎭⎪⎫-252+⎝ ⎛⎭⎪⎫152=55,复平面内与z 对应的点的坐标为⎝ ⎛⎭⎪⎫-25,15,在第二象限.故选CD.]10.已知A ,B ,C 表示不同的点,l 表示直线,α,β表示不同的平面,则下列推理正确的是( )A .A ∈l ,A ∈α,B ∈l ,B ∈α⇒l ⊂αB .A ∈α,A ∈β,B ∈α,B ∈β⇒α∩β=ABC .l ⊄α,A ∈l ⇒A ∉αD .A ∈α,A ∈l ,l ⊄α⇒l ∩α=AABD [对于选项A :由基本事实2知,l ⊂α,故选项A 正确;对于选项B :因为α,β表示不同的平面,由基本事实3知,平面α,β相交,且α∩β=AB ,故选项B 正确;对于选项C :l ⊄α分两种情况:l 与α相交或l ∥α.当l 与α相交时,若交点为A ,则A ∈α,故选项C 错误;对于选项D :由基本事实2逆推可得结论成立,故选项D 成立;故选ABD.] 11.已知函数f ()x =2cos 22x -2,下列命题中的真命题有( ) A .∃β∈R ,f ()x +β为奇函数B .∃α∈⎝⎛⎭⎪⎫0,3π4,f ()x =f ()x +2α对x ∈R 恒成立C .∀x 1,x 2∈R ,若||f ()x 1-f ()x 2=2,则||x 1-x 2的最小值为π4D .∀x 1,x 2∈R ,若f ()x 1=f ()x 2=0,则x 1-x 2=k π()k ∈Z BC [由题意f ()x =2cos 22x -2=cos4x -1; ∵f ()x =cos 4x -1的图象如图所示;函数f ()x +β的图象是f ()x 的图象向左或向右平移||β个单位, 它不会是奇函数的,故A 错误;若 f ()x =f ()x +2α,∴cos 4x -1=cos ()4x +8α-1,∴8α=2k π,∴α=k π4,k ∈Z ;又∃α∈⎝⎛⎭⎪⎫0,3π4,∴取α=π4或π2时,f ()x =f ()x +2α对x ∈R 恒成立,故B 正确;||f ()x 1-f ()x 2=||cos 4x 1-cos 4x 2=2时,||x 1-x 2的最小值为T2=2π2×4=π4,故C 正确;当f ()x 1=f ()x 2=0时, x 1-x 2=kT =k ·2π4=k π2()k ∈Z ,故D 错误;故选BC.]12.如图,在四棱锥P ABCD 中,PC ⊥底面ABCD ,四边形ABCD 是直角梯形,AB ∥CD ,AB ⊥AD ,AB =2AD =2CD =2,F 是AB 的中点,E 是PB 上的一点,则下列说法正确的是( )A .若PB =2PE ,则EF ∥平面PACB .若PB =2PE ,则四棱锥P ABCD 的体积是三棱锥E ACB 体积的6倍C .三棱锥P ADC 中有且只有三个面是直角三角形D .平面BCP ⊥平面ACEAD [对于选项A ,因为PB =2PE ,所以E 是PB 的中点, 因为F 是AB 的中点,所以EF ∥PA ,因为PA ⊂平面PAC ,EF ⊄平面PAC ,所以EF ∥平面PAC ,故A 正确; 对于选项B ,因为PB =2PE ,所以V P ABCD =2V E ABCD , 因为AB ∥CD ,AB ⊥AD ,AB =2AD =2CD =2,所以梯形ABCD 的面积为12()CD +AB ·AD =12×()1+2×1=32,S △ABC =12AB ·AD =12×2×1=1,所以V E ABCD =32V E ABC ,所以V P ABCD =3V E ABC ,故B 错误;对于选项C ,因为PC ⊥底面ABCD ,所以PC ⊥AC ,PC ⊥CD ,所以△PAC ,△PCD 为直角三角形,又AB ∥CD ,AB ⊥AD ,所以AD ⊥CD ,则△ACD 为直角三角形, 所以PA 2=PC 2+AC 2=PC 2+AD 2+CD 2,PD 2=CD 2+PC 2,则PA2=PD2+AD2,所以△PAD是直角三角形,故三棱锥PADC的四个面都是直角三角形,故C错误;对于选项D,因为PC⊥底面ABCD,所以PC⊥AC,在Rt△ACD中,AC=AD2+CD2=2,在直角梯形ABCD中,BC=AD2+()AB-CD2=2,所以AC2+BC2=AB2,则AC⊥BC,因为BC∩PC=C,所以AC⊥平面BCP,因为AC⊂平面ACE,所以平面BCP⊥平面ACE,故D正确,故选AD.]三、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.已知复数z满足(1+2i)z=-3+4i,则|z|=________.5 [∵(1+2i)z=-3+4i,∴|1+2i|·|z|=|-3+4i|,则|z|=(-3)2+4212+22= 5.]14.设向量a=(3,3),b=(1,-1).若(a+λb)⊥(a-λb),则实数λ=________.±3 [因为a+λb=(3+λ,3-λ),a-λb=(3-λ,3+λ),又(a+λb)⊥(a -λb),所以(a+λb)·(a-λb)=(3+λ)·(3-λ)+(3-λ)(3+λ)=0,解得λ=±3.]15.如图所示,在正方体ABCDA1B1C1D1中,E、F、G、H分别为AA1、AB、BB1、B1C1的中点,则异面直线EF与GH所成的角等于________.60°[如图,取A 1B1的中点M,连接GM,HM.由题意易知EF∥GM,且△GMH为正三角形.∴异面直线EF与GH所成的角即为GM与GH的夹角∠HGM.而在正三角形GMH中∠HGM=60°.]16.关于函数f (x )=cos ⎝ ⎛⎭⎪⎫2x -π3+cos ⎝⎛⎭⎪⎫2x +π6,有下列说法:①y =f (x )的最大值为2;②y =f (x )是以π为最小正周期的周期函数;③y =f (x )在区间⎝ ⎛⎭⎪⎫π24,13π24上是减少的; ④将函数y =2cos 2x 的图象向左平移π24个单位长度后,将与已知函数的图象重合.其中正确说法的序号是________.①②③ [f (x )=cos (2x -π3)+cos (2x +π6)=cos (2x -π3)+cos [π2+(2x -π3)] =cos (2x -π3)-sin (2x -π3)=2cos (2x -π3+π4)=2cos (2x -π12),所以①②③正确,④错误.]四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)设向量e 1,e 2的夹角为60°且|e 1|=|e 2|=1,如果AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2).(1)证明:A ,B ,D 三点共线;(2)试确定实数k 的值,使k 的取值满足向量2e 1+e 2与向量e 1+k e 2垂直. [解] (1)证明:因为AB →=e 1+e 2,BD →=BC →+CD →=5e 1+5e 2,所以BD →=5AB →,即AB →,BD →共线,又AB →,BD →有公共点B ,所以A ,B ,D 三点共线. (2)因为(2e 1+e 2)⊥(e 1+k e 2),所以(2e 1+e 2)·(e 1+k e 2)=0,2e 21+2k e 1·e 2+e 1·e 2+k e 22=0,即2+k +12+k =0,解得k =-54.18.(本小题满分12分)已知α∈⎝ ⎛⎭⎪⎫π2,π,且sin α2+cos α2=62.(1)求cos α的值;(2)若sin (α-β)=-35,β∈⎝ ⎛⎭⎪⎫π2,π,求cos β的值.[解] (1)因为sin α2+cos α2=62,两边同时平方,得sin α=12.