变分法和休克尔分子轨道法
- 格式:ppt
- 大小:1.93 MB
- 文档页数:103
西南大学化学化工学院物理化学实验报告实验名称苯分子轨道和电子结构级班姓名学号同组人指导老师实验日期年月日实验环境室温20 ℃大气压76 mmHg 仪器型号一体机实验目的( 1)掌握休克尔分子轨道法的基本内容( 2)学会用休克尔分子轨道法分析和计算苯分子Π轨道分布( 3)学会用计算的化学方法研究简单分子的电子结构实验原理基本理论离域Π键:形成Π键的电子不局限于两个原子的区域,而是在参加成键的多个原子形成的分子骨架中运动,这种由多个原子形成的Π型化学键称为离域Π键共轭效应:形成离域Π键,增加了Π电子的活动范围,使分子具有特殊的物理化学性质,这种效应称为共轭效应分子轨道法:原子组合成分子时,原来专属于某一原子的电子将在整个分子范围内运动,其轨道也不再是原来的原子轨道,而成为整个分子所共有的分子轨道休克尔分子轨道法:为了讨论共轭体系的分子轨道,1 931年休克尔应用LCAO-MO(分子轨道的原子线性组合)法,采用简化处理,解释了大量有机共轭分子性质,该方法称为休克尔分子轨道法,简称HMO法。
该方法针对平面共轭体系的主要特点,能给出离域Π键体系的基本性质休克尔分子轨道法主要运用了下列基本假设 :σ-Π分离体系:对于共轭分子,构成分子骨架的σ电子与构成共轭体系的π电子由于对称性不同,在讨论共轭分子的结构时,可以近似的看成互相独立的,把σ电子和π电子分开处理.独立π电子近似:分子中的电子由于存在相互作用,运动不是独立的,但若将其它电子对某电子的作用加以平均,近似地看成是在核和其它电子形成的固定力场上运动,则该电子的运动就与其它电子的位置无关,是独立的.LCAO-MO近似:对于π体系,可将每个π分子轨道看成是由各个碳原子提供的对称性匹配的p轨道φi 进行线性组合得的.ψ=C1φ1+ C2φ2 + …+ C NφNhuckel近似:认为每个电子在每个原子核附近运动时的能量相同休克尔分子轨道法基本内容在分子中把原子核、内层电子、非键电子连同σ电子一起冻结为“分子实”,构成了由σ键相连的分子骨架,π电子在分子骨架的势场中运动。
西南大学化学化工学院物理化学实验报告实验名称苯分子轨道和电子结构级班姓名学号同组人指导老师实验日期年月日实验环境室温20 ℃大气压76 mmHg 仪器型号一体机实验目的( 1)掌握休克尔分子轨道法的基本内容( 2)学会用休克尔分子轨道法分析和计算苯分子Π轨道分布( 3)学会用计算的化学方法研究简单分子的电子结构实验原理基本理论离域Π键:形成Π键的电子不局限于两个原子的区域,而是在参加成键的多个原子形成的分子骨架中运动,这种由多个原子形成的Π型化学键称为离域Π键共轭效应:形成离域Π键,增加了Π电子的活动范围,使分子具有特殊的物理化学性质,这种效应称为共轭效应分子轨道法:原子组合成分子时,原来专属于某一原子的电子将在整个分子范围内运动,其轨道也不再是原来的原子轨道,而成为整个分子所共有的分子轨道休克尔分子轨道法:为了讨论共轭体系的分子轨道,1 931年休克尔应用LCAO-MO(分子轨道的原子线性组合)法,采用简化处理,解释了大量有机共轭分子性质,该方法称为休克尔分子轨道法,简称HMO法。
该方法针对平面共轭体系的主要特点,能给出离域Π键体系的基本性质休克尔分子轨道法主要运用了下列基本假设 :σ-Π分离体系:对于共轭分子,构成分子骨架的σ电子与构成共轭体系的π电子由于对称性不同,在讨论共轭分子的结构时,可以近似的看成互相独立的,把σ电子和π电子分开处理.独立π电子近似:分子中的电子由于存在相互作用,运动不是独立的,但若将其它电子对某电子的作用加以平均,近似地看成是在核和其它电子形成的固定力场上运动,则该电子的运动就与其它电子的位置无关,是独立的.LCAO-MO近似:对于π体系,可将每个π分子轨道看成是由各个碳原子提供的对称性匹配的p轨道φi 进行线性组合得的.ψ=C1φ1+ C2φ2 + …+ C NφNhuckel近似:认为每个电子在每个原子核附近运动时的能量相同休克尔分子轨道法基本内容在分子中把原子核、内层电子、非键电子连同σ电子一起冻结为“分子实”,构成了由σ键相连的分子骨架,π电子在分子骨架的势场中运动。
