车蜗杆
- 格式:doc
- 大小:2.17 MB
- 文档页数:7
双头蜗杆和单头蜗杆的区别(螺旋角大)1.双头需要分头;2.双头的导程大。
工艺流程可以这样:1.准备外圆车刀和螺纹车刀,按照螺距准备螺纹刀具,应该分粗精车;2.先按照图纸加工外圆,留0.5-1的精车余量;3.按导程粗加工螺纹,螺纹牙形尺寸为螺距尺寸,留精车余量;4.分头,粗加工另一条螺纹,留精车余量;5.精车两条螺纹,到图纸尺寸;6.精车外圆倒图纸尺寸,倒螺纹角工艺过程卡片日期:工艺过程卡片产品名称减速器零件名称蜗杆第页毛坯尺寸Φ60×280 备料尺寸Φ60×280 共页车间机加工材料45 投产数量 1 加工数量 1 工序工种工步加工内容及技术条件 1. 锯 1. 按锻造比要求下料,适当直径棒料 2. 热处理 1 毛坯正火处理 3. 车 1. 用三爪卡盘夹持Ø34mm毛坯处,车端面,钻中心孔B3mm,即装后顶尖,粗车蜗杆螺纹外径Ø52mm至Ø54mm,粗车Ø34mm外圆至Ø36mm,控制60mm及18mm长度尺寸。
粗车Ø30mm外圆至Ø32mm,控制106mm长度。
粗车Ø28mm外圆至Ø30mm,控制41mm长度。
2. 工件调头,用三爪夹持粗车后Ø36mm外圆,车端面,控制270mm总长,钻中心孔B3mm,即装后顶尖,粗车Ø34mm外圆至Ø36mm,控制蜗杆长度60mm长度,粗车Ø30mm外圆至Ø32mm,控制18mm长度。
4. 热处理2.粗车后工件进行调质处理HB230~250 5. 研 1. 调质后工件进行中心孔研磨6. 车 3. 工件安装在两顶尖之间,半精车蜗杆外圆Ø52mm至52.4mm(0.4mm为精车余量)车Ø34mm外圆至尺寸,半精车Ø30mm外圆至Ø30.4mm(0.4mm为留磨余量)半精车Ø28mm外圆至Ø28.4mm(0.4mm为留磨余量)。
蜗轮、蜗杆的计算公式:1,传动比=蜗轮齿数÷蜗杆头数2,中心距=(蜗轮节径+蜗杆节径)÷23,蜗轮吼径=(齿数+2)×模数4,蜗轮节径=模数×齿数5,蜗杆节径=蜗杆外径-2×模数6,蜗杆导程=π×模数×头数7,螺旋角(导程角)tgB=(模数×头数)÷蜗杆节径基本参数:蜗轮蜗杆的模数m、压力角、蜗杆直径系数q、导程角、蜗杆头数、蜗轮齿数、齿顶高系数(取1)及顶隙系数(取0.2)。
其中,模数m 和压力角是指蜗杆轴面的模数和压力角,亦即蜗轮端面的模数和压力角,且均为标准值;蜗杆直径系数q为蜗杆分度圆直径与其模数m 的比值。
蜗轮蜗杆正确啮合的条件:中间平面内蜗杆与蜗轮的模数和压力角分别相等,即蜗轮的端面模数等于蜗杆的轴面模数且为标准值;蜗轮的端面压力角应等于蜗杆的轴面压力角且为标准值,即==m 。
当蜗轮蜗杆的交错角为时,还需保证,而且蜗轮与蜗杆螺旋线旋向必须相同。
蜗轮蜗杆理论速比bai计算公式为K=l/[k1/k2·1000/2πr],K为理论速比,为后桥主减速比,k2为变速箱蜗轮组件的传动比,r为轮胎的滚动半径。
蜗轮蜗杆机构常用来传递两交错轴之间的运动和动力。
蜗轮与蜗杆在其中间平面内相当于齿轮与齿条,蜗杆又与螺杆形状相似。
蜗轮的齿轮减速比一般为20:1,有时甚至高达300:1或更大。