又π2<α<π,所以cos α=-32.(2)因为π2<α<π,π2<β<π,所以-π<-β<-π2,故-π2<α-β<π2.又sin (α-β)=-35,所以cos (α-β)=45.cos β=cos [α-(α-β)]=cos αcos (α-β)+sin αsin (α-β) =-32×45+12×⎝ ⎛⎭⎪⎫-35=-43+310.19.(本小题满分12分)已知函数f (x )=4tan x sin (π2-x )cos ⎝⎛⎭⎪⎫x -π3- 3.(1)求f (x )的定义域与最小正周期;(2)讨论f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的单调性.[解] (1)f (x )的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠π2+k π,k ∈Z .f (x )=4tan x cos x cos ⎝ ⎛⎭⎪⎫x -π3-3=4sin x cos (x -π3)-3=4sin x ⎝⎛⎭⎪⎪⎫12cos x +32sin x -3=2sin x cos x +23sin 2x -3=sin2x +3(1-cos 2x )-3=sin 2x -3cos 2x =2sin ⎝⎛⎭⎪⎫2x -π3.所以f (x )的最小正周期为T =2π2=π.(2)令z =2x -π3,则函数y =2sin z 的递增区间是[-π2+2k π,π2+2k π](k ∈Z ).由-π2+2k π≤2x -π3≤π2+2k π(k ∈Z ),得-π12+k π≤x ≤5π12+k π(k ∈Z ).设A =⎣⎢⎡⎦⎥⎤-π4,π4,B ={x ⎪⎪⎪-π12+k π≤x ≤5π12+k π,k ∈Z },易知A ∩B =[-π12,π4].所以当x ∈[-π4,π4]时,f (x )在区间[-π12,π4]上是递增的,在区间[-π4,-π12]上是递减的.20.(本小题满分12分)如图,在三棱锥S ABC 中,平面SAB ⊥平面SBC ,AB ⊥BC ,AS =AB .过A 作AF ⊥SB ,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.求证:(1)平面EFG ∥平面ABC ; (2)BC ⊥SA .[证明] (1)因为AS =AB ,AF ⊥SB ,垂足为F ,所以F 是SB 的中点. 又因为E 是SA 的中点,所以EF ∥AB .因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以EF ∥平面ABC . 同理EG ∥平面ABC .又EF ∩EG =E ,所以平面EFG ∥平面ABC .(2)因为平面SAB ⊥平面SBC ,且交线为SB ,又AF ⊂平面SAB ,AF ⊥SB ,所以AF ⊥平面SBC .因为BC ⊂平面SBC ,所以AF ⊥BC .又因为AB ⊥BC ,AF ∩AB =A ,AF ⊂平面SAB ,AB ⊂平面SAB ,所以BC ⊥平面SAB . 因为SA ⊂平面SAB ,所以BC ⊥SA .21.(本小题满分12分)在平面四边形ABCD 中,∠ADC =90°,∠A =45°,AB =2,BD =5.(1)求cos ∠ADB ; (2)若DC =22,求BC .[解] (1)在△ABD 中,由正弦定理得BD sin A =ABsin ∠ADB ,由题设知,5sin 45°=2sin ∠ADB ,所以sin ∠ADB =25.由题设知,∠ADB <90°,所以cos ∠ADB =1-225=235.(2)由题设及(1)知,cos ∠BDC =sin ∠ADB =25.在△BCD 中,由余弦定理得BC 2=BD 2+DC 2-2BD ·DC ·cos ∠BDC =25+8-2×5×22×25=25,所以BC =5.22.(本小题满分12分)如图,在三棱柱ABC A 1B 1C 1中,AA 1⊥平面ABC ,AC =BC ,AB =2A 1A =4,以AB ,BC 为邻边作平行四边形ABCD ,连接A 1D ,DC 1.(1)求证:DC 1∥平面A 1ABB 1; (2)若二面角A 1-DC -A 为45°; ①求证:平面A 1C 1D ⊥平面A 1AD ;②求直线AB 1与平面A 1AD 所成角的正切值.[解] (1)证明:连接AB 1,∵AD ∥BC ∥B 1C 1且AD =BC =B 1C 1, ∴四边形ADC 1B 1为平行四边形,∴AB 1∥DC 1,又∵AB 1⊂平面A 1ABB 1,DC 1⊄平面A 1ABB 1,∴DC 1∥平面A 1ABB 1. (2)①证明:取DC 的中点M ,连接A 1M ,AM .易知Rt △A 1AD ≌Rt △A 1AC ,∴A 1D =A 1C ,∴A 1M ⊥DC ,又AM ⊥DC ,∴∠A 1MA 为二面角A 1DC A 的平面角,∴∠A 1MA =45°. ∴在Rt △A 1AM 中,AA 1=AM =2,∴AD =AC =22, ∴AC 2+AD 2=DC 2,∴AC ⊥AD ,又∵AC ⊥AA 1,AD ∩AA 1=A , ∴AC ⊥平面A 1AD ,又∵AC ∥A 1C 1,∴A 1C 1⊥平面A 1AD . ∵A 1C 1⊂平面A 1C 1D ,∴平面A 1C 1D ⊥平面A 1AD . ②∵AB 1∥C 1D ,∴C 1D 与平面A 1AD 所成角与AB 1与平面A 1AD 所成角相等. 由①知C 1A 1⊥平面A 1AD ,∴A 1D 为C 1D 在平面A 1AD 内的射影, 故∠A 1DC 1为直线DC 1与平面A 1AD 所成角,在Rt △A 1DC 1中,tan ∠A 1DC 1=A 1C 1A 1D =63,∴直线AB 1与平面A 1AD 所成角的正切值为63.。
模块综合检测(时间:120分钟,满分150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足i z +2=i,则在复平面内,z 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A2.在△ABC 中,a =3,b =2,A =30°,则sin B =( ) A .13 B .23 C .23D .223【答案】A3.某校高一年级有男生450人,女生550人,若在各层中按比例抽取样本,总样本量为40,则在男生、女生中抽取的人数分别为( )A .17,23B .18,22C .19,21D .22,18【答案】B4.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则a -2b 与b 的夹角是( ) A .30° B .60° C .120° D .150° 【答案】C5.在某中学举行的环保知识竞赛中,将三个年级参赛学生的成绩进行整理后分为5组,绘制如图所示的频率分布直方图,图中从左到右依次为第一、第二、第三、第四、第五小组,已知第二小组的频数是40,则成绩在80~100分的学生人数是( )A .25B .20C .18D .15【答案】D6.2021年是中国共产党成立100周年,电影频道推出“经典频传:看电影,学党史”系列短视频,首批21支短视频全网发布,传扬中国共产党伟大精神,为广大青年群体带来精神感召.小李同学打算从《青春之歌》《闪闪的红星》《英雄儿女》《焦裕禄》等四支短视频中随机选择两支观看,则选择观看《青春之歌》的概率为( )A .12B .13C .14D .25【答案】A7.