飞行程序设计6(复飞)【运行知识】
- 格式:pptx
- 大小:990.21 KB
- 文档页数:18
《飞行程序设计》课程考试大纲课程名称:《飞行程序设计》课程代码:0800第一部分课程性质与目标一、课程性质与特点《飞行程序设计》是高等教育自学考试交通运输专业独立本科段的一门专业课,是本专业学生学习和掌握空域规划和设计基本理论和方法的课程。
设置本课程的目的是使学生从理论和实践上掌握以NDB、VOR、ILS等设备作为航迹引导设备时,离场程序、进场程序、进近程序、复飞程序和等待程序,以及航路的设计原理和方法。
通过对本课程的学习,使学生熟练掌握目视与仪表飞行程序设计的有关知识,使之能独立完成有关机场的飞行程序设计和优化调整。
二、课程设置目的与基本要求了解飞行程序的总体结构、设计方法;了解飞行程序的分类原则;掌握飞行程序设计的基本准则;能够独立完成有关机场的飞行程序设计和优化调整。
本课程的基本要求如下:1.了解飞行程序的基本结构和基本概念。
2.了解终端区内定位点的定位方法、定位容差和定位的有关限制。
3.了解离场程序的基本概念,掌握直线离场、指定高度转弯离场、指定点转弯离场和全向离场的航迹设计准则、保护区的确定方法、超障余度和最小净爬升梯度的计算方法,以及相应的调整方法;4.掌握航路设计的国际民航组织标准和我国的标准;5.掌握进近程序各个航段的航迹设置准则;6.掌握各种情况下,进近程序各个航段保护区的确定原则;7.掌握进近程序各个航段超障余度和超障高度的计算方法;8.掌握进近各个航段下降梯度的规定,以及梯度超过标准时的调整方法。
9.掌握基线转弯程序的基本概念,出航时间的确定方法,保护区的确定原则,超障余度和超障高度的计算方法;10.掌握直角航线的基本概念,出航时间的确定方法,保护区的确定原则,超障余度和超障高度的计算方法;11.掌握ILS进近的基本概念,精密航段障碍物评价方法,以及超障高度的计算方法;12.了解等待程序的基本概念,掌握保护区的确定方法,以及超障余度和超障高度的计算方法;13.了解区域导航程序设计的基本概念。
飞行程序设计概述飞行程序设计是指为飞行器编写程序,控制其飞行行为和执行任务。
飞行程序设计涉及到飞行器的导航、自动驾驶、飞行模式切换等功能,是飞行器能够完成各种任务的重要组成部分。
飞行程序设计原则在进行飞行程序设计时,需要遵循一些基本原则,以确保飞行器的安全和性能。
1. 模块化设计:将飞行程序分解为多个模块,每个模块负责完成特定的功能。
这样做可以提高程序的可维护性和可扩展性。
2. 容错设计:在程序中引入适当的容错机制,以应对可能出现的意外情况,如传感器故障、通信中断等。
容错设计可以增加飞行器的鲁棒性。
3. 优化算法:使用高效的算法来处理飞行器的导航和控制问题,以提高飞行器的性能和响应速度。
4. 人机交互设计:考虑到飞行程序的操作性和可用性,设计人机界面,使操作员可以方便地进行程序的设置和调整。
飞行程序设计流程飞行程序设计通常包括以下几个步骤:1. 需求分析:明确飞行器的任务和功能需求,确定需要实现的飞行程序功能。
2. 界面设计:设计人机界面,使操作员可以方便地进行程序的设置和调整。
3. 算法设计:设计飞行控制算法和导航算法,用于控制飞行器的姿态和路径。
4. 模块设计:将飞行程序分解为多个模块,并对每个模块进行详细设计。
5. 编码实现:根据设计完成对应的编码工作,实现飞行程序。
6. 调试优化:进行系统调试和优化工作,确保飞行程序的正确性和稳定性。
7. 测试验证:对飞行程序进行全面的测试验证,确保程序能够按照预期完成飞行任务。
飞行程序设计工具进行飞行程序设计时,可以使用一些专门的工具来辅助开发工作。
1. 集成开发环境(IDE):使用IDE可以提供代码编辑、调试、编译和运行等一体化的开发环境,提高开发效率。
2. 仿真工具:仿真工具可以模拟飞行器的运行环境,帮助进行飞行程序的调试和测试。
3. 数据分析工具:使用数据分析工具对飞行器的传感器数据和飞行记录进行分析,以评估飞行程序的性能和稳定性。
