标准正交基
- 格式:ppt
- 大小:7.59 MB
- 文档页数:33
§9-2 标准正交基复习欧氏空间的概念、两向量正交的定义、度量矩阵的定义及性质。
一、概念定义5: 欧氏空间中一组非零的向量,如果它们两两正交,则称为一个正交向量组。
例1: 向量(),0101=α()1012=α,()1013-=α构成3R 的一个正交组。
事实上,很容易验证 ()0=j iαα3,2,1,=j i例2: 在()π20C 上,函数组 1,cosx, sinx, … cos nx, sin nx … 构成()π20C 上的一个正交组。
事实上,我们有ππ2120=⎰dx ;⎩⎨⎧≠==⎰nm nm nxdx mx ,0,cos cos 20ππ; ⎩⎨⎧≠==⎰nm nm n x d x mx 0,sin sin 20ππ; 0sin cos sin cos 202020===⎰⎰⎰πππnxdx nxdx nxdx mx所以 ()()0sin 1cos 1==nx nx ;()()()0sin ,sin ,cos sin ,cos ===nx mx coxnx mx nx mx , 当n m ≠时一般情况下,正交向量组是对两个或两个以上的向量而言,对于特殊情况我们规定:单个非零向量所成的向量组是正交向量组。
由正交向量组的定义很容易得出以下结论: 1、正交向量组一定是线性无关的。
证明:设m ααα ,,21正交,欲证其无关设有关系式 02211=+++m m k k k ααα 用i α与等式两边做内积,由于()0=j iαα当j i ≠时所以可得 ()0i=i i k αα 而()i i αα﹥0 所以()m i k i 2,1,0==注①:此定理的逆不成立,即无关的向量组不一定是正交的。
如()3,2,11=α,()0,1,22=α无关(不成比例),但()0421≠=αα注②:相关的向量组一定是不正交的。
于是可得2、在n 维欧氏空间中,两两正交的非零向量不超过n 个。
事实上,在n 维空间中,任何n+1个向量都是相关的。
标准正交基一、标准正交基的定义及相关概念1、欧几里得空间:设V 实数域R 上一线性空间,在V 上定义了一个二元实函数,称为内积,记作(βα,),它具有以下性质: (1)(βα,)=(αβ,); (2)(k βα,)=k(βα,);(3)(γβα,+)=(γα,)+(γβ,);(4)(αα,)>=0,当且仅当α=0时,(αα,)=0;这里,γβα,,是V 中任意的向量,k 是任意实数,这样的线性空间V 称为欧几里得空间,简称欧氏空间。
2、正交向量组:欧式空间V 中一组非零的向量,如果它们两两正交,就称为一正交向量组。
3、标准正交基:在n 维欧氏空间中,由n 个向量组成的正交向量组称为正交基,由单位向量组成的正交基称为标准正交基。
二、标准正交基的相关性质1、正交向量组的性质:(1)正交向量组是线性无关的。
证明:设m ααα,...,,21是一正交向量组,m k k k ,...,,21是m 个实数,且有: 0...2211=+++m m k k k ααα用i α与等式两边作内积,得:0),(=i i i k αα由0≠i α,有0),(>i i αα,从而:0=i k ),...,2,1(m i = 命题得证。
(2)单个非零向量组成的向量组是正交向量组。
(3)在n 维欧氏空间中,两两正交的非零向量不超过n 个。
(如:在平面上找不到三个两两垂直的非零向量,在空间中找不到四个两两垂直的非零向量。
)2、标准正交基的性质:(1)若n εεε,...,21是一组标准正交基,则:⎩⎨⎧≠==.,0;,1),(j i j i j i εε 证明:j i =时,由单位向量定义:1),(=j i εε,1),(=∴j i εεj i ≠时,由正交向量定义:0),(=j i εε 命题得证。
(2)对一组正交基单位化就得到一组标准正交基。
例如:⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=212100,212100,002121,0021214321e e e e由于⎪⎩⎪⎨⎧====≠=).4,3,2,1,;(,1),(),4,3,2,1,;(,0),(j i j i e e j i j i e e ji j i所以4321,,,e e e e 是4R 的一组标准正交基。