我国南宋著名数学家秦九韶在他的著作《数书九章》卷五“田域类”里记载了这样一个题目:“今有沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步.欲知为田几何.”这道题讲的是有一块三角形的沙田,三边长分别为13里,14里,15里,假设1里按500米计算,则该沙田的面积为( )A .15平方千米B .18平方千米C .21平方千米D .24平方千米【答案】C【解析】设在△ABC 中,a =13里,b =14里,c =15里,∴由余弦定理得cos C =132+142-1522×13×14=513,∴sin C =1213.故△ABC 的面积为12×13×14×1213×5002×11 0002=21(平方千米).故选C .8.在三棱锥ABCD 中,△ABC 与△BCD 都是正三角形,平面ABC ⊥平面BCD ,若该三棱锥的外接球的体积为2015π,则△ABC 的边长为( )A .332 B .634 C .633 D .6【答案】D【解析】如图,取BC 中点M ,连接AM ,DM .设等边△ABC 与等边△BCD 的外心分别为N ,G ,三棱锥外接球的球心为O ,连接OA ,OD ,ON ,OG .由V =4π3R 3=2015π,得外接球半径R =15.设△ABC 的边长为a ,则ON =GM =13DM =36a ,AN =23AM =33a .在Rt △ANO 中,由ON 2+AN 2=R 2,得a 212+a 23=15,解得a =6.故选D .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法中错误的是( )A .若事件A 与事件B 互斥,则P (A )+P (B )=1B .若事件A 与事件B 满足P (A )+P (B )=1,则事件A 与事件B 为对立事件C .“事件A 与事件B 互斥”是“事件A 与事件B 对立”的必要不充分条件D .某人打靶时连续射击两次,则事件“至少有一次中靶”与事件“至多有一次中靶”互为对立事件【答案】ABD【解析】若事件A 与事件B 互斥,则有可能P (A )+P (B )<1,故A 不正确;若事件A 与事件B 为同一事件,且P (A )=0.5,则满足P (A )+P (B )=1,但事件A 与事件B 不是对立事件,B 不正确;互斥不一定对立,对立一定互斥,故C 正确;某人打靶时连续射击两次,事件“至少有一次中靶”与事件“至多有一次中靶”既不互斥也不对立,D 错误.故选ABD .10.如图是民航部门统计的今年春运期间十二个城市售出的往返机票的平均价格以及相比去年同期变化幅度的数据统计图表,根据图表,下面叙述正确的是( )A .深圳的变化幅度最小,北京的平均价格最高B .深圳和厦门的春运期间往返机票价格同去年相比有所下降C .平均价格从高到低居于前三位的城市为北京、深圳、广州D .平均价格的涨幅从高到低居于前三位的城市为天津、西安、厦门 【答案】ABC【解析】由图可知深圳对应的小黑点最接近0%,故变化幅度最小,北京对应的条形图最高,则北京的平均价格最高,A 正确;深圳和厦门对应的小黑点在0%以下,故深圳和厦门的价格同去年相比有所下降,B 正确;条形图由高到低居于前三位的城市为北京、深圳和广州,C 正确;平均价格的涨幅由高到低分别为天津、西安和南京,D 错误.故选ABC .11.△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论中正确的是( )A .a 为单位向量B .a ⊥bC .b ∥BC →D .(4a +b )⊥BC →【答案】ACD【解析】由AB →=2a ,得a =12AB →,又AB =2,所以|a |=1,即a 是单位向量,A 正确;a ,b 的夹角为120°,B 错误;因为AC →=AB →+BC →=2a +b ,所以BC →=b ,C 正确;(4a +b )·BC →=4a ·b +b2=4×1×2×cos 120°+4=-4+4=0,D 正确.故选ACD .12.如图,点P 在正方体ABCD -A 1B 1C 1D 1的面对角线BC 1上运动,则( )A .三棱锥A -D 1PC 的体积不变B .A 1P ∥平面ACD 1C .DP ⊥BC 1D .平面PDB 1⊥平面ACD 1【答案】ABD【解析】连接BD 交AC 于点O ,连接DC 1交D 1C 于点O 1,连接OO 1,则OO 1∥BC 1,所以BC 1∥平面AD 1C ,动点P 到平面AD 1C 的距离不变,所以三棱锥PAD 1C 的体积不变,又因为V 三棱锥PAD 1C =V 三棱锥AD 1PC ,所以A 正确;因为平面A 1C 1B ∥平面AD 1C ,A 1P ⊂平面A 1C 1B ,所以A 1P ∥平面ACD 1,B 正确;由于当点P 在B 点时,DB 不垂直于BC 1,即DP 不垂直BC 1,故C 不正确;由于DB 1⊥D 1C ,DB 1⊥AD 1,D 1C ∩AD 1=D 1,所以DB 1⊥平面ACD 1,又因为DB 1⊂平面PDB 1,所以平面PDB 1⊥平面ACD 1,D 正确.故选ABD .三、填空题:本题共4小题,每小题5分,共20分.13.已知复数z =1+3i 1-i ,z -为z 的共轭复数,则z 的虚部为________.【答案】-2【解析】由z =1+3i 1-i =(1+3i )(1+i )(1-i )(1+i )=-2+4i2=-1+2i,得z -=-1-2i,∴复数z 的虚部为-2.14.一组数据按从小到大的顺序排列为1,3,3,x ,7,8,10,11,其中x ≠7,已知该组数据的中位数为众数的2倍,则:(1)该组数据的上四分位数是________; (2)该组数据的方差为________. 【答案】(1)9 (2)11.25【解析】(1)一组数据按从小到大的顺序排列为1,3,3,x ,7,8,10,11,其中x ≠7,∵该组数据的中位数为众数的2倍,∴x +72=2×3,解得x =5.∵8×0.75=6,∴该组数据的上四分位数是8+102=9.(2)该组数据的平均数为:18(1+3+3+5+7+8+10+11)=6,∴该组数据的方差为18[(1-6)2+(3-6)2+(3-6)2+(5-6)2+(7-6)2+(8-6)2+(10-6)2+(11-6)2]=11.25.15.a ,b ,c 分别为△ABC 内角A ,B ,C 的对边.已知ab cos(A -B )=a 2+b 2-c 2,A =45°,a =2,则c =________.【答案】4105【解析】由ab cos(A -B )=a 2+b 2-c 2,得cos(A -B )=2·a 2+b 2-c 22ab=2cos C =-2cos(A+B ),整理,得3cos A cos B =sin A sin B ,所以tan A tan B =3.又A =45°,所以tan A =1,tan B =3.由sin B cos B =3,sin 2B +cos 2B =1,得sin B =31010,cosB =1010.所以sin C =sin(A +B )=22⎝ ⎛⎭⎪⎫31010+1010=255.由正弦定理,得c =a sin C sin A =4105. 16.如图,AB →=3AD →,AC →=4AE →,BE 与CD 交于P 点,若AP →=mAB →+nAC →,则m =________,n =________.