5-6-车蜗杆
- 格式:ppt
- 大小:1.86 MB
- 文档页数:22
阀门气动执行机构的原理及应用(参考学习资料)二期中工艺系统中采用了大量的气动执行机构阀门,借去苏阀学习的机会向专家们请教了一些关于阀门气动操作机构的知识,在此简单介绍一下。
一.气动执行机构的结构气动执行机构主要分成两大类:薄膜式与活塞式。
薄膜式与活塞式执行机构均可分成有弹簧和无弹簧的两种。
有弹簧的执行结构较之无弹簧的执行机构输出推力小,价格低。
而活塞式较之薄膜式输出力大,但价格较高。
当前国产的气动执行机构有气动薄膜式(有弹簧)、气动活塞式(无弹簧)及气动长行程活塞式。
1.气动薄膜式(有弹簧)执行机构气动薄膜式(有弹簧)执行机构分为正作用和反作用两种。
当气动执行器的输入信号压力(来自调节器或阀门定位器)增大时,推杆向下动作的叫正作用执行机构,如图1所示,我国的型号为ZMA型;反之叫反作用执行机构,如图2所示,我国型号为ZMB型。
这两种类型结构基本相同,均由上膜盖、波纹膜片、下膜盖、推杆、支架、压缩弹簧、弹簧座、调节件、标尺等组成。
正作用机构的信号压力时通过输入波纹膜片上方的薄膜气室。
而反作用机构则通过波纹膜片下方的薄膜气室,由于输出推杆也从下方引出,因此还多了一个装有“O”型密封环5及填块6。
两者之间通过更换个别零件,便能相互改装。
气动薄膜(有弹簧)执行机构的输出信号是直线位移,输出特性是比例式,即输出位移与输入信号成比例关系。
动作原理如下:信号压力,通常为0.2-1.0bar或0.4-2bar,通入薄膜气室时,在薄膜上产生一个推力,使推杆部件移动。
与此同时,弹簧被压缩,直到弹簧的反作用力与信号压力在薄膜上产生的力平衡。
信号压力越大,在薄膜上产生的推力也越大,则与之平衡的弹簧反力也越大,于是弹簧压缩量也越大即推杆的位移量越大,它与输入薄膜气室信号压力成比例。
推杆的位移,即为气动薄膜执行机构的直线输入位移,其输出位移的范围为执行机构的行程。
气动薄膜执行机构主要零件结构及作用如下:1.膜盖:由灰铁铸成(有些小执行机构也有用压制玻璃管代替),与波纹膜片构成薄膜气室。
蜗轮蜗杆设计LT第一章 蜗杆传动的类型和特点蜗杆传动由蜗杆、蜗轮和机架组成,用来传递空间两交错轴的运动和动力。
如图1-1所示。
通常两轴交错角为90°,蜗杆为主动件。
1.1 蜗杆传动的类型如图1-2所示,根据蜗杆的形状,蜗杆传动可分为圆柱蜗杆传动(图a ),环面蜗杆传动(图b ),和锥面蜗杆传动(图c)。
圆柱蜗杆传动,按蜗杆轴面齿型又可分为普通蜗杆传动和圆弧齿圆柱蜗杆传动。
普通蜗杆传动多用直母线刀刃的车刀在车床上切制,可分为阿基米德蜗杆(ZA 型)、渐开蜗杆(ZI 型)和法面直齿廓蜗杆(ZH 型)等几种。
如图1-3所示,车制阿基米德蜗杆时刀刃顶平面通过蜗杆轴线。
该蜗杆轴向齿廓为直线,端面齿廓为阿基米德螺旋线。
阿基米德蜗杆易车削难磨削,通常在无需磨削加工情况下被采用,广泛用于转速较低的场合。
如图1-4所示,车制渐开线蜗杆时,刀刃顶平面与基圆柱相切,两把刀具分别切出左、右侧螺旋面。
该蜗杆轴向齿廓为外凸曲线,端面齿廓为渐开线。
渐开线蜗杆可在专用机床上磨削,制造精度较高,可用于转速较高功率较大的传动。
蜗杆传动类型很多,本章仅讨论目前应用最为广泛的阿基米德蜗杆传动。
a) b) c)图1-2蜗杆传动的类型图1-1蜗杆传动1.2 蜗杆传动的特点(1)传动比大,结构紧凑。
单级传动比一般为10~40(<80),只传动运动时(如分度机构),传动比可达1000。
(2)传动平稳,噪声小。
由于蜗杆上的齿是连续的螺旋齿,蜗轮轮齿和蜗杆是逐渐进入啮合又逐渐退出啮合的,故传动平稳,噪声小。
(3) 有自锁性。
当蜗杆导程角小于当量摩擦角时,蜗轮不能带动蜗杆转动,呈自锁状态。