飞行程序设计的挑战飞行程序设计面临一些挑战,需要解决一些问题。
飞行程序设计[标题][摘要]本文档旨在提供飞行程序设计的详细范本,以便开发人员参考和应用。
文档涵盖了飞行程序设计的各个阶段和关键要点,包括需求分析、系统设计、编码实现、测试和部署等。
同时,文档还提供了相关的附件、法律名词及注释等内容供读者参考。
[目录]1.引言1.1 背景1.2 目的1.3参考资料2.需求分析2.1 功能需求2.2 性能需求2.3 可靠性需求2.4 安全需求3.系统设计3.1 架构设计3.2 数据流设计3.3 接口设计3.4 数据库设计3.5 用户界面设计4.编码实现4.1 开发环境4.2 编程语言选择 4.3 模块划分4.4 编码规范5.测试5.1 单元测试5.2 集成测试5.3 系统测试5.4 性能测试5.5安全测试6.部署与发布6.1 部署环境6.2 部署流程6.3 用户培训6.4 发布计划7.附件7.1 数据字典7.2 接口文档7.3界面设计图8.法律名词及注释8.1 法律名词解释8.2 附加法律文件[注释]- 功能需求:系统应具备的功能,如航线规划、飞行控制等。
- 性能需求:系统的性能要求,如响应时间、吞吐量等。
- 可靠性需求:系统的可靠性要求,如故障恢复、冗余备份等。
- 安全需求:系统的安全要求,如权限控制、数据保护等。
- 架构设计:系统的总体结构设计,包括模块划分、组件关系等。
- 数据流设计:系统中数据的流动方式和路径。
- 接口设计:与外部系统或设备的接口设计。
-数据库设计:系统中使用的数据库结构设计。
- 用户界面设计:系统的用户交互界面设计。
-编码规范:统一的编码规范和命名规则。
- 数据字典:系统中使用的数据定义说明。
- 接口文档:系统的接口定义和使用说明。
- 界面设计图:系统用户界面的设计图纸。
[附件]请参考附件中的数据字典、接口文档和界面设计图作为本文档的补充材料。
[法律名词及注释]请参考附加法律文件中的法律名词解释,以便正确理解相关法律条款和要求。
[全文结束]。
飞行程序设计飞行程序设计简介飞行程序设计是指为飞行器开发和设计控制程序的过程。
飞行程序设计使用计算机来控制飞行器的飞行,包括飞机、直升机、无人机等。
通过飞行程序设计,可以实现飞行器的自动驾驶、导航、遥控等功能。
飞行程序设计的重要性飞行程序设计在现代航空领域中具有重要的作用。
它可以提高飞行器的控制精度和飞行安全性,减少人的操作失误,提高飞行效率。
飞行程序设计还可以实现飞行器的自主导航和自动驾驶。
在无人机领域,飞行程序设计可以让无人机实现自主巡航、目标跟踪和避障等功能,大大提高了无人机的应用范围和效益。
飞行程序设计的基本原理飞行程序设计的基本原理是通过计算机对飞行器进行控制。
,需要收集飞行器的姿态、速度、位置和环境信息等数据。
然后,根据这些数据进行分析和计算,飞行器的控制指令。
,将控制指令发送给飞行器的执行器,实现飞行器的控制。
在飞行程序设计中,常用的控制算法包括PID控制算法、模糊控制算法和遗传算法等。
这些控制算法可以根据飞行器的控制需求和环境条件进行优化,以实现更精确的控制效果。
飞行程序设计的应用飞行程序设计广泛应用于航空领域中的各种飞行器控制系统中。
以下是飞行程序设计在不同类型飞行器中的具体应用示例:飞机在飞机中,飞行程序设计可以实现飞机的自动驾驶和导航功能。
通过飞行程序设计,可以使飞机在航线上自动飞行、自动起降和自动着陆。
直升机在直升机中,飞行程序设计可以实现直升机的稳定控制和姿态调整。
通过飞行程序设计,可以控制直升机的旋翼和尾翼来实现飞行器的平稳飞行和悬停。
无人机在无人机中,飞行程序设计可以实现无人机的自主巡航和目标跟踪功能。
通过飞行程序设计,无人机可以根据预设的航点和目标信息进行自主飞行和自主导航。
飞行程序设计的挑战与发展方向飞行程序设计面临着一些挑战和发展方向。
,飞行程序设计需要处理大量的传感器数据和环境信息,对计算机的算力和实时性要求较高。
,飞行程序设计需要考虑飞行器的动力系统和机械结构,以实现更精确的控制效果。
