3.5 标准正交基
- 格式:pptx
- 大小:411.68 KB
- 文档页数:24
复矩阵(向量)的4个一元运算()∀A=(a ij )∈C m ×n ,复矩阵(向量)的一元运算的性质11221122k A k A k A k A +=+ ;TT T A k A k A k A k 22112211)(+=+方阵A=(a ij )∈C n ×n 的迹定义为其所有对角元之和:行列式的性质方阵乘积的行列式公式重要特殊矩阵A=(a ij )∈C n ×n 称为对角矩阵,如果∀i ≠j,a ij =0;A称为上(下)三角矩阵,如果∀i>(<)j,a =0.特征值,特征向量λ∈C称为A=(aij)∈C n×n的一个特征值,如果存在0≠x∈C n,使得Ax=λx.此时,x称为A的特征向量.特征值、特征向量续三角矩阵A的所有对角元组成A的谱:σ(A)={a,…,a}.线性相关与线性无关定义1.1.3 (p.5): F上线性空间V中的向量组{α,…,α}是线性相关的充要条件是:在数域F线性映射与线性变换关于线性映射与线性变换的定义,请看教本第24页§3.1: 欧式空间,酉空间§3.2: 标准正交基,Schmidt方法第三章内积空间,正规矩阵,Hermite矩阵§3.1: 欧式空间,酉空间从解析几何知二平面向量内积的概念定义3.1.1:设V是实数域R 上的n维线性空间,对V 中的任意两个向量α,β,按照某一确定法则对应着欧式空间的概念例3.1.1:∀α=(a 1,…,a n )T ,β=(b 1,…,b n )T ∈R n ,定义标准内积:(α,β)=a b +…+a b ,欧氏空间例1例3.1.2:∀α=(a 1,a 2)T ,β=(b 1,b 2)T ∈R 2,定义内积(R 2×R 2到R的映射):欧氏空间例2在R 2中至少可定义两个不同的内积.今后讨论R n 时都用例3.1.1中定义的内积.关于例1和例2的注例3.1.3:R m ×n ={(a ij )|a ij ∈R,i=1,…m,j=1,…,n}中任取A,B,定义内积:(A,B)=tr(A T B)=ΣΣa b .欧氏空间例3定义3.1.1:设V是复数域C 上的n维线性空间,对V 中的任意两个向量α,β,按照某一确定法则对应着酉空间的概念欧氏空间是酉空间的特例.关于欧式空间和酉空间的注酉空间例1例3.1.6:∀α=(a 1,…,a n )T ,β=(b 1,…,b n )T ∈C n ,酉空间例2例3.1.7:C m ×n ={(a ij )|a ij ∈C,i=1,…,m,j=1,…,n}§3.2: 标准正交基,Schmidt 方法欧氏空间中的C-S不等式推出:-1 ≤(α,β)/‖α‖‖β‖≤1正交的概念(,)1αβαβ≤§3.3: 酉变换,正交变换§3.6: 正规矩阵,Schur引理§3.8: Hermite矩阵,Hermite二次齐式§3.9: 正定二次齐式,正定Hermite矩阵证:设A∈H n×n,A(i1,…,ik)为A的第i1,…,ik行,列组成的k阶主子矩阵,易见:A(i,…,i)∈H n×n.(半)正定矩阵的任何主子矩阵仍为(半)正定证:因为(半)正定矩阵A的任何主子式都是(0或)正的定理:A ∈H n ×n 为正定⇔A的n个顺序主子式全为正:用主子式刻画(半)正定矩阵命题:A ∈H n ×n 为负定⇔-A为正定定理3.9.1:对任意A ∈H n ×n ,下列各条相互等价:定理3.9.3:对任意A ∈H n ×n ,下列各条相互等价:(1) A半正定:∀x ∈C n ,x *Ax ≥0半正定矩阵的基本定理命题:A ∈H n ×n 为半正定⇔∀ε>0,A+εE 为正定半正定矩阵是正定矩阵序列的极限命题:对任意A ∈H n ×n ,下列两条相互等价:半正定矩阵是正定矩阵序列的极限(续)(1) A ∈C n ×n 为(半)正定(半)正定矩阵的补充结果定理(3.9.4):每个(半)正定Hermite矩阵A都有唯下证唯一性.如果还有正定矩阵M=Wdiag(µ,…,µ)W *,使∀i,j,(√λi v ij )=(√λj v ij ) 每个(半)正定矩阵有唯一(半)正定平方根续再证与A可交换的矩阵X(XA=AX)必与B可交换.若XUdiag(λ,…,λ)U *=Udiag(λ,…,λ)U *X 每个(半)正定矩阵有唯一(半)正定平方根续试证:A,B ∈H n ×n 且A为正定⇒AB的特征值全为实数.应用举例例3.9.1:若A,B为同阶正定Hermite矩阵,应用举例命题:A,B ∈H n ×n 且B正定,则det(λB-A)=0的根全为实数.证明: B正定⇒有可逆矩阵P使P *BP=E;定理3.10.1:若A,B ∈H n ×n 且B为正定,则有T ∈C n n ×n 使二矩阵经复相合变换同时对角化易见: µ1,…,µn 是det(λE-T 1*AT 1)=0的根.二矩阵经复相合变换同时对角化定理3.10.4:若A,B ∈H n ×n 且B为正定,则有行列式等二矩阵经复相合变换同时对角化续定义3.11.1:由Hermite矩阵A定义的从C n –{0}到R 的下列函数:R(x)=x *Ax/x *x 称为矩阵A的Rayleigh商.§3.11: Rayleigh商(1)R(x)为x的齐次函数:∀0≠k ∈R ,R(kx)=R(x)(3)min x ≠0R(x)=λ1=min{λ1, …,λn };max R(x)=λ=max{λ, …,λ}.注:由(1)和(3)推出min x ≠0R(x)=min ‖x‖=1x *Ax,Rayleigh 商性质的注设M ∈H n ×n ,用λmin ,λmax 分别记M的最小,大特征值,则λ=min x *Ax,λ=max x *Ax.一个推论。