结构化学基础总结第一章:量子力学基础知识一、3个实验1、黑体辐射实验:(1)黑体:被认为是可以吸收全部外来辐射的物体,是理想的辐射体。
理想黑体可以吸收所有照射到它表面的电磁辐射,并将这些辐射转化为热辐射,其光谱特征仅与该黑体的温度有关,与黑体的材质无关。
可见光:400-700nm(2)假设:黑体吸收或发射辐射的能量是不连续的,而是分子一份一份的,即,量子化的。
E=hμ2、光电效应实验和Einstein光子学说:光量子化和光的波粒二象性本质。
(1)Einstein提出来了光量子(光子)。
波的性质:衍射、干涉。
E=hμ粒子的性质:反射、折射。
P=h/λ光子的动能与入射光的频率成正比,与光的强度无关。
(2)Heisenberg不确定度关系:Δq∙Δp≥ℏΔq坐标不确定量;Δp动量不确定量;q广义坐标单缝衍射:某粒子坐标确定得愈精确,其相应动量就愈不确定。
h可作为区分宏、微观粒子的标准:宏观h=0,微观h不能看作0。
3、氢原子光谱与Born氢原子模型:(1)氢原子光谱:指的是氢原子内之电子在不同能级跃迁时所发射或吸收不同波长、能量之光子而得到的光谱。
氢原子光谱为不连续的线光谱,自无线电波、微波、红外光、可见光、到紫外光区段都有可能有其谱线。
根据电子跃迁的后所处的能阶,可将光谱分为不同的线系。
(2)在卢瑟福模型的基础上,玻尔提出了电子在核外的量子化轨道,解决了原子结构的稳定性问题,描绘出了完整而令人信服的原子结构学说。
定态假设:原子的核外电子在轨道上运行时,只能够稳定地存在于具有分立的、固定能量的状态中,这些状态称为定态(能级),即处于定态的原子能量是量子化的。
此时,原子并不辐射能量,是稳定的。
激发态:原子受到辐射、加热或通电时,获得能量后电子可以跃迁到离核较远的轨道上去,即电子被激发到高能量的轨道上,这时原子处于激发态。
处于激发态的电子不稳定,可以跃迁到离核较近的轨道上,同时释放出光子。
二、量子力学基本假设1、假设1:对于一个量子力学体系,可以用坐标和时间变量的函数ψ(x,y,z,t)来描述,它包括体系的全部信息。
讨论休克尔分子轨道法(HMO )1.基本假设和基本原理休克尔分子轨道法的基本原理是变分法。
其主要应用于π电子体系,基本假设有如下三点:1.σ-π分离近似。
对于共轭分子,构成分子骨架的σ电子与构成共轭体系的π电子由于对称性的不同,可以近似地看成互相独立的。
∑==ππn k kH 1ˆH ˆ πn 为π电子数 2.独立π电子近似。
子中的电子由于存在相互作用,运动不是独立的,但若将其它电子对某电子的作用加以平均,近似地看成是在核和其它电子形成的固定力场上运动,则该电子的运动就与其它电子的位置无关,是独立的。
∑='-∇-=N n knn k r 12k Z 21H ˆn Z '是考虑了所有电子及其它p 电子的屏蔽之后的有效核电荷。
kk E ψψ=k H ˆ 由于电子的不可区分性,k 可省略,故单电子方程为ψψE Hˆ= 3.LCAO-MO 近似。
对于π体系,可将每个π分子轨道Ψk 看成是由各原子提供的垂直于共轭体系平面的p 原子轨道线性组合构成: ∑=ii ki C ϕψk此外,还作出如下的假定:1.库伦积分近似。
即各碳原子的库伦积分都相同,其值为α。
⎰==ατφφd H i i i i ˆH ˆ*,2.交换积分近似。
分子中直接键连碳原子间的交换积分都相同,其值为β。
而非键连碳原子间的交换积分都是零。
⎩⎨⎧±><±==11H ˆj,i j i j i β3.重叠积分近似。
各原子轨道间的重叠积分都取为零。