飞行程序设计步骤及作图规范飞行程序设计步骤第一节扇区划分1.1以本场归航台为圆心,25NM(46KM)为半径画出主扇区,位于主扇区的边界之外5NM(9KM)为缓冲区。
主扇区和缓冲区的MOC相同,平原为300米,山区600米。
1.2扇区划分2. MSA采用50米向上取整。
第二节确定OCH f2.1假定FAF的位置,距离跑道入口距离为,定位方式。
2.2假定IF的位置,定位方式,中间航段长度为。
2.3分别作出最后和中间段的保护区,初算OCH中。
OCH中= Max{H OBi+MOC},H OBi:中间段保护区障碍物高度2.4确定H FAF(H FAF=OCH中),计算最后段的下降梯度,以最佳梯度5.2%调整FAF、IF的位置。
2.5根据调整的结果,重新计算OCH f。
OCH f= 。
[注] OCH f是制定机场运行标准的因素之一,也属于飞行程序设计工作的一方面,有兴趣的同学可以参阅《民航局第98号令》。
第三节初步设计离场、进场、进近方法及等待点的位置和等待方法。
(1)进场、离场航迹无冲突,航迹具有侧向间隔,或垂直间隔(低进高出);(2)仪表进场程序根据机场周围航线布局、导航布局以及进场方向,选择合适的进近方式,优先顺序为:直线进近,推测航迹,沿DME弧进近,反向程序,直角航线;(3)注意进场航线设置与几种进近方式的衔接;(4)机场可以根据进场方向设置几个等待航线,等待位置尽可能与IAF点位置一致,但不强求;(5)合理规划导航台布局,最大限度地利用导航台资源。
第四节仪表离场程序设计首先根据机场周边航线分布,确定各个方向的离场方式(直线/转弯);4.1直线离场:4.1.1航迹引导台;4.1.2有无推测航迹,长度KM;4.1.3确定保护区;4.1.4对保护区内障碍物进行评估4.2转弯离场4.2.1根据障碍物分布和空域情况确定使用转弯离场方式(指定点/指定高度)4.2.2确定航迹引导台;4.2.3有无推测航迹,长度KM;4.2.4计算转弯参数4.2.6根据标称航迹确定保护区;4.2.7对保护区内障碍物进行评估各个方向离场方式描述。
飞行程序设计在现代航空领域,飞行程序设计扮演着至关重要的角色。
飞行程序是一系列指导飞行员在特定飞行情境下操作飞机的步骤和指示。
这些程序涵盖了从起飞到降落的各个阶段,并确保飞行安全与效率。
本文将探讨飞行程序设计的重要性、设计原则以及未来的发展方向。
一、飞行程序设计的重要性飞行程序设计对于航空安全至关重要。
合理、准确地编写飞行程序能最大程度地避免人为失误和意外事故的发生。
不论是起飞、巡航还是降落,飞行程序都提供了一种标准化的方法,确保飞机在各种情况下的安全运行。
其次,飞行程序还能提高飞行效率。
通过设计简洁、明确的程序,飞行员能够更快速地执行各项操作。
合理利用飞行程序,可以减少时间浪费和资源消耗,提高飞行效率,进而降低航空公司的运营成本。
最重要的是,飞行程序设计是提供良好飞行体验的关键之一。
无论是乘客还是机组人员,都希望飞行过程中能感受到平稳、舒适的体验。
良好的飞行程序设计有助于减轻飞行员的工作负担,提升操作的流畅性,为乘客提供更好的旅行体验。
二、飞行程序设计的原则1. 操作简洁明确飞行程序设计应尽量遵循简洁明确的原则。
每个飞行步骤和指示都应该清晰、简明地描述,避免过多的冗余信息和复杂操作。
简洁明确的程序设计不仅有助于飞行员的理解和操作,还能够快速应对紧急情况。
2. 标准化和一致性飞行程序应该遵循国际统一的标准和规范,确保在不同航空公司之间的一致性。
标准化的程序设计可以减少飞行员的学习成本,降低操作错误的风险,并且有助于各种飞机和航空器型的通用性。
3. 实时更新和持续改进随着技术和飞行环境的不断变化,飞行程序需要实时更新和持续改进。
飞行程序设计者应该与飞行员和飞行技术人员保持紧密的沟通,并及时获得反馈。
基于反馈和数据分析,不断改进和优化飞行程序设计,以适应不断变化的需求和挑战。
三、飞行程序设计的未来发展随着先进技术的不断发展,飞行程序设计也将面临一系列新的机遇和挑战。