怎么求标准正交基首先,我们需要明确什么是标准正交基。
在一个内积空间中,如果向量集合中的任意两个向量的内积为0,且每个向量的模长为1,那么这个向量集合就是一个标准正交基。
标准正交基的优点在于它的向量之间相互垂直,且模长为1,这样的基可以更方便地进行向量运算和表示,因此在实际问题中有着重要的作用。
接下来,我们来讨论如何求标准正交基。
一种常用的方法是施密特正交化方法。
给定一个线性无关的向量组,我们可以通过施密特正交化方法将这个向量组变换成一个标准正交基。
具体的步骤如下:假设有向量组{v1, v2, ..., vn},首先令u1=v1,然后令u2=v2-投影(u1,v2)u1,再令u3=v3-投影(u1,v3)u1-投影(u2,v3)u2,以此类推,依次求出u1,u2,...,un,最后再将每个向量单位化即可得到标准正交基。
除了施密特正交化方法之外,还可以利用矩阵的特征值和特征向量来求标准正交基。
给定一个对称矩阵A,我们可以通过求解A的特征值和特征向量来得到标准正交基。
具体的步骤是先求解A的特征值和对应的特征向量,然后将特征向量单位化,最终得到标准正交基。
另外,还有一种常用的方法是利用正交矩阵来求标准正交基。
对于一个正交矩阵Q,它的列向量就构成了一个标准正交基。
因此,我们可以通过构造一个正交矩阵来得到所需的标准正交基。
总的来说,求标准正交基是线性代数中的一个重要问题,它有着广泛的应用。
在实际问题中,我们可以通过施密特正交化方法、特征值和特征向量、正交矩阵等方法来求解标准正交基。
希望本文的介绍能够帮助读者更好地理解和掌握这一概念。
怎么求标准正交基首先,我们需要了解标准正交基的定义。
在一个内积空间中,如果向量集合中的向量两两正交且归一化,即它们之间的内积为0且它们的模为1,那么这个向量集合就是标准正交基。
接下来,我们来介绍一种求解标准正交基的常用方法——施密特正交化方法。
假设我们有一个线性无关的向量组{v1, v2, ..., vn},我们可以通过施密特正交化方法将它们变换成一个标准正交基。
首先,我们取向量组中的第一个向量v1,对它进行归一化处理,即得到第一个标准正交基e1。
然后,我们取向量v2,将它在e1上的投影减去,得到一个新的向量,然后对这个新的向量进行归一化处理,得到第二个标准正交基e2。
依此类推,对于向量组中的每一个向量,都可以通过这种方法得到一个标准正交基。
施密特正交化方法的关键在于对向量的投影和归一化处理,通过这种方法,我们可以将任意线性无关的向量组变换成一个标准正交基。
除了施密特正交化方法,我们还可以通过矩阵的特征值分解来求解标准正交基。
对于一个对称矩阵,我们可以通过特征值分解得到它的特征向量,然后对特征向量进行归一化处理,就可以得到一个标准正交基。
此外,还有其他一些特殊情况下的求解方法,比如利用奇异值分解、Gram-Schmidt方法等。
不同的方法适用于不同的情况,我们需要根据具体的问题来选择合适的方法。
总的来说,求解标准正交基是线性代数中的一个重要问题,通过施密特正交化方法、特征值分解等方法,我们可以比较容易地求解标准正交基。
在实际应用中,我们需要根据具体的问题来选择合适的方法,以便更加高效地求解标准正交基。
希望本文对你有所帮助,谢谢阅读!。
标准正交基怎么求首先,我们需要明确标准正交基的定义。
在一个向量空间中,如果存在一组基向量,它们两两之间的内积为0,并且它们的模长都为1,那么这组基向量就是标准正交基。
换句话说,标准正交基是一组相互垂直且长度为1的基向量。
接下来,我们来讨论如何求解标准正交基。
假设我们有一个n 维向量空间V,我们要在这个向量空间中找到一组标准正交基。
首先,我们可以利用Gram-Schmidt正交化方法来实现这一目标。
Gram-Schmidt正交化方法的基本思想是,对于给定的一组线性无关的向量{v1, v2, ..., vn},我们可以通过一定的变换,得到一组标准正交基{u1, u2, ..., un}。
具体的步骤如下:1. 首先,取向量v1,令u1=v1/|v1|,其中|v1|表示向量v1的模长。
2. 然后,对于第i个向量vi,我们可以依次进行以下步骤:a. 令ui=vi。