手动葫芦和浇铸机械常采用蜗杆传动满足自锁要求。
(4)传动效率低。
蜗杆蜗轮啮合处有较大的相对滑动,摩擦剧烈、发热量大,故效率低。
一般η=0.7~0.9,具有自锁性能的蜗杆效率仅0.4。
(5)蜗轮造价较高。
为了减摩和耐磨,蜗轮常用青铜制造,材料成本较高。
蜗轮蜗杆画法
四、蜗轮蜗杆画法
蜗轮蜗杆用于两轴垂直交叉时的传动,蜗杆为主动件、蜗轮为从动件,蜗杆常用单头或双头(蜗杆上齿数称
为头数,相当螺杆上螺纹线数),也就是说蜗杆转一圈或两圈,蜗轮转过一个齿或两个齿。
因此,用蜗杆蜗轮传
动,可得到较大的传动比,所以广泛应用于传动比较大的机械传动中。
1(蜗杆画法
与圆柱齿轮画法相同。
为表明蜗杆牙型,可采用局部剖视,见图6-20。
图6-20 蜗杆画法
2(蜗轮画法
蜗轮实际上相当于一个斜齿轮,只是把齿顶加工成凹入的环面。
在圆的视图上只画蜗轮外圆(粗实线)和分
度圆(点画线),齿顶圆和齿根圆不必画。
在剖视图上,轮齿部分画法与圆柱齿轮相同,其余部分按实际投影画
出,见图6-21。
图6-21 蜗轮画法
3(蜗轮蜗杆啮合画法
画外形图如图6-22a,在蜗杆投影为圆的视图上,蜗杆与蜗轮投影重合部分,只画蜗杆,不画蜗轮;在蜗
轮投影为圆的视图上,蜗轮分度圆与蜗杆节线相切。
在剖视图中,蜗轮被蜗杆遮住的部分可画成虚线或省略不
画,见图6-22b。
图6-22 蜗杆蜗轮啮合画法。
《车工工艺学》课程标准一、课程名称:车工工艺学(课程代码:)二、对象:三年制中职数控技术应用专业学生三、课时:96(课时/周、学期)四、学分:6五、课程性质与任务:本课程是中等职业学校机械加工专业及数控技术应用专业的一门主要专业课程。
其任务是讲授车削的基础知识、车轴类工件、套类工件的加工、车圆锥和成形面、车螺纹和蜗杆、车床工艺装备、车复杂工件、车床结构、典型工件的车削工艺分析等知识,使学生能独立制定中等复杂工件的车削工艺,培养学生分析问题和解决问题的能力,增强学生的创新能力。
六、课程目标通过任务引领的项目活动,使学生具备本专业的高素质劳动者和中级技术应用性人才所必需的机械零件的切削加工和工件检测的基本知识和基本技能。
同时培养学生爱岗敬业、团结协作的职业精神。
【知识教学目标】:1. 了解常用车床结构、性能和传动系统。
2.掌握车削的有关计算方法。
3.掌握车工常用刀具和量具的结构及读数方法。
4.掌握常用车床夹具的结构原理。
5.能独立制定中等复杂工件的车削工艺,并能根据实际情况采用先进工艺。
6.了解本专业的新工艺、新技术以及提高产品质量和劳动生产率的方法。
【能力培养目标】:1.掌握常用车床的调整方法。
2.熟练掌握常用工具、量具的使用方法。
3.掌握常用刀具的选用方法,能合理的选择切削用量和切削液。
4. 能合理地选择工件的定位基准和中等复杂工件的装夹方法。
5. 掌握工件产生废品的原因,并提出预防质量问题的措施。
6. 掌握安全文明生产知识和车削加工通用工艺守则。
【职业道德与情感目标】:以学生为主体,让学生通过感知、实践、总结、掌握新知这四步骤,增强学生实际动手操作能力。
培养学生思维的灵活性与逻辑性,加强学生对知识的概括能力,最终形成技能。
培养认真负责的工作态度和严谨细致的工作作风,并在教学过程中培养自学能力、分析问题和解决问题的能力。
七、教学设计思路本课程是数控应用技术专业的一门主要专业基础课程,针对中等职业学校学生的实际情况,贯彻“工作过程导向”的设计思路,在教学理念上坚持理实一体化的原则,注重学生基本职业技能与职业素养的培养,将岗位素质教育和技能培养有机地结合。
思考题答案:6-1 蜗杆传动有何特点,适用于什么场合?答:蜗杆传动的特点有:(1)结构紧凑、传动比大;(2)传动平稳、噪声小;(3)当蜗杆的导程角γ1小于轮齿间的当量摩擦角ϕv时,蜗杆传动具有自锁性;(4)相对滑动速度大,摩擦损耗大,易发热,传动效率低;(5)蜗轮用耐磨材料青铜制造制造,成本高。