1. 自动化和智能化随着人工智能和自动化技术的进步,未来飞行程序设计可能更加智能化和自动化。
飞行程序设计飞行程序设计简介飞行程序设计是指在飞行器(如飞机、无人机等)中运行的程序的设计和开发。
随着航空技术和计算机技术的发展,飞行程序设计在航空航天领域中扮演着重要的角色。
本文将介绍飞行程序设计的基本概念、流程和工具,帮助初学者了解飞行程序设计的基本知识。
概述飞行程序设计是将计算机程序应用于飞机控制、导航、通信和飞行器系统管理等方面。
飞行程序设计需要考虑飞行器的特点、飞行环境以及飞行任务的需求。
一个有效的飞行程序能够提高飞行器的性能、安全性和可靠性。
设计流程飞行程序设计的一般流程如下:1. 需求分析:明确飞行任务的需求和约束条件,确定程序设计的目标。
2. 高层设计:根据需求分析,设计程序的整体架构和功能模块。
3. 详细设计:对程序的每个功能模块进行详细设计,包括算法选择、数据结构定义等。
4. 编码实现:根据详细设计,使用编程语言将程序实现。
5. 调试测试:进行程序的调试和测试,确保程序能够正确运行。
6. 验证验证:验证程序的正确性和性能是否满足需求,并进行优化和改进。
7. 部署运行:将程序部署到飞行器中,并进行实际飞行测试。
设计工具在飞行程序设计中,有许多工具可以辅助设计和开发工作。
以下是一些常用的设计工具:- UML建模工具:用于绘制程序的结构图、行为图和交互图等,如Visio、Enterprise Architect等。
- 集成开发环境(IDE):用于编写、调试和测试程序代码,如Eclipse、Visual Studio等。
- 仿真软件:用于模拟飞行环境和飞行器行为,如FlightGear、Prepar3D等。
- 静态代码分析工具:用于发现和修复代码中的潜在问题,如Cppcheck、Pylint等。
- 版本管理工具:用于管理程序代码的版本和变更,如Git、SVN等。
- 编辑器:用于编辑和查看程序源代码,如Sublime Text、Notepad++等。
常见挑战和解决方案在飞行程序设计过程中,常常面临一些挑战。
正常飞行程序(检查单程序):一、航行前检查二、发动机启动前检查(申请放行许可)三、发动机启动检查四、发动机启动后检查五、起飞前检查六、滑行检查(申请滑行许可)七、起飞线检查(确认五边清场申请进跑道许可)八、正常起飞检查(申请起飞许可)九、巡航检查(报告位置)十、着陆/进近检查(申请连续或全停许可)十一、复飞程序(报告复飞)十二、着陆后检查(报告脱离跑道并脱波)十三、发动机关车检查注:由于模拟飞行中不同飞机性能及操作差异,正常飞行程序在训练过程由教员按需讲解。
机动飞行程序:一、慢速飞行说明:飞机以一个低于正常巡航速度的速度飞行。
这个设定的速度在增加载荷或加大迎角,减小动力的情况下会造成立即的失速。
保持这个速度可以进行转弯,下降和上升,按照教员或检查员的要求,飞机以不同的构型飞行。
目标:使学员掌握控制飞机慢速飞行的能力,了解在这个速度下飞行操纵效能,转弯速率的变化。
程序:1、机动飞行前检查;2、保持高度和航向,50%动力,按需释放襟翼,逐渐增加动力不大于50%;3、左右依次各转30°航向,坡度不大于10°,动力按需稍加;4、做完上述动作加油门并保持正常巡航速度、航向及高度。
二、无动力失速说明:无动力失速模拟飞机在着陆形态和以五边进近速度下降时的情况。
回收油门,增大俯仰以进入失速。
失速发生后,学员改出失速,使飞机回到直线和水平飞行。
目标:使学员掌握识别进入失速前的飞机状态指示,并能在尽量少损失高度的前提下迅速有效的改出。
注意:改出时高度要高于600m AGL。
程序:1、机动飞行前检查;2、保持高度和航向,50%动力,按需释放襟翼;3、目标高度在当时高度的60m/200FT一下,随空速减小收光油门,保持稳定下滑,带杆到俯仰角10~20°;4、按需在失速警告、抖杆、全失速后改出;5、改出方法100%动力,俯仰角-5~0°按需,空速绿区,姿态+5°,目标空速Vy,证实正上升率后收襟翼;6、做完上述动作加油门爬升到正常高度,保持巡航速度及航向。