例如,车速表上的读数为60Km/h之时,变速器蜗杆的转速为36000r/h,则仪表速比为60:3600=1:600。
也就是说,当车速表上的读数显示为lKm/h之时,变速箱蜗杆的转速必须为600r/h。
蜗杆传动应用场合
蜗杆传动广泛应用于各种机械设备中,其主要作用是将高速旋转的电机或发动机的转速降低到需要的速度。
蜗杆传动的特点是具有较高的传动比,同时也具有很好的减速效果,以及较小的尺寸和噪音。
因此,在以下几个应用场合中,蜗杆传动都被广泛应用:
1. 制造业:蜗杆传动被广泛应用于各种机床、生产线和自动化设备上,如旋转工作台、升降平台、输送机、包装机等。
2. 交通运输:蜗杆传动被广泛应用于汽车、火车和船舶上,如方向盘、变速箱、减速器、舵机等。
3. 农业机械:蜗杆传动被广泛应用于各种农业机械上,如收割机、播种机、喷雾器、搅拌机等。
4. 建筑机械:蜗杆传动被广泛应用于各种建筑机械上,如起重机、混凝土搅拌机、升降机、钻探机等。
5. 环保设备:蜗杆传动被广泛应用于各种污水处理、垃圾处理和废气处理设备上,如曝气机、搅拌机、压榨机等。
总之,蜗杆传动在各个行业中都有广泛的应用,为各种机械设备提供了可靠的传动系统。
随着科技的不断发展,蜗杆传动也将不断地得到改进和提高,为人们的生产和生活带来更多的便利和效益。
- 1 -。
在数控车床上快速车削蜗杆的方法摘要:在数控车床上车削较大导程的蜗杆、梯形螺纹和锯齿螺纹,由于工件的齿形深,需要切除的毛坯余量多,一般是选择较低的切削速度和高速钢成形刀,使用G32和G76等指令车削,加工精度特别是表面粗糙度很难达到图纸要求,加工难度较大。
针对出现的加工精度低、生产效率低等特点,说明如何有效地发挥数控车床的高精度,高速度、定位精度高、生产效率高的优势。
我们以沈阳CAK3675v 华中数控系统的车床来论述快速车削蜗杆的方法。
如图1关键词:蜗杆数控车床成形刀硬质合金宏程序蜗杆和大导程螺纹车削的进刀方法有多种,如直进法、左右切削法、斜进法和切槽法等。
以前车削蜗杆等大导程零件的方法是:选用较低主轴转速(数控车床最低速为100转/分时转动无力)和高速钢成形车刀,车削蜗杆时的生产效率低。
为解决上述问题,我认为应从刀具材料、几何形状及角度和车削方法来谈谈快速车削蜗杆和大导程螺纹的方法。
一、突破传统选择刀具的习惯,合理选择车削蜗杆的刀具角度,使刀具的刀尖角小于齿形角车削蜗杆刀具的刀尖角如果等于蜗杆的齿形角。
这种刀具在车削时两侧刀刃与工件侧面容易发生摩擦,甚至三个刀刃同时参加切削,易产生较大的切削力而损坏刀具。
如果选择车刀的刀尖角35小于蜗杆的齿形角40,(如图2)这种车刀在车削时,可防止三个刀刃同时参加切削,减少了摩擦、切削力,能很好地避免“闷车”、“扎刀”和打刀的情况发生。
二、在数控车床上使用硬质合金车刀高转速车削蜗杆成为现实以前,车削加工蜗杆和大导程螺纹,只能用高速钢车刀低速车削加工,生产效率非常低。
如果将车刀的刀尖角磨小,使车刀的刀尖角35小于蜗杆的齿形角40,可避免三个刀刃同时参加切削,切削刀显剧下降,这时可使用较高的切削速度和硬质合金车刀对蜗杆进行车削。
当工件直径、导程越大时,可获得的线速度越高,加工出的工件表面质量越好,而且生产效率明显提高。