【答案】311 211【解析】因为AB →=3AD →,AC →=4AE →,且E 、P 、B 三点共线,D 、P 、C 三点共线,所以存在x ,y 使得AP →=xAE →+(1-x )AB →=14xAC →+(1-x )AB →.因为AP →=yAC →+(1-y )AD →=yAC →+13(1-y )AB →,所以⎩⎪⎨⎪⎧14x =y ,1-x =13(1-y ),解得x =811,y =211,所以AP →=14×811AC →+⎝ ⎛⎭⎪⎫1-811AB →=211AC →+311AB →=311AB →+211AC →.又因为AP →=mAB →+nAC →,所以m =311,n =211.四、解答题:本题共6小题,17题10分,其余小题为12分,共70分,解答应写出必要的文字说明、证明过程或演算步骤.17.已知复数z =m 2-m i(m ∈R),若|z |=2,且z 在复平面内对应的点位于第四象限. (1)求复数z ;(2)若z 2+az +b =1+i,求实数a ,b 的值.解:(1)∵z =m 2-m i,|z |=2,∴m 4+m 2=2,得m 2=1.又∵z 在复平面内对应的点位于第四象限,∴m =1,即z =1-i.(2)由(1)得z =1-i,∴z 2+az +b =1+i ⇒(1-i)2+a (1-i)+b =1+i.∴(a +b )-(2+a )i =1+i,∴⎩⎪⎨⎪⎧a +b =1,2+a =-1,解得a =-3,b =4.18.在①b +b cos C =2c sin B ,②S △ABC =2CA →·CB →,③(3b -a )cos C =c cos A ,三个条件中任选一个,补充在下面问题中,并解决问题.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足________. (1)求cos C 的值;(2)若点E 在AB 上,且AE →=2EB →,EC =413,BC =3,求sin B .解:(1)若选①:因为b +b cos C =2c sin B ,由正弦定理可得sin B +sin B cos C =2sin C sin B .因为sin B ≠0,所以1+cos C =2sin C .联立⎩⎨⎧1+cos C =2sin C ,sin 2C +cos 2C =1,解得cos C =13,sin C =223,故cos C =13. 若选②:因为S △ABC =2CA →·CB →,所以12ab sin C =2ba cos C ,即sin C =22cos C >0,联立sin 2C +cos 2C =1,可得cos C =13.若选③:因为(3b -a )cos C =c cos A ,由正弦定理可得(3sin B -sin A )cos C =sin C cosA ,所以3sinB cosC =sin A cos C +sin C cos A =sin(A +C )=sin B .因为sin B ≠0,所以cos C =13.(2)由余弦定理可得cos ∠AEC =AE 2+EC 2-AC 22AE ·EC =49c 2+EC 2-b 243c ·EC ,cos ∠BEC =BE 2+EC 2-BC 22BE ·EC=19c 2+EC 2-a 223c ·EC ,因为cos ∠AEC +cos ∠BEC =0,所以49c 2+EC 2-b 243c ·EC +19c 2+EC 2-a 223c ·EC =0,即2c 2+9EC 2-3b 2-6a 2=0,则2c 2-3b 2=6a 2-9EC 2=6×9-9×419=13,①同时cos C =a 2+b 2-c 22ab =13,即b 2-c 2=2b -9,②联立①②可得b 2+4b -5=0,解得b =1,则c =22,故cos B =a 2+c 2-b 22ac =223,则sin B=13. 19.如图所示,在四棱锥MABCD 中,底面ABCD 为直角梯形,BC ∥AD ,∠CDA =90°,AD =4,BC =CD =2,△MBD 为等边三角形.(1)求证:BD ⊥MC ;(2)若平面MBD ⊥平面ABCD ,求三棱锥CMAB 的体积. (1)证明:取BD 中点O ,连接CO 、MO ,如图所示: ∵△MBD 为等边三角形,且O 为BD 中点,∴MO ⊥BD . 又BC =CD ,O 为BD 中点,∴CO ⊥BD .又MO ∩CO =O ,∴BD ⊥平面MCO . ∵MC ⊂平面MCO ,∴BD ⊥MC .(2)解:∵平面MBD ⊥平面ABCD ,且平面MBD ∩平面ABCD =BD ,MO ⊥BD , ∴MO ⊥平面ABCD .由(1)知MB =MD =BD =22,MO =MB 2-BO 2=6,S △ABC =12BC ·CD =2,∴V CMAB =V MABC =13×S △ABC ×MO =263.20.某冰糖橙为甜橙的一种,云南著名特产,以味甜皮薄著称.该橙按照等级可分为四类:珍品、特级、优级和一级(每箱有5 kg).某采购商打算采购一批该橙子销往省外,并从采购的这批橙子中随机抽取100箱,利用橙子的等级分类标准得到的数据如下表:等级 珍品 特级 优级 一级 箱数 40 30 10 20 售价/(元·kg -1)36302418(2)按照分层抽样的方法,从这100箱橙子中抽取10箱,试计算各等级抽到的箱数; (3)若在(2)抽取的特级品和一级品的箱子上均编上号放在一起,再从中抽取2箱,求抽取的2箱中两种等级均有的概率.解:(1)依题意可知,样本中的100箱不同等级橙子的平均价格为36×410+30×310+24×110+18×210=29.4(元/kg). (2)依题意,珍品抽到110×40=4(箱),特级抽到110×30=3(箱),优级抽到110×10=1(箱),一级抽到110×20=2(箱).(3)抽到的特级有3箱,编号为A 1,A 2,A 3,抽到的一级有2箱,编号为B 1,B 2. 从中抽取2箱,有(A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2)共10种可能,两种等级均有的有(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2)共6种可能,∴所求概率p =610=35.21.已知向量a =(3cos ωx ,sin ωx ),b =(cos ωx ,cos ωx ),其中ω>0,记函数f (x )=a ·b .(1)若函数f (x )的最小正周期为π,求ω的值;(2)在(1)的条件下,已知△ABC 的内角A ,B ,C 对应的边分别为a ,b ,c ,若f ⎝ ⎛⎭⎪⎫A 2=3,且a=4,b +c =5,求△ABC 的面积.解:(1)f (x )=a ·b =3cos 2ωx +sin ωx ·cos ωx =3(cos 2ωx +1)2+sin 2ωx2=sin ⎝⎛⎭⎪⎫2ωx +π3+32. ∵f (x )的最小正周期为π,且ω>0,∴2π2ω=π,解得ω=1.(2)由(1)得f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3+32.∵f ⎝ ⎛⎭⎪⎫A 2=3,∴sin ⎝ ⎛⎭⎪⎫A +π3=32. 由0<A <π,得π3<A +π3<4π3,∴A +π3=2π3,解得A =π3.由余弦定理a 2=b 2+c 2-2bc cos A ,得16=b 2+c 2-bc .联立b +c =5,得bc =3. ∴S △ABC =12bc sin A =12×3×32=334.22.“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称.