飞行程序设计6(复飞)
- 格式:ppt
- 大小:779.00 KB
- 文档页数:19
《飞行程序设计》课程考试大纲课程名称:《飞行程序设计》课程代码:0800第一部分课程性质与目标一、课程性质与特点《飞行程序设计》是高等教育自学考试交通运输专业独立本科段的一门专业课,是本专业学生学习和掌握空域规划和设计基本理论和方法的课程。
设置本课程的目的是使学生从理论和实践上掌握以NDB、VOR、ILS等设备作为航迹引导设备时,离场程序、进场程序、进近程序、复飞程序和等待程序,以及航路的设计原理和方法。
通过对本课程的学习,使学生熟练掌握目视与仪表飞行程序设计的有关知识,使之能独立完成有关机场的飞行程序设计和优化调整。
二、课程设置目的与基本要求了解飞行程序的总体结构、设计方法;了解飞行程序的分类原则;掌握飞行程序设计的基本准则;能够独立完成有关机场的飞行程序设计和优化调整。
本课程的基本要求如下:1.了解飞行程序的基本结构和基本概念。
2.了解终端区内定位点的定位方法、定位容差和定位的有关限制。
3.了解离场程序的基本概念,掌握直线离场、指定高度转弯离场、指定点转弯离场和全向离场的航迹设计准则、保护区的确定方法、超障余度和最小净爬升梯度的计算方法,以及相应的调整方法;4.掌握航路设计的国际民航组织标准和我国的标准;5.掌握进近程序各个航段的航迹设置准则;6.掌握各种情况下,进近程序各个航段保护区的确定原则;7.掌握进近程序各个航段超障余度和超障高度的计算方法;8.掌握进近各个航段下降梯度的规定,以及梯度超过标准时的调整方法。
9.掌握基线转弯程序的基本概念,出航时间的确定方法,保护区的确定原则,超障余度和超障高度的计算方法;10.掌握直角航线的基本概念,出航时间的确定方法,保护区的确定原则,超障余度和超障高度的计算方法;11.掌握ILS进近的基本概念,精密航段障碍物评价方法,以及超障高度的计算方法;12.了解等待程序的基本概念,掌握保护区的确定方法,以及超障余度和超障高度的计算方法;13.了解区域导航程序设计的基本概念。
飞机起飞一发失效应急程序和一发失效复飞应急程序制作规范1、目的飞机起飞和着陆的性能分析是飞机性能分析的重要工作。
对于高原和地形复杂机场,制定起飞一发失效应急程序和一发失效复飞应急程序,是飞机起飞和着陆性能分析工作的重要组成部分,对保证飞行安全、提高运行效益意义重大。
为统一超障评估分析方法,规范起飞一发失效应急程序和一发失效复飞应急程序制作标准,特制定本通告。
2、适用范围本通告适用于按照CCAR-121部《大型飞机公共航空运输承运人运行合格审定规则》运行的航空承运人。
3、相关规章3.1 CCAR121.189条(涡轮发动机驱动的飞机的起飞限制):(c)涡轮发动机驱动的飞机不得以大于该飞机飞行手册中所确定的某个重量起飞,在该重量下,预定净起飞飞行轨迹以10.7 米(35 英尺)的余度超越所有障碍物,或者能以一个特定距离侧向避开障碍物。
该特定距离的值为下列两目中规定值的较小值:(i)90米(300 英尺)+0.125D,其中D 是指飞机离可用起飞距离末端的距离值;(ii)对于目视飞行规则飞行,预定航迹的航向变化小于15 度时,为300 米,预定航迹的航向变化大于15度时,为600米;对于仪表飞行规则飞行,预定航迹的航向变化小于15度时,为600米,预定航迹的航向变化大于15度时,为900米。
(d)…确定最大重量、最小距离和飞行轨迹时,应当对拟用的跑道、机场的标高、有效跑道坡度和起飞时的环境温度、风的分量进行修正。
3.2 国际民航公约附件6《航空器运行》第Ⅰ部分附篇C(飞机性能使用限制),起飞越障限制。
4、背景CCAR-121.189条规定了涡轮发动机驱动的飞机的起飞限制要求,这些限制包括了飞机在起飞时如果一台发动机失效,净起飞飞行轨迹以垂直余度超越或以一个特定距离避开障碍物。
2000年2月23日民航局飞标司下发了《关于制定起飞一发失效应急程序的通知》(AC-FS-2000-2)咨询通告,该通告明确了制定起飞一发失效应急程序应考虑的障碍物范围、净轨迹的超障余度要求、转弯坡度规定和分析方法,并要求航空承运人在地形复杂机场运行前,应为所用机型制作在这些机场运行的起飞一发失效应急程序并报局方批准,以保证起飞一发失效后的飞行安全并提高障碍物限制的最大起飞重量。