⎩⎨⎧≠==ij ij j i 01S ,2.基本处理方法、步骤;可从中获得哪些信息(1) 设共轭分子有n 个 C 原子组成共轭体系,每个C 原子提供一个 p 轨道 ,按 LCAO ,得:∑=+++=i i n n c c c c ϕϕϕϕψ 2211 (2) 根据线性变分法,由0E 1=∂∂c ,0E 2=∂∂c , 0=∂∂nc 可得久期方程: 0H H H H H H H H H 21221122222212121121211111=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------n nn nn n n n n n n n n c c c ES ES ES ES ES ES ES ES ESE 的一元n 次代数方程,有n 个解。
休克尔分子轨道法实验报告实验目的:通过休克尔分子轨道(LCAO-MO)理论,研究分子轨道的形成和特性。
实验仪器:分子轨道模型、分子轨道成键理论、SPARTAN计算机程序等。
实验方法:1.通过选择合适的分子模型,如氢分子,通过SPARTAN计算机程序计算得到分子轨道的电子云分布图。
2.使用分子轨道成键理论,根据分子中原子的电子构型确定原子轨道的能级和排布。
3.通过线性组合原子轨道(LCAO)的方法,将原子轨道线性组合得到分子轨道。
实验步骤:1.选择合适的分子模型,如氢分子(H2)。
2.使用SPARTAN计算机程序计算得到氢分子的分子轨道电子云分布图。
3.根据氢原子的电子构型,确定氢分子的原子轨道能级和排布。
4.利用LCAO-MO法,将两个氢原子的1s轨道合成成键分子轨道和反键分子轨道。
5.观察成键和反键分子轨道的电子云密度分布和能级情况。
实验结果:通过SPARTAN计算机程序得到的氢分子分子轨道电子云图显示,成键分子轨道呈现出电子云的叠加,云密度高;反键分子轨道的电子云形状与成键分子轨道相反,呈现出云密度低。
原子轨道的线性组合形成的成键分子轨道能级较低,而反键分子轨道能级较高。
实验结论:1.休克尔分子轨道法认为,分子轨道是由原子轨道的线性组合得到的,成键分子轨道是原子轨道线性叠加获得的,反键分子轨道是原子轨道相互抵消得到的。
2.成键分子轨道呈现出云密度高的特点,代表电子云的几率分布在原子核间的空间,因此稳定。
反键分子轨道则反映了电子云在原子核外的几率分布,因此能量较高,不稳定。
实验分析:休克尔分子轨道法是研究分子电子结构的重要理论模型,通过实验中得到的分子轨道的电子云分布图,我们可以更好地理解分子的成键方式和分子性质。
此外,休克尔分子轨道法还可以应用于其他分子的研究中,对于研究分子的稳定性、反应性等方面具有重要意义。
备注:本实验报告仅为参考示例,具体实验内容和细节请根据实验要求和实验仪器进行具体实施。
休克尔分子轨道法是处理
休克尔分子轨道法基于一种准确的统计物理理论——即量子力学,描述了物质由原子组成、由粒子形成,以及这些粒子之间的相互作用。
该方法根据分子在空间内的原子布局,用硅半导体材料的局域化结构
描述器,将分子的性质拆成电子态形式,来解答原子和分子的性质。
休克尔分子轨道法可以用来计算任意分子的比较精确地能量,决
定其相对属性和结构;通过Roothaan-Hall算法可以用来计算分子结构;可以用来研究任何元素间的电子结构和相互作用,模拟任何特定
原子或分子结构;可以研究大分子复杂性,以及计算分子的电子确定性、稳定性和振动模式。
休克尔分子轨道法应用广泛,它不仅被用于化学研究,而且应用
于物理、材料、生物、作业及新能源研究,包括分子动力学、原散射
以及耦合等。
而且,它也可用于分析结构变化量,如构象度、构形旋
转角、拉格罗斯坐标等,以及分子动力学模拟过渡态,结构优化和合
成路径。
总之,休克尔分子轨道法是一种研究和计算复杂物质的重要方法,它可以用来精确地计算分子的性质,可以用作物理和化学研究的重要
工具之一,发挥着广泛的应用价值。