某市为了了解人们对“一带一路”的认知程度,对不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分为100分(90分及以上为认知程度高).现从参赛者中抽取了x 人,按年龄分成5组,第一组:[20,25),第二组:[25,30),第三组:[30,35),第四组:[35,40),第五组:[40,45),得到如图所示的频率分布直方图,已知第一组有6人.(1)求x ;(2)求抽取的x 人的年龄的中位数(结果保留整数);(3)从该市大学生、军人、医务人员、工人、个体户,五种人中用分层抽样的方法依次抽取6人,42人,36人,24人,12人,分别记为1~5组,从5个按年龄分的组和5个按职业分的组中每组各选派1人参加知识竞赛,分别代表相应组的成绩,年龄组中1~5 组的成绩分别为93,96,97,94,90,职业组中1~5 组的成绩分别为93,98,94,95,90.①分别求5个年龄组和5个职业组成绩的平均数和方差;②以上述数据为依据,评价5个年龄组和5个职业组对“一带一路”的认知程度,并谈谈你的感想.解:(1)根据频率分布直方图得第一组的频率为0.01×5=0.05,∴6x=0.05,解得x =120.(2)设中位数为a ,则0.01×5+0.07×5+(a -30)×0.06=0.5,∴a =953≈32,则中位数为32.(3)①5个年龄组成绩的平均数为x 1=15×(93+96+97+94+90)=94,方差为s 21=15×[(-1)2+22+32+02+(-4)2]=6.5个职业组成绩的平均数为x 2=15×(93+98+94+95+90)=94,方差为s 22=15×[(-1)2+42+02+12+(-4)2]=6.8.②从平均数来看两组的认知程度相同,从方差来看年龄组的认知程度更稳定.。
模块综合检测(时间120分钟满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在平面直角坐标系中,正△ABC的边BC所在直线的斜率是0,则AC,AB所在直线的斜率之和为()A.-2错误!未定义书签。
B.0C.错误!未定义书签。
ﻩD.2错误!未定义书签。
解析:选B易知k AB=错误!未定义书签。
,k AC=-错误!,∴k AB+k AC=0.2.直线(2m2+m-3)x+(m2-m)y=4m-1在x轴上的截距为1,则m等于( )A.1 B.2C.-错误!未定义书签。
ﻩD.2或-错误!未定义书签。
解析:选D 令y=0,则(2m2+m-3)x=4m-1,所以直线在x轴上的截距为错误!=1,所以m=2或m=-错误!未定义书签。
3.在空间直角坐标系中,点B是点A(1,2,3)在yOz坐标平面内的射影,O为坐标原点,则|OB|等于( )A.\r(14) B.错误!未定义书签。
C.2错误!未定义书签。
ﻩD.错误!未定义书签。
解析:选B点A(1,2,3)在yOz坐标平面内的射影为B(0,2,3),∴|OB|=错误!未定义书签。
=错误!.4.已知直线nx-y=n-1和直线ny-x=2n的交点在第二象限,则实数n的取值范围是()A.(0,1) ﻩB.错误!未定义书签。
∪(1,+∞)C.错误!D.错误!未定义书签。
解析:选C由题意,知当n=1时,两直线平行,当n=-1 时,两直线重合,故n≠±1.解方程组错误!得x=错误!,y=错误!。
∴错误!<0且错误!>0,解得0<n<错误!未定义书签。
5.下列说法不正确的是()A.空间中,一组对边平行且相等的四边形一定是平行四边形 B .同一平面的两条垂线一定共面C .过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一平面内D .过一条直线有且只有一个平面与已知平面垂直解析:选D 如图所示,在正方体AB CD .A1B 1C 1D 1中,AD ⊥平面DCC1D 1,因此平面AB CD 、平面AA 1D 1D 均与平面DC C1D 1垂直而且平面AA 1D 1D∩平面ABCD =A D,显然选项D 不正确,故选D 。
高中数学模块综合检测(C)(含解析)新人教A版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学模块综合检测(C)(含解析)新人教A版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学模块综合检测(C)(含解析)新人教A版必修4的全部内容。
模块综合检测(C)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.若角600°的终边上有一点(-4,a),则a的值是()A.4错误! B.-4错误!C。
错误! D.-错误!2.若向量a=(3,m),b=(2,-1),a·b=0,则实数m的值为()A.-32B。
错误! C.2 D.63.设向量a=(cos α,错误!),若a的模长为错误!,则cos 2α等于( )A.-错误! B.-错误! C.错误! D。
错误!4.平面向量a与b的夹角为60°,a=(2,0),|b|=1,则|a+2b|等于( )A.错误! B.2错误! C.4 D.125.tan 17°+tan 28°+tan 17°tan 28°等于()A.-错误! B.错误! C.-1 D.16.若向量a=(1,1),b=(2,5),c=(3,x),满足条件(8a-b)·c=30,则x等于()A.6 B.5 C.4 D.37.要得到函数y=sin x的图象,只需将函数y=cos(x-错误!)的图象()A.向右平移错误!个单位B.向右平移错误!个单位C.向左平移π3个单位D.向左平移错误!个单位8.设函数f(x)=sin(2x+π3),则下列结论正确的是( )A.f(x)的图象关于直线x=错误!对称B.f(x)的图象关于点(错误!,0)对称C.把f(x)的图象向左平移错误!个单位,得到一个偶函数的图象D.f(x)的最小正周期为π,且在[0,错误!]上为增函数9.已知A,B,C是锐角△ABC的三个内角,向量p=(sin A,1),q=(1,-cos B),则p与q 的夹角是()A.锐角 B.钝角C.直角 D.不确定10.已知函数f(x)=(1+cos 2x)sin2x,x∈R,则f(x)是()A.最小正周期为π的奇函数B.最小正周期为错误!的奇函数C.最小正周期为π的偶函数D.最小正周期为错误!的偶函数11.设0≤θ≤2π,向量错误!=(cos θ,sin θ),错误!=(2+sin θ,2-cos θ),则向量错误!的模长的最大值为( )A。