b. 对于j=1,2,...,i-1,令ui=ui-(ui·uj)uj,其中·表示内积运算。
c. 最后,令ui=ui/|ui|,得到标准正交基中的第i个基向量。
通过上述步骤,我们可以逐个求得向量空间V中的标准正交基。
需要注意的是,Gram-Schmidt正交化方法能够保证我们求得的基向量是标准正交的,并且它们张成的子空间与原始向量空间V是等价的。
除了Gram-Schmidt正交化方法外,我们还可以利用特征值分解、奇异值分解等方法来求解标准正交基。
这些方法在不同的情况下有着不同的适用性,读者可以根据具体的问题选择合适的方法来求解标准正交基。
综上所述,标准正交基的求解是线性代数中的一个重要问题,它涉及到向量空间的基础理论和实际应用。
通过Gram-Schmidt正交化方法、特征值分解、奇异值分解等方法,我们可以有效地求解标准正交基,为进一步的线性代数理论和实际问题的求解提供了重要的基础。
希望本文对读者能够有所帮助,谢谢阅读!。
标准正交基怎么求标准正交基是线性代数中的重要概念,它在向量空间的正交性质和标准化表示方面起着关键作用。
那么,接下来我们就来探讨一下标准正交基的求解方法。
首先,我们需要明确标准正交基的定义。
在n维实内积空间中,如果向量组{v1, v2, ..., vn}满足以下两个条件,一是向量组中的向量两两正交,即vi·vj=0(i≠j),二是向量组中的每一个向量的模长为1,即||vi||=1,则称向量组{v1, v2, ..., vn}为标准正交基。
接下来,我们来讨论标准正交基的求解方法。
一般来说,求解标准正交基的方法有Gram-Schmidt正交化方法和矩阵的特征值分解方法。
首先是Gram-Schmidt正交化方法。
对于给定的线性无关向量组{u1, u2, ..., un},我们可以通过以下步骤来求解标准正交基:1. 取第一个向量v1=u1,进行标准化处理,即v1=u1/||u1||。
2. 对于第i个向量ui,我们可以通过以下公式来求解vi:vi=ui-Σ(j=1 to i-1)(ui·vj)·vj。
然后进行标准化处理,即vi=vi/||vi||。
3. 重复以上步骤,直到求得n个标准正交向量{v1, v2, ..., vn}。
其次是矩阵的特征值分解方法。
对于给定的矩阵A,我们可以通过以下步骤来求解标准正交基:1. 首先,求解矩阵A的特征值和对应的特征向量。
2. 将特征向量进行标准化处理,即将每个特征向量除以其模长。
3. 如果A是对称矩阵,那么它的特征向量是两两正交的,我们可以直接将它们作为标准正交基。
需要注意的是,对于一般的矩阵,其特征向量未必是两两正交的,所以在使用特征值分解方法求解标准正交基时,需要进行额外的正交化处理。
综上所述,我们可以通过Gram-Schmidt正交化方法和矩阵的特征值分解方法来求解标准正交基。
在实际应用中,我们可以根据具体情况选择合适的方法来求解标准正交基,以满足我们的需求。
§2 标准正交基一、正交向量组 定义:设V为欧氏空间,非零向量12,,,m V ααα∈,如果它们两两正交,则称之为正交向量组. 注:① 若0α≠,则α是正交向量组. ② 正交向量组必是线性无关向量组. 证:设非零向量12,,,m V ααα∈两两正交. 令 11220m m k k k ααα+++=, i k R ∈则 ()()11,,,0m mi j j j i j i i i j j k a k a a k a a α==⎛⎫=== ⎪⎝⎭∑∑由 0i a ≠知 (),0i j a a >, ∴ 0i k =, 1,2,,i m = 故 12,,,m ααα线性无关.③ 欧氏空间中线性无关向量组未必是正交向量组. 例如:3R 中 ()11,1,0α=,()21,0,1α=线性无关. 但12,αα不是正交向量组.()12,10αα=≠.④ n 维欧氏空间中正交向量组所含向量个数≤n 二、标准正交基 1. 几何空间3R 中的情况在直角坐标系下()1,0,0i =,()0,1,0j =,()0,0,1k =是由单位向量构成的正交向量组,即()()(),,,0i j j k k i ===1i j k ===i ,j ,k 是3R 的一组基.