2向量的正交规范化
- 格式:ppt
- 大小:869.00 KB
- 文档页数:26
二次型标准型和规范型二次型是代数学中的一个重要概念,它在线性代数和矩阵理论中有着广泛应用。
二次型标准型和规范型是将一个任意的二次型通过线性变换化为一个简化的形式,使得我们可以更方便地研究和分析二次型的性质。
一个二次型可以表示为如下形式:$$Q(x_1, x_2, \dots, x_n) = \sum_{i=1}^{n} \sum_{j=1}^{n}a_{ij}x_ix_j$$其中 $x_1, x_2, \dots, x_n$ 是变量,$a_{ij}$ 是常数。
二次型的标准型是指将二次型中的二次项化为平方和的形式。
对于一个二次型 $Q(x)$,假设其矩阵为 $A$,则存在一个非奇异矩阵 $P$,使得:$$P^TAP = D$$其中 $D$ 是对角阵,对角线上的元素称为二次型的标准型系数。
标准型的特点是二次型的二次项仅包含平方和,没有交叉项和混合项。
这样的形式更简单,更容易研究和分析。
为了得到二次型的标准型,需要进行正交变换。
正交变换可以通过选取一组特殊的基进行,其中基向量之间两两正交且模长为1。
设有一组基向量 $p_1, p_2, \dots, p_n$,构成正交矩阵$P = [p_1, p_2, \dots, p_n]$,则有 $P^TP = I$。
通过变换 $y = Px$,可以得到新的变量 $y$ 对应的二次型 $Q(y)$。
从而有:$$Q(y) = Q(Px) = x^TP^TAPx = x^TDx$$其中 $D = P^TAP$,$D$ 是一个对角阵,对角线上的元素就是二次型的标准型系数。
在二次型的标准型基础上,可以进一步进行规范化处理。
规范化处理是将标准型系数中的非零元素变为1或-1,以及调整它们的顺序。
具体步骤如下:1. 如果标准型系数中存在非零元素 $d_{ii}$,则可以将其除以本身的绝对值,将其变为1或-1。
2. 如果标准型系数中存在连续的非零元素 $d_{ii}$ 和 $d_{i+1, i+1}$,且它们同号,则可以将 $d_{i+1, i+1}$ 变为与$d_{ii}$ 同号,并将它直接相加;如果符号相反,则将它们的绝对值取为1。
第四章 向量 4.1 基本内容 4.1.1 n 维向量n 维列向量⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n a a a 21α与n 维行向量[]n Tb b b 21=β即为n n ⨯⨯11及矩阵,因而它们的运算也即为矩阵运算,列向量与行向量统称为向量。
注 为方便起见,除特别说明外,本书所称向量均指列向量,从而其转置即为行向量。
4.1.2 向量的内积设[]T n a a a 21=α,[]Tn b b b 21=β(1) 定义称∑==+++=ni ii n n b a b a b a b a 12211, βα为向量βα,的内积。
(2) 性质αββααββαT T ===,,γβγαγβα,,,+=+βαβα,,k k =0,≥αα 等号当且仅当0=α时成立(3) 有关概念 向量的范数:αααααT ==,单位向量:若1=α,则称α为单位向量。
向量的标准化(规范化);0≠α称αα1为α的标准化向量。
两向量的正交:若0,=βα,则称βα与正交。
4.1.3 线性组合,线性相关,线性无关的定义设m ααα,,,21 是一组n 维向量(1) 线性组合:设β是一个n 维向量,若存在一组数m t t t ,,,21 ,使m m t t t αααβ+++= 2211则称β为向量组m ααα,,,21 的一个线性组合,或称β可由向量组m ααα,,,21 线性表出。
注 设两组向量(I )m ααα,,,21 ,(II )m βββ,,,21 ,若每一个()m i i ,,2,1 =α都可由m βββ,,,21 线性表出,则称向量组(I )可由向量组(II )线性表出;当向量组(I )与(II )可互相表出时,称向量组(I )与(II )等价。
(2) 线性相关:若存在一组不全为零的数m t t t ,,,21 ,02211=+++m m t t t ααα ,则称向量组m ααα,,,21 线性相关。
(3) 线性无关:若当且仅当021====m t t t 时,02211=+++m m t t t ααα 才成 立,则称m ααα,,,21 线性无关。
线性代数第一章行列式一、相关概念1.行列式——n阶行列式是所有取自不同行不同列的n个元素的乘积的代数和,这里 是1,2,·n的一个排列。
当 是偶排列时,该项的前面带正号;当 是奇排列时,该项的前面带负号,即(1.1)这里表示对所有n阶排列求和。
式(1.1)称为n阶行列式的完全展开式。
2.逆序与逆序数——一个排列中,如果一个大的数排列在小的数之前,就称这两个数构成一个逆序。
一个排列的逆序总是称为这个排列的逆序数。
用 表示排列 的逆序数。
3.偶排列与奇排列——如果一个排列的逆序数是偶数,则称这个排列为偶排列,否则称为奇排列。
4.2阶与3阶行列式的展开—— ,5.余子式与代数余子式——在n阶行列式中划去 所在的第i行,第j列的元素,剩下的元素按原来的位置排法构成的一个n-1阶的行列式称为 的余子式,记为 ;称为 的代数余子式,记为 ,即 。