1 相交、平行或异面 B.相交或平行异面D.平行或异面解析:a 与c 可以相交、平行或异面,分别如图中的①,②,③.答案:A2已知直线l 1:(k-3)x+(4-2k )y+1=0与l 2:2(k-3)x-2y+3=0平行,则k 的值是( )或3 B.1或 C.3或 D.1或252523四棱台 D.三棱台解析:由三视图知该几何体为四棱锥,其中有一侧棱垂直于底面,底面为直角梯形.答案:B4在直线3x-4y-27=0上到点P (2,1)距离最近的点的坐标为( )A .(5,-3)B .(9,0)C .(-3,5)D .(-5,3)解析:过P (2,1)向此直线引垂线,其垂足即为所求的点,过点P 作直线3x-4y-27=0的垂线方程为4x+3y+m=0.因为点P (2,1)在此垂线上,所以4×2+3×1+m=0.所以m=-11.由联立求解,得所求的点的坐标为(5,-3).{3x -4y -27=0,4x +3y -11=0,答案:A5A.216C.108 cm3D.138 cm3此几何体是由长方体与三棱柱组合而成的,其体积为答案:B7若圆C:x2+y2+2x-4y+3=0关于直线2ax+by+6=0对称,则由点(a,b)向圆所作的切线长的最小值是( B.3C.4D.62解析:圆的标准方程为(x+1)2+(y-2)2=2,则圆心为(-1,2),半径为.因为圆关于直线ax+by+6=0对称,所以圆心在直线2ax+by+6=0上,所以-2a+2b+6=0,即b=a-3,点(a,b)到圆心的距离为d=+1)2+(b-2)2=(a+1)2+(a-3-2)2=2a2-8a+26=2(a-2)2+18.所以当182(32)2-(2)2=16时,d有最小值=3,此时切线长最小,为=4,故选C.答案:C8球的半径等于D.4石材为一个三棱柱(相对应的长方体的一半由题意可知主视图三角形的内切圆的半径即为球的半径=2.-10答案:B9垂直于直线y=x+1且与圆x 2+y 2=4相切于第三象限的直线方程是( )A.x+y+2=0 B.x+y+2=02x+y-2=0D.x+y-2=02解析:由题意设所求直线方程为y=-x+k (k<0),又圆心(0,0)到直线y=-x+k 的距离为2,即=2,∴k=±2,又k<0,∴k=-2.|k |1+122故直线方程为y=-x-2,即x+y+2=0.2210D 1中,AB=3,BB 1=为3R 在棱BB 1上移动11则这个球的表面积是A.16πB.20πC.12πD.8π解析:这四点可看作一个正方体的四个顶点,且该正方体的八个顶点都在球面上,即球为正方体的外接球,所以2=2R ,R=,S=4πR 2=12π,故选C .33答案:C12已知A (-2,0),B (0,2),实数k 是常数,M ,N 是圆x 2+y 2+kx=0上两个不同点,P 是圆x 2+y 2+kx=0上的动点,如果点M ,N 关于直线x-y-1=0对称,则△PAB 面积的最大值是( B.4C.3+D.622解析:依题意得圆x 2+y 2+kx=0的圆心位于直线x-y-1=0上,于是有--1=0,即k=-2,(-k2,0)k2此圆心坐标是(1,0),半径是1.由题意可得|AB|=2,直线AB 的方程是=1,即x-y+2=2x-2+y21314解析:如图,因为|AB|=8,所以|OC|==2.当直线AB 的斜率存在时,设AB 所在直线方20-16程为y+3=k (x-2),即kx-y-2k-3=0,圆心O 到AB 的距离为=2,解得k=-.此时,AB所|-2k -3|k 2+(-1)2512在的直线方程为5x+12y+26=0.当直线AB 的斜率不存在时,可知AB 所在的直线方程为时,符合题意.故所求弦AB 所在直线的方程是5x+12y+26=0或x=2.答案:5x+12y+26=0或x=215设甲、乙两个圆柱的底面积分别为S ,S ,体积分别为V ,V .若它们的侧面积相等,且S 1=16锥的最大体积为距离最大时体积最大,此时平面PD=2 cm .所以V=×4×2(cm 3).23×42=63答案: cm 3263三、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17(本小题满分10分)过点P (1,2)的直线l 被两平行线l 1:4x+3y+1=0与l 2:4x+3y+6=0得的线段长|AB|=,求直线l 的方程.2由题意可知l 与l 1,l 2不垂直,则设直线l 的方程为y-2=k (x-1).由{y =kx +2-k ,4x +3y +1=0,解得A ;(3k -73k +4,-5k +83k +4)18是圆柱的轴截面AA 1=AB=2.求证:平面A 1AC ⊥平面BA 1C ;求的最大值.V A1-ABC 证明∵C 是底面圆周上异于A ,B 的一点,且AB 为底面圆的直径,∴BC ⊥AC.又AA 1⊥底面ABC ,∴BC ⊥AA 1,又AC ∩AA 1=A ,∴BC ⊥平面A 1AC.又BC ⊂平面BA 1C ,∴平面A 1AC ⊥平面BA 1C.解在Rt △ACB 中,设AC=x ,19在四棱锥P-ABCD 中,AP ⊥平面PCD 分别为线段AD ,PC 的中点BE ⊥平面PAC.证明(1)设AC ∩BE=O ,连接OF ,EC.因为E 为AD 的中点,AB=BC=AD ,AD ∥BC ,12所以AE ∥BC ,AE=AB=BC ,所以O 为AC 的中点.又在△PAC 中,F 为PC 的中点,所以AP ∥OF.又OF ⊂平面BEF ,AP ⊄平面BEF ,20(1)求圆{-D2-E+1=0,4-2E+F=0,10+3D+E+F=0,则有{D=-6,E=4,F=4.故圆C的方程为x2+y2-6x+4y+4=0.(2)设符合条件的实数a存在,因为l垂直平分弦AB,故圆心C(3,-2)必在l上,所以l的斜率k PC=-2.21(本小题满分12分)如图,四棱锥P-ABCD的底面ABCD为菱形,∠ABC=60°,PA⊥底面ABCD,PA=AB=2,E为PA的中点.求证:PC∥平面EBD;求三棱锥C-PAD的体积V C-PAD;在侧棱PC上是否存在一点M,满足PC⊥平面MBD,若存在,求PM的长;若不存在,说明理由.证明设AC,BD相交于点F,连接EF,为菱形,∵四棱锥P-ABCD的底面ABCD为菱形,∴AC⊥BD,∵PA⊥平面ABCD,BD⊂平面ABCD,∴BD⊥PA.∵AC∩PA=A,∴BD⊥平面PAC,∴BD⊥PC.2在△PBC内,可求PB=PC=2,BC=2,在平面PBC内,作BM⊥PC,垂足为M,2设PM=x,则有8-x2=4-(2-x)2,22轴交于点设圆C 的方程是(x-t )2+=t 2+,(y -2t )24t 2令x=0,得y 1=0,y 2=;4t 令y=0,得x 1=0,x 2=2t ,∴S △OAB =OA ·OB=×|2t|=4,1212×|4t|即△OAB 的面积为定值.解∵OM=ON ,CM=CN ,∴OC 垂直平分线段MN.∵k MN =-2,∴k OC =.12圆C与直线y=-2x+4不相交,因此,t=-2不符合题意,舍去.故圆C的方程为(x-2)2+(y-1)2=5.。
高中数学必修二模块综合测试卷(包含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学必修二模块综合测试卷(包含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学必修二模块综合测试卷(包含答案)(word版可编辑修改)的全部内容。
高中数学必修二模块综合测试卷(含答案)一、选择题:(共10小题,每小题5分)1. 在平面直角坐标系中,已知(1,2)A -,(3,0)B ,那么线段AB 中点的坐标为( ) A .(2,1)- B . (2,1) C .(4,2)- D .(1,2)- 2。
直线y kx =与直线21y x =+垂直,则k 等于( )A .2-B .2C .12-D .133.圆2240x y x +-=的圆心坐标和半径分别为( )A .(0,2),2B .(2,0),4C .(2,0),2-D .(2,0),2 4. 在空间直角坐标系中,点(2,1,4)-关于x 轴的对称点的坐标为( ) A .(2,1,4)-- B .(2,1,4)- C .(2,1,4)--- D .(2,1,4)-5. 将棱长为2的正方体木块削成一个体积最大的球,则这个球的表面积为( ) A .2π B .4π C .8π D .16π6. 下列四个命题中错误的...是( ) A .若直线a 、b 互相平行,则直线a 、b 确定一个平面 B .若四点不共面,则这四点中任意三点都不共线 C .若两条直线没有公共点,则这两条直线是异面直线 D .两条异面直线不可能垂直于同一个平面7。