飞行程序设计飞行程序设计简介飞行程序设计用于指导和控制飞行器进行各种航行任务。
它是飞行器的核心控制系统,通过编写程序,实现飞行器的自主飞行、遥控操作、自动驾驶等功能。
本文将介绍飞行程序设计的基本原理和常用技术。
程序设计原理飞行程序设计的原理是将任务分解为一系列指令,通过控制飞行器的各个部件,实现飞行器在空中的运动。
程序设计的主要原理包括:1. 控制流程设计:确定飞行器的基本运动流程,包括起飞、巡航、降落等。
针对不同任务,可以设计不同的控制流程,以适应不同的飞行需求。
2. 传感器数据处理:通过传感器收集环境数据,包括飞行器的姿态、位置、速度等信息。
程序需要对传感器数据进行处理和解析,以实现对飞行器的精确控制。
3. 算法设计:根据飞行任务的需求,设计相应的算法来实现飞行器的自主飞行和遥控操作。
常用的算法包括PID控制、路径规划、避障算法等。
程序设计技术飞行程序设计涉及多种技术和工具,以下是常用的技术和工具:1. 语言选择:常见的飞行程序设计语言包括C/C++、Python等。
不同语言具有不同的特点,根据项目需求和开发人员的熟悉程度选择适合的语言。
2. 软件框架:使用飞行程序设计框架可以加快开发进度。
主流框架包括PX4、ArduPilot等,它们提供了丰富的功能和接口,方便开发者进行飞行程序设计。
3. 模拟器:飞行程序设计阶段可以使用模拟器进行测试和调试。
模拟器可以模拟真实的飞行环境,提供飞行器的动力学模型和传感器数据,方便开发者进行程序验证和优化。
4. 硬件平台:选择合适的硬件平台也是飞行程序设计的重要步骤。
常见的硬件平台包括无人机、飞行器、遥控器等。
选择合适的硬件平台可以提高飞行器的性能和稳定性。
开发流程飞行程序设计的开发流程一般包括以下步骤:1. 需求分析:明确飞行任务的需求和功能要求,确定飞行器的基本控制流程。
2. 系统设计:根据需求分析的结果,设计飞行程序的系统架构和模块。
3. 编码实现:根据系统设计的结果,使用所选的编程语言编写飞行程序代码。
飞行程序设计目录•前言•第一章飞行程序理论基础• 1.1 飞行程序结构• 1.1.1 离场程序• 1.1.2 进近程序• 1.1.3 进场程序• 1.2 航空器分类• 1.3 飞行程序定位和容差规范• 1.3.1 定位方法分类• 1.3.2 定位容差限制•第二章飞行程序辅助设计系统设计• 2.1 系统功能划分• 2.1.1 航迹和保护区绘制• 2.1.2 障碍物评估• 2.2 几何算法实现• 2.2.1 风螺旋线算法设计• 2.2.2 风螺旋算法实现• 2.2.3 缓冲区算法设计• 2.2.4 缓冲区算法实现• 2.3 用户界面设计• 2.3.1 VBA程序菜单设计• 2.3.2 绘图程序界面设计• 2.3.3 评估程序界面设计•第三章离场程序设计• 3.1 流程描述• 3.2 离场程序要求的参数• 3.3 直线离场• 3.4 转弯离场•指定高度转弯离场•电台上空转弯•交叉定位或DME弧确定TP的转弯离场• 3.5 向台飞行• 3.6 全向离场•第四章等待程序设计• 4.1 流程描述• 4.2 等待程序• 4.2.1 等待程序作图参数• 4.2.2 等待程序模板绘制方法• 4.2.3 模板的作图• 4.2.4 确定定位容差• 4.2.5 基本区作图和交叉定位上空的全向进入作图• 4.2.6 区域缩减原则•第五章复飞程序设计• 5.1 流程描述• 5.2 直线复飞• 5.3 转弯复飞•第六章障碍物评估程序设计• 6.1 评估的一般准则• 6.2 直线离场障碍物评估• 6.3 转弯离场障碍物评估• 6.3.1 指定转弯点的障碍物评价• 6.3.2 指定高度转弯离场的障碍物评价• 6.4 复飞程序评估• 6.4.1 直线复飞障碍物评价• 6.4.2 转弯复飞的障碍物评价• 6.5 等待程序评估•第七章结论前言在国内,飞行程序设计一直以手工设计为主。
随着计算机技术的普及,设计人员在设计过程中使用了一些CAD辅助设计的技巧,但是并没有从根本上解决手工设计效率低下,工作繁重和结果不一致等问题。