适用的场合:蜗杆机构用来实现两个交错轴间的传动。
6-2 蜗杆传动的模数和压力角是在哪个平面上定义的?蜗杆传动正确啮合的条件是什么?答:蜗杆传动的模数和压力角是在中间平面内定义的即为标准值。
正确啮合条件:m a1=m t2=m,αa1=αt2=200,γ=β6-3 如何选择蜗杆的头数z1、蜗轮的齿数z2?答:较少的蜗杆头数(如:单头蜗杆)可以实现较大的传动比,但传动效率较低;蜗杆头数越多,传动效率越高,但蜗杆头数过多时不易加工。
通常蜗杆头数取为1、2、4、6。
(蜗杆头数与传动效率关系) 。
蜗轮齿数主要取决于传动比,即z2= i z1。
z2不宜太小(如z2>28),否则将使传动平稳性变差。
z2也不宜太大,否则在模数一定时,蜗轮直径将增大,从而使相啮合的蜗杆支承间距加大,降低蜗杆的弯曲刚度。
6-4设计蜗杆传动时如何确定蜗杆的分度圆直径d1和模数m,为什么要规定m和d1的对应标准值?答:中间平面:通过蜗杆轴线并垂直于蜗轮轴线的平面为中间平面(蜗杆轴面,蜗轮端面) 蜗杆传动的设计计算都是以中间平面内的参数和几何关系为标准,在中间平面上,蜗轮与蜗杆的啮合相当于渐开线齿轮与齿条的啮合。
GB10088-88已将d1标准化为一系列数值,蜗轮是由与蜗杆相似的滚刀展成切制而来的,蜗杆中圆直径d1不仅与m有关,还随Z1/tan γ的数值变化。
所以即使m相同,也会有很多不同直径的蜗杆,也就要求具备很多刀具,为减少刀具的型号,将蜗杆d1标准化。
6-5 蜗杆传动的失效形式是有哪几种、设计准则是什么?答:蜗杆传动的失效形式(主要是蜗轮失效)闭式传动:胶合点蚀;开式传动:磨损。
第6章 蜗杆轴的设计计算及轴承选用6.1 蜗杆轴的设计1)选择蜗杆轴的材料根据蜗杆蜗轮传动特性,选择蜗杆轴材料为20CrMnTi ,采用渗碳淬火,淬火深度0.8-1mm ,渗碳后硬度为55-61HRC 。
其机械性能由机械设计课程设计手册表2-9查得抗拉强度为1080MPa.1) 蜗杆轴上的功率P=4.508kW ,蜗杆转速n=1620r/min ,由公式得:转矩T=26.57N.m2) 初步确定轴的最小直径按照公式 3min nP C d ≥ 估算轴的最小直径,查机械设计教材表11.3取C=105。
mm d 77.14min = 3) 蜗杆轴的结构设计① 下图6-1-1为蜗杆轴的装配示意图图6-1-1② 根据轴的设计要求、结构工艺要求及轴向定位要求,确定蜗杆轴的直径和长度,如下图5-1-2图6-1-23) 蜗杆轴的最小直径显然是安装同步大带轮处的直径,按照前面设计的同步带轮的要求,轴需与带轮及其胀紧套相匹配,故取35mm.4)按照前面蜗杆的设计要求,蜗杆的节圆直径,蜗杆的齿形长度为130mm5)为了满足蜗杆加工过程中避免刀具干涉,以及处于对蜗杆使用过程因杆齿两端受力考虑,选择蜗杆长度为244mm.6)初步选择滚动轴承。
因为蜗杆蜗轮传动过程中,同时受到径向力和轴向力的作用,由于轴向间隙可调,故选用角接触球轴承,双列背靠背安装,选择轴承型号为7208C,查机械设计课程设计手册,轴承的安装宽度B=18mm,轴承内径d=40mm.7)在安装同步带轮轴上,其受力情况可以看着为悬臂梁。
对此,如果不增加一对轴承支撑,对蜗杆轴的受压比较大,所以增加一对面对面安装的角接触球轴承,只起支撑同步带的作用,根据同步带的设计,选择轴承的型号为7007C,其安装的宽度为14mm。
通过轴承套和同步带的安装可以确定该轴段的长度为98mm,从图6-1-1看出,其预留长度的目的是为了调整同步带轮的轴向距离,从而与电机轴的小带轮相匹配,保证其在同一安装平面。