飞行程序设计目录•前言•第一章飞行程序理论基础• 1.1 飞行程序结构• 1.1.1 离场程序• 1.1.2 进近程序• 1.1.3 进场程序• 1.2 航空器分类• 1.3 飞行程序定位和容差规范• 1.3.1 定位方法分类• 1.3.2 定位容差限制•第二章飞行程序辅助设计系统设计• 2.1 系统功能划分• 2.1.1 航迹和保护区绘制• 2.1.2 障碍物评估• 2.2 几何算法实现• 2.2.1 风螺旋线算法设计• 2.2.2 风螺旋算法实现• 2.2.3 缓冲区算法设计• 2.2.4 缓冲区算法实现• 2.3 用户界面设计• 2.3.1 VBA程序菜单设计• 2.3.2 绘图程序界面设计• 2.3.3 评估程序界面设计•第三章离场程序设计• 3.1 流程描述• 3.2 离场程序要求的参数• 3.3 直线离场• 3.4 转弯离场•指定高度转弯离场•电台上空转弯•交叉定位或DME弧确定TP的转弯离场• 3.5 向台飞行• 3.6 全向离场•第四章等待程序设计• 4.1 流程描述• 4.2 等待程序• 4.2.1 等待程序作图参数• 4.2.2 等待程序模板绘制方法• 4.2.3 模板的作图• 4.2.4 确定定位容差• 4.2.5 基本区作图和交叉定位上空的全向进入作图• 4.2.6 区域缩减原则•第五章复飞程序设计• 5.1 流程描述• 5.2 直线复飞• 5.3 转弯复飞•第六章障碍物评估程序设计• 6.1 评估的一般准则• 6.2 直线离场障碍物评估• 6.3 转弯离场障碍物评估• 6.3.1 指定转弯点的障碍物评价• 6.3.2 指定高度转弯离场的障碍物评价• 6.4 复飞程序评估• 6.4.1 直线复飞障碍物评价• 6.4.2 转弯复飞的障碍物评价• 6.5 等待程序评估•第七章结论前言在国内,飞行程序设计一直以手工设计为主。
随着计算机技术的普及,设计人员在设计过程中使用了一些CAD辅助设计的技巧,但是并没有从根本上解决手工设计效率低下,工作繁重和结果不一致等问题。
飞行程序设计步骤及作图规范飞行程序设计步骤第一节扇区划分1.1以本场归航台为圆心,25NM(46KM)为半径画出主扇区,位于主扇区的边界之外5NM(9KM)为缓冲区。
主扇区和缓冲区的MOC相同,平原为300米,山区600米。
1.2扇区划分2. MSA采用50米向上取整。
第二节确定OCH f2.1假定FAF的位置,距离跑道入口距离为,定位方式。
2.2假定IF的位置,定位方式,中间航段长度为。
2.3分别作出最后和中间段的保护区,初算OCH中。
OCH中= Max{H OBi+MOC},H OBi:中间段保护区障碍物高度2.4确定H FAF(H FAF=OCH中),计算最后段的下降梯度,以最佳梯度5.2%调整FAF、IF的位置。
2.5根据调整的结果,重新计算OCH f。
OCH f= 。
[注] OCH f是制定机场运行标准的因素之一,也属于飞行程序设计工作的一方面,有兴趣的同学可以参阅《民航局第98号令》。
第三节初步设计离场、进场、进近方法及等待点的位置和等待方法。
(1)进场、离场航迹无冲突,航迹具有侧向间隔,或垂直间隔(低进高出);(2)仪表进场程序根据机场周围航线布局、导航布局以及进场方向,选择合适的进近方式,优先顺序为:直线进近,推测航迹,沿DME弧进近,反向程序,直角航线;(3)注意进场航线设置与几种进近方式的衔接;(4)机场可以根据进场方向设置几个等待航线,等待位置尽可能与IAF点位置一致,但不强求;(5)合理规划导航台布局,最大限度地利用导航台资源。
第四节仪表离场程序设计首先根据机场周边航线分布,确定各个方向的离场方式(直线/转弯);4.1直线离场:4.1.1航迹引导台;4.1.2有无推测航迹,长度KM;4.1.3确定保护区;4.1.4对保护区内障碍物进行评估4.2转弯离场4.2.1根据障碍物分布和空域情况确定使用转弯离场方式(指定点/指定高度)4.2.2确定航迹引导台;4.2.3有无推测航迹,长度KM;4.2.4计算转弯参数4.2.6根据标称航迹确定保护区;4.2.7对保护区内障碍物进行评估各个方向离场方式描述。