彻底解决在数控车床不能用硬质合金刀具车削蜗杆和大导程螺纹零件。
教学案例十七 车蜗杆知识目标⒈学会蜗杆加工工艺; ⒉学会计算蜗杆的基本参数; ⒊掌握挂轮计算;技能目标⒈掌握蜗杆车刀的刃磨技巧; ⒉掌握蜗杆轴的装夹技巧; ⒊学会蜗杆车刀的常见装刀方法; ⒋掌握蜗杆的检测方法。
任务描述蜗杆轴,如图17-1所示,毛坯尺寸:10550⨯φmm ,材料:45#钢,分析零件加工工艺,编写工艺卡,加工该零件。
图17-1 蜗杆轴任务分析如图17-1所示,蜗杆轴材料为45钢,毛坯尺寸为φ50mm ×105mm ,通过查阅米制蜗杆相关的国家标准,通过公式,计算主要参数。
加工时,注意保证零件的同轴度。
知识准备⒈蜗杆基本要素及其尺寸计算蜗杆各部分尺寸计算公式,见表17-1。
表17-1 蜗杆各部分尺寸计算公式单位:mm 名称代号计算公式轴向模数m x 4 齿形角(压力角)αα=20°轴向齿距p x p x=πm x导程p z p z =z1p x=z1πm x全齿高h h=2.2m x齿顶高h a1h a1= m x齿根高h f1h f1=1.2m x分度圆直径d1d1= d a1-2m x=m x q齿顶圆直径d a1d a1= d1+2 m x齿根圆直径d n d n = d1-2.4 m x或d n = d a1-4.4 m x齿顶宽s a s a =0.843 m x齿根槽宽w w =0.697 m x导程角γtanγ= p z/πd1= m x z1/d1轴向齿厚s x s x = p x/2法向齿厚s n s n=( p x/2)cosγ直径系数q q = d1/ m x⒉蜗杆车刀的刃磨在车削蜗杆时,螺纹升角对螺纹车刀前角、后角会产生很大影响。
选择蜗杆车刀的几何参数及刃磨蜗杆车刀时,则应该考虑导程角对蜗杆车刀前、后角的影响。
蜗杆车刀的刃磨步骤及检测方法,见表17-2。
表17-2 蜗杆车刀的刃磨步骤及检测方法序号刃磨步骤刀具刃磨工艺简图检测方法1 粗磨刀刃两侧副后刀面(刀尖角初步形成)、主后刀面、控制刀头宽度万能角度尺或角度样板2粗、精磨前刀面或纵向前角特质厚样板3 粗磨刀刃两侧副后刀面(进给方向后角大,逆进给方向后角小)、主后刀面万能角度尺或角度样板注意事项:⑴刃磨两侧副后角时,要考虑螺纹的左右旋向和导程角的大小,然后确定两侧副后角的增、减。
蜗杆传动的特点及应用蜗杆传动是一种常用的传动形式,具有以下特点及其广泛的应用领域。
一、特点:1. 转速比大:蜗杆传动由蜗杆与蜗轮组成,通过螺旋线的特性,能实现大的转速比。
一般情况下,转速比可达10:1至80:1。
2. 传动效率低:蜗杆传动具有传动效率较低的特点,一般在50%至90%之间。
这是由于蜗杆与蜗轮的啮合过程中存在滑动摩擦,造成能量的损失。
3. 负载能力强:蜗杆传动可承受较大的负载,常用于需要高扭矩输出的场合。
其原因是蜗杆的螺旋线角度较大,能够提供较高的力矩输出。
4. 噪音低:由于蜗杆传动的啮合方式较为平稳,且工作时的摩擦损失较大,因此噪音低。
5. 自锁性能好:蜗杆传动具有很好的自锁性能,即使不带制动装置,也能实现自锁。
这一特点使得蜗杆传动在需要防止逆转的场合具有广泛的应用。