标准正交基一、标准正交基的定义及相关概念1、欧几里得空间:设V 实数域R 上一线性空间,在V 上定义了一个二元实函数,称为内积,记作(βα,),它具有以下性质: (1)(βα,)=(αβ,); (2)(k βα,)=k(βα,);(3)(γβα,+)=(γα,)+(γβ,);(4)(αα,)>=0,当且仅当α=0时,(αα,)=0;这里,γβα,,是V 中任意的向量,k 是任意实数,这样的线性空间V 称为欧几里得空间,简称欧氏空间。
2、正交向量组:欧式空间V 中一组非零的向量,如果它们两两正交,就称为一正交向量组。
3、标准正交基:在n 维欧氏空间中,由n 个向量组成的正交向量组称为正交基,由单位向量组成的正交基称为标准正交基。
二、标准正交基的相关性质1、正交向量组的性质:(1)正交向量组是线性无关的。
证明:设m ααα,...,,21是一正交向量组,m k k k ,...,,21是m 个实数,且有: 0...2211=+++m m k k k ααα用i α与等式两边作内积,得:0),(=i i i k αα由0≠i α,有0),(>i i αα,从而:0=i k ),...,2,1(m i = 命题得证。
(2)单个非零向量组成的向量组是正交向量组。
(3)在n 维欧氏空间中,两两正交的非零向量不超过n 个。
(如:在平面上找不到三个两两垂直的非零向量,在空间中找不到四个两两垂直的非零向量。
)2、标准正交基的性质:(1)若n εεε,...,21是一组标准正交基,则:⎩⎨⎧≠==.,0;,1),(j i j i j i εε 证明:j i =时,由单位向量定义:1),(=j i εε,1),(=∴j i εεj i ≠时,由正交向量定义:0),(=j i εε 命题得证。
(2)对一组正交基单位化就得到一组标准正交基。
例如:⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=212100,212100,002121,0021214321e e e e由于⎪⎩⎪⎨⎧====≠=).4,3,2,1,;(,1),(),4,3,2,1,;(,0),(j i j i e e j i j i e e ji j i所以4321,,,e e e e 是4R 的一组标准正交基。
《高等代数课后答案》(邱著)高等代数之后的答案(秋微写的)《高等代数》的内容由浅入深,循序渐进,符合当前两位学生的教学实践。
可作为高校数学与应用数学、信息与计算科学专业的教材,也可作为相关专业的教师、学生和自学者的参考。
以下是阳光网编著的《高等代数》答案(邱著)阅读地址。
希望你喜欢!点击进入:高等代数课后答案地址(邱执笔)高等代数(秋微著)目录前言(一)第一章决定因素(1)1.1一些预备知识(1)1.2二阶和三阶行列式(3)1.3n n阶行列式(7)1.4行列式的计算(18)1.5克莱姆法则(28)1.6行列式的一些应用(31)练习1(A)(35)练习1(B)(38)第二章矩阵(41)2.1矩阵的概念(41)2.2矩阵运算(44)2.3初等变换和初等矩阵(54)2.4可逆矩阵(67)2.5矩阵的秩(76)2.6分块矩阵及其应用(79)练习2(A)(90)练习2(B)(93)第三章线性空间(95)3.1矢量(96)3.2向量的线性相关性(98)3.3向量组的秩(103)3.4矩阵的行秩和列秩(106)3.5线性空间(111)3.6基础、尺寸和坐标(114)3.7基变换和转移矩阵(118)3.8子空间(122)3.9同构(131)3.10线性方程(135)练习3(A)(147)练习3(B)(150)第四章线性变换(152)4.1线性变换及其运算(152)4.2线性变换矩阵(156)4.3线性变换的范围和核心(165)4.4不变子空间(169)练习4(A)(173)练习4(B)(175)第五章多项式(176)5.1一元多项式(176)5.2多项式可整除(178)5.3倍大公因数(181)5.4因式分解定理(186)5.5重因子(189)5.6多项式函数(191)5.7复系数和实系数多项式的因式分解(195) 5.8有理系数多项式(198)5.9多元多项式(202)5.10对称多项式(206)练习5(A)(211)练习5(B)(213)第六章特征值(216)6.1特征值和特征向量(216)6.2特征多项式(221)6.3对角化(225)练习6(A)(231)练习6(B)(232)第七章-矩阵(234)7.1-矩阵及其初等变换(234)7.2-矩阵的标准型(238)7.3不变因子(242)7.4矩阵相似性的确定(245)7.5基本因素(247)7.6乔丹范式(251)7.7x小多项式(256)练习7(A)(259)第八章二次型(261)8.1二次型及其矩阵表示(261)8.2将二次型转化为标准型(264)8.3惯性定理(271)8.4正定二次型(274)练习8(A)(279)练习8(B)(280)第九章欧几里得空间(282)9.1欧氏空间的定义和基本性质(282) 9.2标准正交基(285)9.3正交子空间(291)9.4正交变换和对称变换(293)9.5实对称方阵的正交相似性(297)练习9(A)(303)练习9(B)(306)练习答案(308)参考文献312。