量子化学方法小总结12008-02-26 14:26量子化学计算方法主要分为:①分子轨道法(简称MO法);②价键法(简称VB法)。
分子轨道法,它是原子轨道对分子的推广,即在物理模型中,假定分子中的每个电子在所有原子核和电子所产生的平均势场中运动,即每个电子可由一个单电子函数(电子的坐标的函数)来表示它的运动状态,并称这个单电子函数为分子轨道,而整个分子的运动状态则由分子所有的电子的分子轨道组成(乘积的线性组合),量子计算方法主要为分子轨道常见。
分子轨道法的核心是Hartree-Fock-Roothaan方程,简称HFR方程。
1928年D.R.Hartree提出了一个将N个电子体系中的每一个电子都看成是在由其余的N-1个电子所提供的平均势场中运动的假设。
这样对于体系中的每一个电子都得到了一个单电子方程(表示这个电子运动状态的量子力学方程),称为Hartree 方程。
使用自洽场迭代方式求解这个方程,就可得到体系的电子结构和性质。
Hartree方程未考虑由于电子自旋而需要遵守的泡利原理。
1930年,B.A.Fock 和J.C.Slater分别提出了考虑泡利原理的自洽场迭代方程,称为Hartree-Fock 方程。
它将单电子轨函数(即分子轨道)取为自旋轨函数(即电子的空间函数与自旋函数的乘积)。
泡利原理要求,体系的总电子波函数要满足反对称化要求,即对于体系的任何两个粒子的坐标的交换都使总电子波函数改变正负号,而slater 行列式波函数正是满足反对称化要求的波函数。
将Hartree-Fock方程用于计算多原子分子,会遇到计算上的困难。
C.C.J.Roothaan提出将分子轨道向组成分子的原子轨道(简称AO)展开,这样的分子轨道称为原子轨道的线性组合(简称LCAO)。
使用LCAO-MO,原来积分微分形式的Hartree-Fock方程就变为易于求解的代数方程,称为Hartree-Fock -Roothaan方程,简称HFR方程。
HMO理论的一些粗浅理解休克尔分子轨道法(Hückel molecular orbital method)是用简化的近似分子轨道模型处理共轭分子中的π 电子的方法,1931年由E.休克尔(E. Hückel)提出,简称HMO。
这是一种最简单的分子轨道理论,在有机化学中应用得相当广泛,用以解决共轭分子的结构,探讨分子的性质和反应性能的半经验方法。
HMO法的基本内容:1、承认分子轨道理论的全部内容(1)将分子中每一个电子的运动,看作是在各原子核和其余电子的平均势场中运动(即单电子近似),其单电子的空间波函数为分子轨道;(2)分子轨道采用原子轨道的线性组合,用变分法得到分子轨道和能级;(3)分子轨道内电子排布符合能量最低原理、保里原理和洪特规则;组成分子轨道的原子轨道必须符合能量相近、最大重叠和对称性匹配这三个条件。
2、用HMO法处理共轭分子结构的假设(1)由于π电子在核和σ键所形成的整个分子骨架中运动,可将σ键和π键分开处理。
(2)共轭分子有相对不变的σ骨架,而π电子的状态决定分子的性质。
(3)各个碳原子上p轨道的库仑积分都相同,都等于α,相邻原子轨道间的交换积分都相等,用β表示,而非相邻原子轨道间的交换积分都等于零;不同原子轨道间的重叠积分为零;3、共轭烯烃久期行列式的规律全部由C组成的共轭烯烃,从分子骨架直接写久期行列式(1)画出σ骨架,将参与共轭的原子编号;(2)n个原子参加的共轭体系对应着n阶久期行列式;(3)n阶久期行列式主对角元Aij为x,x=(α-E)/β;(4)若ij两原子以π键键连,则Aij及Aji为1,其它元素均为0;(5)久期行列式沿主对角线对称;(6)对同一分子,若编号不一,其写出的久期行列式虽然不同,但求解的结果相同。
休克尔分子轨道的应用:休克尔分子轨道法是量子化学近似计算方法之一,它以简便迅速著称,适宜于计算平面共轭分子中的π电子结构。
在分析有机共轭分子的稳定性、化学反应活性和电子光谱,及研究有机化合物结构与性能的关系等方面有着广泛应用。