二、应用领域:1. 工程机械:蜗杆传动在各类工程机械中广泛应用,如挖掘机、高空作业平台等。
其扭矩输出大、传动稳定,能够满足大型机械设备的工作需求。
2. 汽车制造:蜗杆传动在汽车制造中的应用主要体现在汽车座椅的调节、车窗升降等方面。
由于蜗杆传动自锁性能好,可以确保座椅和车窗在固定位置稳定。
3. 纺织设备:蜗杆传动在纺织设备中具有重要的应用,如纺纱机、织布机等。
其优点在于传动稳定、传动比例大,能够满足纺织设备对转速和力矩的要求。
4. 食品加工:蜗杆传动在食品加工设备中的应用主要体现在混合搅拌设备、切割设备等。
由于蜗杆传动的传动效率低、噪音低的特点,能够提供更好的操作环境。
5. 机械加工:蜗杆传动在机械加工中的应用主要体现在钻床、铣床等设备上。
由于蜗杆传动能够提供较高的力矩输出,适用于加工过程中需要大力矩的场合。
6. 冶金设备:蜗杆传动在冶金设备中应用广泛,如轧机、钢丝拉拔机等。
冶金设备对传动精度和负载能力要求较高,蜗杆传动能够满足这些要求。
总结以上特点和应用领域,蜗杆传动作为一种传动方式,具有转速比大、负载能力强、噪音低等优点,广泛应用于工程机械、汽车制造、纺织设备、食品加工、机械加工和冶金设备等领域中。
蜗轮蜗杆自锁原理
蜗轮蜗杆传动是一种常见的机械传动方式,它利用蜗杆的螺旋形状和蜗轮的凸齿来实现传递力或转矩的目的。
蜗轮蜗杆传动具有许多特点,其中之一就是自锁原理。
自锁是指当传动装置处于静止或负载力反向作用下时,蜗轮蜗杆传动能够阻止反转的现象。
这种自锁性使得蜗轮蜗杆传动在许多应用中具有重要的作用。
实现蜗轮蜗杆传动自锁的原理是利用了蜗杆斜面与蜗轮齿面之间的摩擦力。
在传动中,蜗杆的螺旋形状使得蜗杆的齿随着转动逐渐紧嵌入蜗轮齿槽中。
由于蜗杆的斜面角度相对较大,蜗杆齿与蜗轮齿之间的摩擦力会相应增大。
当负载力反向作用于蜗轮时,由于摩擦力的作用,蜗杆齿会对蜗轮齿产生一定的压力。
这个压力会使得蜗杆与蜗轮之间的接触更加紧密,增加了传动的自锁效果。
蜗轮蜗杆传动的摩擦力可以通过控制蜗杆的材料和表面处理来进行调整,从而使得其具有适当的自锁特性。
蜗轮蜗杆传动的自锁原理使得它在很多场合中发挥了重要的作用。
例如,在汽车的紧急制动系统中,蜗轮蜗杆传动被广泛应用。
当驾驶员踩下制动踏板时,蜗杆传递力量给蜗轮,进而使得制动器起到制动作用。
而当驾驶员停止踩下制动踏板时,蜗轮蜗杆传动的自锁特性能够防止制动器反向松开,确保车辆的安全。
总之,蜗轮蜗杆传动的自锁原理是通过蜗杆斜面与蜗轮齿面之间的摩擦力来实现的。
这种自锁性使得蜗轮蜗杆传动在许多机械传动装置中具有重要的应用。
浅谈初学者如何车好蜗杆摘要蜗杆和蜗轮组成的蜗杆副是机器中传递运动和动力的常用零件。
易磨损,经常遇到蜗杆的加工问题。
蜗杆的加工方法很多,如车削,铣削,磨削,旋风铣削,冷滚压等,但在小批,单件生产一般精度的蜗杆时,有效的方法是在车床上车削蜗杆。
在车床上车削蜗杆劳动强度大,生产效率低,加工精度和表面粗糙度也较难保证。
因此,怎样提高蜗杆的生产效率、加工精度是每个车工都需研究的。
关键词蜗杆;刀具;分线;车削1蜗杆的基本类型蜗杆传动用于传递空间交错轴间的动力和运动,常用的轴交角为90度。