模块综合测评(时间:120分钟,满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数z满足(z-1)i=1+i,则z等于()A.-2-i B.-2+iC.2-i D.2+iC[由(z-1)i=1+i,两边同乘以-i,则有z-1=1-i,所以z=2-i。
]2.已知向量a与b的夹角为30°,且|a|=1,|2a-b|=1,则|b|等于()A. 6 B.错误!C.错误!D.错误!C[由题意可得a·b=|b|cos 30°=错误!|b|,4a2-4a·b+b2=1,即4-23|b|+b2=1,由此求得|b|=错误!,故选C.]3.设z=错误!+i,则|z|等于()A.错误!B.错误!C.错误! D.2B[∵z=错误!+i=错误!+i=错误!+i=错误!+错误!i,∴|z|=错误!=错误!.]4.某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是()A.45 B.50C.55 D.60B[由频率分布直方图,知低于60分的频率为(0。
01+0.005)×20=0.3.∴该班学生人数n=错误!=50.]5.已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为( )A.1 cm B.2 cmC.3 cm D.错误!cmB[S表=πr2+πrl=πr2+πr·2r=3πr2=12π,∴r2=4,∴r=2(cm).]6.已知向量a=(cos θ-2,sin θ),其中θ∈R,则|a|的最小值为()A.1 B.2 C.错误!D.3A[因为a=(cos θ-2,sin θ),所以|a|=错误!=错误!=错误!,因为θ∈R,所以-1≤cos θ≤1,故|a|的最小值为错误!=1.故选A.]7.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为()A.0.4 B.0.6C.0.8 D.1B[5件产品中有2件次品,记为a,b,有3件合格品,记为c,d,e,从这5件产品中任取2件,样本点有(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e)共10种.恰有一件次品的结果有6种,则其概率为P=错误!=0。
高中数学必修2模块综合检测(C )(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.如图所示,桌面上放着一个圆锥和一个长方体,其左视图是( )2.如图所示,一个空间几何体的主视图、左视图、左视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为( )A .1B .12C .13D .163.直线(2m 2+m -3)x +(m 2-m )y =4m -1在x 轴上的截距为1,则m 等于( )A .1B .2C .-12D .2或-124.直线4x -3y -2=0与圆x 2+y 2-2ax +4y +a 2-12=0总有两个不同的交点,则a 的取值范围是( )A .-3<a <7B .-6<a <4C .-7<a <3D .-21<a <195.若P 为平面α外一点,则下列说法正确的是( ) A .过P 只能作一条直线与平面α相交 B .过P 可能作无数条直线与平面α垂直 C .过P 只能作一条直线与平面α平行D .过P 可作无数条直线与平面α平行6.连接平面外一点P 和平面α内不共线的三点A ,B ,C ,A 1,B 1,C 1分别在P A ,PB ,PC 的延长线上,A 1B 1,B 1C 1,A 1C 1与平面α分别交于D ,E ,F ,则D ,E ,F 三点( )A .成钝角三角形B .成锐角三角形C .成直角三角形D .共线7.在圆x 2+y 2=4上与直线l :4x +3y -12=0的距离最小的点的坐标是( )A .⎝⎛⎭⎫85,65B .⎝⎛⎭⎫85,-65C .⎝⎛⎭⎫-85,65D .⎝⎛⎭⎫-85,-65 8.过平行六面体ABCD -A 1B 1C 1D 1任意两条棱的中点作直线,其中与平面DBB 1D 1平行的直线共有( )A .4条B .6条C .8条D .12条9.若⊙C 1:x 2+y 2-2mx +m 2=4和⊙C 2:x 2+y 2+2x -4my =8-4m 2相交,则m 的取值范围是( )A .⎝⎛⎭⎫-125,-25 B .(0,2) C .⎝⎛⎭⎫-125,-25∪(0,2) D .⎝⎛⎭⎫-125,2 10.已知点P 是直线3x +4y +8=0上的动点,P A 是圆C :x 2+y 2-2x -2y +1=0的切线,A 为切点,则|P A |的最小值为( )A .1B . 2C .2D .2 211.设x +2y =1,x ≥0,y ≥0,则x 2+y 2的最小值和最大值分别为( )A .15,1B .0,1C .0,15D .15,212.如果圆x 2+(y -1)2=1上任意一点P (x ,y )都能使x +y +c ≥0成立,那么实数c 的取值范围是( )A .c ≥-2-1B .c ≤-2-1C .c ≥2-1D .c ≤2-1二、填空题(本大题共4小题,每小题5分,共20分)13.如图所示,半径为R 的半圆内的阴影部分以直径AB 所在直线为轴,旋转一周得到一几何体,∠BAC =30°,则此几何体的体积为________.14.P (0,-1)在直线ax +y -b =0上的射影为Q (1,0),则ax -y +b =0关于x +y -1=0对称的直线方程为________.15.由动点P向圆x2+y2=1引两条切线P A、PB,切点分别为A,B,∠APB=60°,则动点的轨迹方程为____________.16.如图所示的是正方体的表面展开图,还原成正方体后,其中完全一样的是________.(填序号)三、解答题(本大题共6小题,共70分)17.(10分)求圆心在直线y=-4x上,且与直线l:x+y-1=0相切于点P(3,-2)的圆的方程.18.(12分) 如图所示,在棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB的中点,D为PB的中点,且△PMB为正三角形.求证:(1)DM∥平面APC;(2)平面ABC⊥平面APC.19.(12分)已知一个几何体的三视图如图所示,试求它的表面积和体积.(单位:cm)20.(12分)已知圆过P (4,-2),Q (-1,3)两点,且在y 轴上截得的线段长为43,求圆的方程.21.(12分)已知△ABC 的顶点A 为(3,-1),AB 边上的中线所在直线方程为6x +10y -59=0,角B 的平分线所在直线方程为x -4y +10=0,求BC 边所在直线的方程.22.(12分)已知以点C ⎝⎛⎭⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.(1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M 、N ,若OM =ON ,求圆C 的方程.模块综合检测(C ) 答案1.D 2.D3.D [令y =0,则(2m 2+m -3)x =4m -1,所以直线在x 轴上的截距为4m -12m 2+m -3=1,所以m =2或m =-12.]4.B [将圆的方程化为(x -a)2+(y +2)2=16.