设 111x i y j z k α=++,3222x i y j z k R β=++∈ ① 从 ()1,i x α=,()1,j y α=,()1,k z α= 得 ()()(),,,i i j j k k αααα=++ ② ()121212,x x y y z z αβ=++③ α=④,arccos βθ=即在基,,i j k 下,3R 中的与内积有关的度量性质有简单的表达形式. 2. 标准正交基的定义n 维欧氏空间中,由n 个向量构成的正交向量组称为正交基; 由单位向量构成的正交基称为标准正交基. 注:① 由正交基的每个向量单位化,可得到一组标准正交基. ② n 维欧氏空间V 中的一组基1,,n εε为标准正交基()1,,1,2,0i j i ji j n i j εε=⎧⇔==⎨≠⎩③ n 维欧氏空间V 中的一组基1,,n εε为标准正交基当且仅当其度量矩阵 ()(),i j n A E εε==.④ n 维欧氏空间V 中的标准正交基的作用: 设1,,n εε为V 的一组标准正交基,则 (i) 设 1122n n x x x V αεεε=+++∈ 由(1) ,(),i i x αε= .有 ()()()1122,,,n n ααεεαεεαεε=+++ (2) (ii) ()11221,nn n i i i x y x y x y x y αβ==+++=∑ (3)这里 1122n n x x x αεεε=+++ , 1122n n y y y βεεε=+++ .(iii) α=3. 标准正交基的构造─施密特(Schmidt)正交化过程1) (定理1) n 维欧氏空间中任一个正交向量组都能扩充成一组正交基.证:设 12,,,m ααα欧氏空间V中的正交向量组,对n m -作数学归纳法. 当0n m -=时, 12,,,m ααα就是一组正交基了.假设n m k -=时结论成立,即此时可找到向量12,,k βββ 使 12,,m ααα,12,,k βββ 成为一组正交基.现在来看()11n m k -=+≥的情形. 因为m n <,所以必有向量β不能被12,,m ααα线性表出, 作向量 ()111220m m mk k k αβααα+=---≠ i k R ∈ 待定. 从正交向量组的性质知()()()1,,,,i m i i i i k ααβααα+=-1,2,.i m = 于是取 ()(),,i i i i k βααα=1,2,.i m =可得()1,0,i m αα+= 1,2,.i m = 即 121,,,,m m αααα+ 为正交向量组.由归纳法假设知,对这1m +个向量构成的正交组可扩充得正交基. 于是定理得证.2)(定理2) 对于n 维欧氏空间中任一组基12,,n εεε都可找到一组标准正交基12,,,n ηηη,使()()1212,,,,,i i L L εεεηηη=, 1,2,,i n = 证:(基本方法─逐个构成出满足要求的12,,,n ηηη.)首先,可取 1111ηεε=.一般地,假定已求出12,,,m ηηη是单位正交的 ,且()()1212,,,,,i i L L εεεηηη=, 1,2,i m = (4)当m<n 时,因为有 ()112,,,m m L εεεε+∉ 由(4)知 1m ε+不能被12,,,m ηηη线性表出. 按定理1证明中的方法,作向量111122m m m m k k k ξεηηη++=---, ()()1,,m i i i i k εηηη+=即 ()1111,mm m m i i i ξεεηη+++==-∑ (5)则 10m ε+≠ 且 ()1,0m i εη+=, 1,2,i m = 再设 1111m m m ηξξ+++=.可知 121,,,,m m ηηηη+ 是单位正交向量组.从(4)和(5)知 121,,,,m m ηηηη+与121,,,m m εεεε+是等价向量组,因此,有()()121121,,,,,,m m L L εεεηηη++=由归纳原理,定理2得证. 注:① 由()()1212,,,,,,i i L L εεεηηη=, 1,2,i n = 知,若 ()()1212,,,,,,i n T ηηηεεε=,则过渡矩阵()ij T t =是上三角形(即0,ij t i j =>) 且 0,ij t > 1,2,i n = ②Schmidt 正交化过程:1。