6.伴随矩阵——由矩阵A的行列式|A|所有的代数余子式所构成的形如,称为A的伴随矩阵,记作 。
二、行列式的性质1.经过转置行列式的值不变,即→行列式行的性质与列的性质是对等的。
2.两行互换位置,行列式的值变号。
特别地,两行相同(或两行成比例),行列式的值为0.3.某行如有公因子k,则可把k提出行列式记号外。
4.如果行列式某行(或列)是两个元素之和,则可把行列式拆成两个行列式之和:5.把某行的k倍加到另一行,行列式的值不变:6.代数余子式的性质——行列式任一行元素与另一行元素的代数余子式乘积之和为0三、行列式展开公式n阶行列式的值等于它的任何一行(列)元素,与其对应的代数余子式乘积之和,即|A|按i行展开的展开式|A|按j列展开的展开式四、行列式的公式1.上(下)三角形行列式的值等于主对角线元素的乘积;2.关于副对角线的n阶行列式的值3.两个特殊的拉普拉斯展开式:如果A和B分别是m阶和n阶矩阵,则4.范德蒙行列式5.抽象n阶方阵行列式公式 (矩阵)若A、B都是n阶矩阵,是A的伴随矩阵,若A可逆,是A的特征值:;; |AB|=|A||B|;;;;若 ,则,且特征值相同。
4.2 二次型的标准型与规范型二次型是一个重要的数学概念,常常出现在线性代数和数学分析中。
在研究二次型的性质时,我们可以通过对其进行特征值分解来得到其标准型和规范型。
本文将对二次型的标准型与规范型进行详细阐述。
1. 二次型二次型是指形如 $f(x)=x^TAx$ 的二次齐次多项式,其中 $x$ 是 $n$ 维实向量,$A$ 是 $n$ 阶实对称矩阵。
其中 $n$ 称为二次型的阶数。
二次型具有以下性质:(1)对称性:$f(x)=x^TAx=x^T(A^T)x=f(x)$;(2)齐次性:$f(kx)=k^2f(x)$,其中 $k$ 是常数;(3)线性性:$f(x+y)=f(x)+f(y)$;(4)正定性:如果对于任意非零 $x$,有 $f(x)>0$,则称这个二次型是正定的;(8)无定性:如果既不是正定的,也不是负定的,则称这个二次型是无定性的。
2. 标准型标准型是指经过矩阵相似变换得到的对角矩阵。
标准型对于研究二次型的性质非常方便,因为对角矩阵的特殊性质使得二次型的性质易于判断。
我们可以通过以下步骤获得一个二次型的标准型:(1)求出二次型的矩阵 $A$ 的特征值和特征向量;(2)将特征向量按对应的特征值大小排列,组成矩阵 $P=[p_1, p_2, \cdots, p_n]$;(3)令 $D=\begin{bmatrix}\lambda_1 & & \\& \ddots & \\& & \lambda_n\end{bmatrix}$,其中 $\lambda_i$ 是矩阵 $A$ 的第 $i$ 个特征值;(4)则可得到一个相似变换矩阵 $T=P^{-1}$,使得 $T^{-1}AT=D$。
此时,$D$ 即为该二次型的标准型。
标准型的优点在于可以直接通过特征值的正负性判断二次型是否正定、负定或者无定。
例如,如果所有的特征值都为正,则该二次型是正定的;如果所有的特征值都为负,则该二次型是负定的;如果特征值有正有负,则该二次型是无定性的。
这些基础知识在后面具体方法中都会用到,因此首先介绍这些内容。
本章介绍:向量的内积、正交等概念矩阵相似变换、正交变换概念标准特征问题基本性质向量正交化方法(G-S 方法)矩阵三角分解、QR 分解*(* 通过H 变换和Givens 变换实现QR 分解)第一章基础知识引言§1-1 向量的内积和正交一、线性空间子空间1、实数域:n 维实向量{x }的全体(集合)称为n 维线性空间,记为R n则复数域:n 维复向量{x }的全体,记为C n ,则{}nR x ∈{}nCx ∈均为线性空间第一节向量的内积和正交称为实空间。
另外:n m R⨯nm C⨯是m ×n 阶实矩阵集合。
[]A []A 是m ×n 阶复矩阵集合。
均为线性空间。
称为复空间。
nm R⨯nm C⨯和2、子空间的概念设有{}{}{}nm Rx x x ∈ 21个向量:nR 由这m 个向量的任何线性组合所构成的集合:称为的由{}{}{}m x x x 21所生成的子空间,记为{}{}()m x x span 1{}{}m x x 1()n m ≤称为子空间生成向量。
第一节向量的内积和正交{}{}⎭⎬⎫⎩⎨⎧∈=∑=R x x m i mi i αααα,,,211 生成/张成特别当{}{}m x x 1子空间的维数= mnR {}{}{}()m x x x span ,,21即是的一个m 维子空间。
二、向量的内积和正交1、向量内积的定义设有{}{}nRy x ∈,在实数域线性空间中定义内积:则{}{}(){}{}ii Ty x x y y x ∑==,nR 在中定义了内积的向量集合—称为n 维欧几里德空间(或称为内积空间)第一节向量的内积和正交线性无关时,①在复数域上两向量内积定义:则如设{}{}nCy x ∈,{}{}(){}{}ii Hy x x y y x ∑==,(复数域上n 维线性空间nC 内积定义)第一节向量的内积和正交时,就是常说的几何空间。