根据蜗杆形状不同,蜗杆传动可分为圆柱蜗杆传动,环面蜗杆传动,锥蜗杆传动。
2刀具的特点1)弹簧刀杆:因蜗杆齿形深,切削量大,采用该刀杆主要作用是消除振动,防止扎刀现象。
2)粗车刀:①刀头宽度:将齿根槽宽利用公式算出。
ef=0.697mx然后减1毫米,这样不会出现两侧切削刃以及刀头切削刃三面同时切削产生扎刀现象.②刀尖圆弧:粗车刀刀头宽度按要求刃磨好后,再用砂轮把整个刀尖修磨成圆弧形刀刃,并且用油石研磨.以提高车刀尖强度,改善散热条件,提高车刀使用寿命。
③两主刀刃之间的夹角小于2倍的齿形角。
2α=39°30′,留精车余量。
3)精车刀:精车刀是保证蜗杆齿形和齿厚精度的主要因素,也是保证蜗杆精度以及加工表面粗糙度的重要因素。
①齿形角要保证α=20°,刀刃平直,以获得正确的齿形。
②加工右旋蜗杆时;导程角对螺纹车刀工作后角有较大影响,所以蜗杆车刀两侧后角应刃磨为:α0l=αl+γ=(3°-5°)+γα0R=αR-γ=(3°-5°)-γ③刃口保持锋利,两侧刃上可磨出前角。
3切削用量的选择切削用量包括切削速度,背吃刀量,和进给量.背吃刀量对生产率和刀具耐用度影响较大,采用阶梯式车法,切削宽度逐渐增大,切削厚度也受到限制,增大了半精车余量,刀具刃磨复杂。
而采用左右切削法,整个余量分几层车去,且切深可保持不变。
三、蜗杆的齿形20
1.轴向直廓蜗杆(ZA 蜗杆)
轴向直廓蜗杆的齿形在蜗杆的轴向剖面内为直线,在法向剖面内为曲线,在垂直于轴线的端平面内的齿形是阿基米德螺线,所以该类蜗杆又称阿基米德蜗杆,如图15-2 所示。
2.法向直廓蜗杆(ZN 蜗杆)
法向直廓蜗杆在轴向剖面内的齿形为曲线,在法平面内的齿形为直线,在垂直于轴线的端平面内的齿形是延伸渐开线,所以该类蜗杆又称延伸渐开线蜗杆,如图15-3 所示。
四、蜗杆车刀的装夹15
1.水平装刀法
车轴向直廓蜗杆时,特别是精车时,为了保证蜗杆的齿形正确,应采取水平装刀法。
要求蜗杆车刀两侧切削刃组成的平面与蜗杆轴线在同一个水平面内,且刀杆轴线与工件轴线互相垂直,如图15-2 所示。
2.垂直装刀法
车法向直廓蜗杆时应采用垂直装刀法。
在粗车轴向直廓蜗杆时,为减少因导程角过大引起一侧切削刃实际前角变小对蜗杆车削的影响,避免振动和“扎刀”现象,保证切削顺利,也可采用垂直装刀法。
垂直装刀法要求蜗杆车刀两侧切削刃组成的平面垂直于蜗杆齿面,如图15-3 所示。
车削模数较小的蜗杆时,蜗杆车刀可用对刀样板找正安装(参看图14-5
五、工件的装夹 5
车蜗杆时,由于蜗杆的导程较大,齿深较深,切削力较大,工件应采用一夹一顶方式装夹。
车削模数较大的蜗杆,应采用四爪单动卡盘与回旋顶尖装夹,使装夹牢固可靠。
工件轴向应采用限位台阶或限位支承定位,以防蜗杆在车削中产生轴向位移而“扎刀”。
2.蜗杆的齿厚测量
如图15-5 所示,测量时,将齿高卡尺读数值调到一个齿顶高,使卡脚沿法向卡入齿廓,并做微量往复转动,直到卡脚测量面与蜗杆齿侧平行,此时的最小读数即是蜗杆分度圆直径上的法向齿厚S n,但图样上一般注
十.观看视频35
142页
1.2.3
小结与作业
本次课主要讲述蜗杆的分类,主要参数计算;蜗杆的测量方法;安装蜗杆车刀及车蜗杆方法。