飞行程序设计MOC飞行程序设计是一门非常“严谨”的学课,几乎每一项内容都有一个专业的名词与之对应。
由此带来的一个问题就是对“新人”不友好,特别是短期培训中,由于时间有限,无法详细涉及过多的词汇,导致很多人对词汇的理解和识记存在困难。
1、MOC Minimum obstacle clearance 最小超降余度这一组词汇中最核心的当属MOC,其它的词汇都与这个词汇有关。
飞机不能贴着地面飞行,一定是留有余度的,飞机与障碍物之间的最小垂直间隔就是MOC。
在不同的航段对MOC的要求是不同的。
对于(仪表)航线飞行,MOC至少为300米,山区可以到600米(山顶上600米飞过时,草甸上的羊和走路的人都可以看得很清楚)。
在非精密进近程序中,起始进近MOC为300米,中间进近MOC为150米,最后进近75米(有FAF)或者90米(无FAF)。
复飞中间阶段MOC为30米,复飞最后阶段MOC为50米。
对于不同的机型,在制定运行标准时,MOC的要求是不一样的。
比如目视盘旋条件下,A、B类MOC为90米,C、D类MOC为120米。
精密进近条件下,A至D类机型超障余度可以从40米到49米不等(精密进近中用高度损失HL来表示这个概念)。
离场初始段超障余度用距离的0.8%来表示,即从起飞离场端5米高度开始,距离每增加1000米,余度增加8米。
2、MEA Minimum en—route altitude最低航路高度与MSA Minimum sector altitude 最低扇区高度从超障的角度来说MEA就是图上标识的最低飞行高度。
(最低飞行高度还需要考虑通信、导航信号的覆盖因素)MSA是以导航台或机场基准点ARP为圆心,半径46公里,外加9公里缓冲区范围内划分扇区,障碍物之上最少300米余度得到的高度。
MEA与MSA都是大范围上的最低高度,它们都需要保持300米以上的MOC。
如何做好复飞作为一名飞行员,对复飞不会觉得陌生。
但就是这应该很熟悉的程序中,却常常诱发“小河沟里翻大船”的不安全事件。
要么油门加不上去,导致仰角大速度小,飞机状态不稳;要么设备使用丢三拉四;要么形态改变时机不当,造成形态超速;要么飞机拉起来之后,飞的高度、航迹不对,通话程序混乱,等等。
从“正常进近着陆”瞬间转到“复飞”,情景突变,这对飞行员的心理和行为能力将产生严重的负面影响。
实际运行中不得不实施的复飞,与模拟机上进行的程式化复飞相比,飞行员经受的心理负荷不尽相同。
实际运行中的复飞我们称其为应激复飞,应激复飞具有以下特征:一般当飞机进入最后进近阶段,机组的惯常思维都是引领飞机正常着陆,但突然出现必须复飞的状况,如跑道入侵;如在DA/H或MDA/H 未建立或者失去目视参考,或是偏差太大不能安全着陆等。
这些正常着陆过程中突然冒出来的危及飞行安全的意外情况,往往出乎机组的意料,心理和技术应对仓促,复飞初期会感到措手不及。
研究表明,从正常思维突然转入非正常思维,没有经过必要的缓冲,飞行员思维短时间处于茫然状态,往往凭直觉或是下意识完成具体动作。
错误大多以飞机姿态控制不当,或状态丢失、操作动作遗忘等现象呈现。
生疏复飞动作,在心平气和者看来不值一提,模拟机训练也不作为重点,在进近简令中也是一带而过。
如果机组成员间没有好好配合模拟演练一下,处于不熟练状态,那么遇到紧急复飞,飞行能力又会降低许多,人的能力或精力一旦顾及不了必须动作,自然会出现“错忘漏”的情况。
许多复飞发生在低高度,可供处置的时间和空间有限。
对于地形复杂、净空条件差的机场,必须按特定的路线边钻山沟边爬升,否则飞机可能会与地面高大障碍物或地形发生相撞。
如连城21号ISL/DME 进近,执行复飞后,因跑道东侧地形险峻,西侧靠近一边航迹处也存在较高地形。
因此,需要严格保持一边复飞航迹爬升,DME7.3ILL(D5.2LCG),高度550米(1804英尺)以上右转飞向LCG,1800米(5905英尺)过台。