圆心(a ,-2)到直线的距离d =|4a +4|5.∵直线与圆有两个不同交点,∴d<4,即|4a +4|5<4,得-6<a<4,故选B .]5.D6.D [因为D ,E ,F 都在平面A 1B 1C 1与平面α的交线上.] 7.A [经过圆心O 且与直线l 垂直的直线的方程是3x -4y =0.解方程组⎩⎪⎨⎪⎧3x -4y =0,x 2+y 2=4,得⎩⎨⎧x =85,y =65或⎩⎨⎧x =-85,y =-65.画出图形,可以判断点⎝⎛⎭⎫85,65是圆x 2+y 2=4上到直线l 距离最小的点,点⎝⎛⎭⎫-85,-65是圆x 2+y 2=4上到直线l 距离最大的点.]8.D[如图所示,与BD 平行的有4条,与BB 1平行的有4条,四边形GHFE 的对角线与面BB 1D 1D 平行,同等位置有4条,总共12条,故选D .]9.C [圆C 1和C 2的圆心坐标及半径分别为C 1(m,0),r 1=2,C 2(-1,2m),r 2=3. 由两圆相交的条件得3-2<|C 1C 2|<3+2,即1<5m 2+2m +1<25,解得-125<m<-25或0<m<2.]10.D [圆C :(x -1)2+(y -1)2=1的半径为1,要使|PA|最小,只需|PC|最小,|PC|min =|3+4+8|32+42=3.故|PA|min =32-12=22.] 11.A [x 2+y 2为线段AB 上的点与原点的距离的平方,由数形结合知,O 到线段AB 的距离的平方为最小值,即d 2=15,|OB|2=1为最大值.]12.C [对任意点P(x ,y)能使x +y +c ≥0成立, 等价于c ≥[-(x +y)]max .设b =-(x +y),则y =-x -b .∴圆心(0,1)到直线y =-x -b 的距离d =|1+b|2≤1,解得,-2-1≤b ≤2-1. ∴c ≥2-1.]13.56πR 3解析 半圆旋转一周形成一个球体,其体积为V 球=43πR 3,内部两个圆锥的体积之和为V 锥=13πCD 2·AB =13π·⎝⎛⎭⎫32R 2·2R =π2R 3, ∴所求几何体的体积为43πR 3-π2R 3=56πR 3.14.x -y +1=0 解析 ∵k PQ ·(-a)=-1,∴a =1,Q(1,0)代入x +y -b =0得b =1,将其代入ax -y +b =0,得x -y +1=0,此直线与x +y -1=0垂直,∴其关于x +y -1=0的对称的直线是其本身. 15.x 2+y 2=4解析 在Rt △AOP 中,∵∠APB =60°, ∴∠APO =30°,∴|PO|=2|OA|=2,动点的轨迹是以原点为圆心,2为半径的圆,方程为x 2+y 2=4.16.(2)(3)(4)解析 由正方体的平面展开图可得:(2)(3)(4)是相同的.17.解 由于过P(3,-2)垂直于切线的直线必定过圆心,故该直线的方程为 x -y -5=0. 由⎩⎪⎨⎪⎧ x -y -5=0,y =-4x ,得⎩⎪⎨⎪⎧x =1,y =-4, 故圆心为(1,-4),r =(1-3)2+(-4+2)2=22, ∴所求圆的方程为(x -1)2+(y +4)2=8.18.证明 (1)∵M 为AB 的中点,D 为PB 中点,∴DM ∥AP .又∵DM ⊆平面APC ,AP平面APC ,∴DM ∥平面APC .(2)∵△PMB 为正三角形,D 为PB 中点, ∴DM ⊥PB .又∵DM ∥AP ,∴AP ⊥PB .又∵AP ⊥PC ,PC ∩PB =P ,∴AP ⊥平面PBC . ∵BC 平面PBC ,∴AP ⊥BC . 又∵AC ⊥BC ,且AC ∩AP =A , ∴BC ⊥平面APC .又∵BC 平面ABC ,∴平面ABC ⊥平面APC .19.解 由三视图可知,该几何体的直观图可以看成是一个圆台和圆柱的组合体,则圆台的高为h ′=1 cm ,上底半径为r =12cm ,下底半径为R =1 cm ,母线l 为12+⎝⎛⎭⎫1-122=52(cm ),圆柱的底面半径为R =1 cm ,高h 为12cm , ∴该几何体的体积为V =V 圆台+V 圆柱 =13(S 上+S 下+S 上·S 下)h ′+S 底面·h =13⎣⎡⎦⎤π×⎝⎛⎭⎫122+π×12+π×⎝⎛⎭⎫122×π×1+π×12×12=1312π(cm 3). 该几何体的表面积为S 表面=πr 2+πR 2+π(R +r)·l +2πRh =π×⎝⎛⎭⎫122+π×12+π×⎝⎛⎭⎫1+12×52+2π×1×12=9+354π(cm 2). ∴该几何体的体积为1312πcm 3,表面积为9+354πcm 2.20.解 方法一 设圆的方程为x 2+y 2+Dx +Ey +F =0 ① 将P ,Q 坐标代入①得 ⎩⎪⎨⎪⎧4D -2E +F =-20 ②D -3E -F =10 ③ 令x =0,由①得y 2+Ey +F =0 ④ 据题设知|y 1-y 2|=43,其中y 1,y 2是④的两根. 所以(y 1-y 2)2=(y 1+y 2)2-4y 1y 2=E 2-4F =48 ⑤ 解由②③⑤组成的方程组得D =-2,E =0,F =-12或D =-10,E =-8,F =4. 故所求圆的方程为x 2+y 2-2x -12=0或x 2+y 2-10x -8y +4=0.方法二 易求PQ 的中垂线方程为x -y -1=0 ① 因为所求圆的圆心C 在直线①上, 故可设其坐标为(a ,a -1).又圆C 的半径r =|CP|=(a -4)2+(a +1)2 ②由已知圆C 截y 轴所得的线段长为43,而点C 到y 轴的距离为|a|,∴r 2=a 2+⎝⎛⎭⎫4322,将②式代入得a 2-6a +5=0.所以有a 1=1,r 1=13或a 2=5,r 2=37,即 (x -1)2+y 2=13或(x -5)2+(y -4)2=37. 21.解 设B(4y 1-10,y 1),由AB 中点在6x +10y -59=0上,可得:6·4y 1-72+10·y 1-12-59=0,y 1=5,所以B(10,5).设A 点关于x -4y +10=0的对称点为A ′(x ′,y ′), 则有⎩⎪⎨⎪⎧x ′+32-4·y ′-12+10=0y ′+1x ′-3·14=-1⇒A ′(1,7),∵点A ′(1,7),B(10,5)在直线BC 上,∴y -57-5=x -101-10, 故BC :2x +9y -65=0.22.(1)证明 ∵圆C 过原点O ,∴r 2=t 2+4t2.设圆C 的方程是(x -t)2+⎝⎛⎭⎫y -2t 2=t 2+4t 2, 令x =0,得y 1=0,y 2=4t;令y =0,得x 1=0,x 2=2t .∴S △OAB =12OA ×OB =12×⎪⎪⎪⎪4t ×|2t|=4,即△OAB 的面积为定值.(2)解 ∵OM =ON ,CM =CN , ∴OC 垂直平分线段MN .∵k MN =-2,∴k OC =12.∴直线OC 的方程是y =12x .∴2t =12t .解得t =2或t =-2. 当t =2时,圆心C 的坐标为(2,1),OC =5,此时C 到直线y =-2x +4的距离d =15<5,圆C 与直线y =-2x +4相交于两点.当t =-2时,圆心C 的坐标为(-2,-1),OC =5,此时C 到直线y =-2x +4的距离d =95>5,圆C 与直线y =-2x +4不相交, ∴t =-2不符合题意,舍去.∴圆C 的方程为(x -2)2+(y -1)2=5.。