四年级数学求近似数
- 格式:ppt
- 大小:648.00 KB
- 文档页数:40
四年级数学上册近似数•课件标题页•标题:《近似数》•版本:新北师大版•年级:四年级上册•制作人:[制作人姓名]•制作日期:[具体日期,如果是2000年则填写2000年]•课件目录页1、引言2、近似数的概念3、近似数的求法4、近似数的应用5、课堂练习6、小结与作业•内容页引言•通过生活中的例子引入近似数的概念,如估算距离、时间等。
•强调近似数在数学和实际生活中的重要性。
近似数的概念•定义近似数:与实际数接近但不一定完全相等的数。
•举例说明,如四舍五入得到的数就是近似数。
•与精确数进行对比。
近似数的求法•介绍四舍五入法:看舍入位的下一位,如果是0、1、2、3、4则舍去,如果是5、6、7、8、9则进一。
•通过实例演示如何四舍五入到不同的位数(个位、十位、百位等)。
•强调四舍五入后的结果是一个近似数。
近似数的应用•通过实际问题展示近似数的应用,如估算购物花费、计算平均数等。
•讨论在不同情况下选择使用精确数还是近似数的合理性。
课堂练习•设计一系列练习题,包括填空、选择和计算题。
•练习题应涵盖四舍五入到不同位数的情况。
•提供答案和解析,方便学生自我检查和纠正错误。
小结与作业•小结本节课的重点内容,包括近似数的概念、求法和应用。
•布置相关作业,巩固课堂所学知识。
•鼓励学生将所学知识应用到实际生活中去。
•课件尾页•感谢观看,提供制作人和联系方式以便反馈和交流。
•可以加上一句鼓励的话或者数学名言来结束课件。
四年级下册数学教案求一个小数的近似数教学目标1. 理解求小数近似数的基本概念和方法。
2. 学会运用四舍五入法求小数的近似数。
3. 能够在实际情境中运用求小数近似数的方法,解决实际问题。
教学内容1. 求小数近似数的基本概念。
2. 四舍五入法求小数的近似数。
3. 求小数近似数在实际情境中的应用。
教学重点与难点重点1. 掌握四舍五入法求小数的近似数。
2. 能够在实际情境中运用求小数近似数的方法。
难点1. 理解四舍五入法的原理和应用。
2. 在实际情境中灵活运用求小数近似数的方法。
教具与学具准备1. 教具:PPT,教学视频,示例题。
2. 学具:练习本,计算器。
教学过程1. 导入:通过一个实际情境引入求小数近似数的概念。
2. 新课:讲解求小数近似数的基本概念和方法,重点讲解四舍五入法。
3. 示例:通过示例题展示如何运用四舍五入法求小数的近似数。
4. 练习:让学生进行练习,巩固所学知识。
5. 应用:通过实际情境题,让学生运用求小数近似数的方法解决实际问题。
板书设计1. 板书求小数的近似数2. 板书内容:求小数近似数的基本概念,四舍五入法的步骤,示例题,练习题。
作业设计1. 基础题:求给定小数的近似数。
2. 提高题:在实际情境中运用求小数近似数的方法解决问题。
3. 挑战题:探索求小数近似数的其他方法。
课后反思通过本节课的学习,学生应该能够掌握求小数近似数的基本方法,并能够在实际情境中运用。
在教学过程中,我注重了理论与实践的结合,让学生在实际操作中理解四舍五入法的原理和应用。
在作业设计中,我设置了不同难度的题目,以满足不同学生的学习需求。
在课后,我将对学生的作业进行批改和反馈,及时纠正他们的错误,帮助他们巩固所学知识。
四舍五入法求小数的近似数四舍五入法的原理例如,如果要将3.4567保留到小数点后两位,我们需要看小数点后第三位的数字,即6。
因为6大于5,所以我们在小数点后第二位的数字4上加1,得到3.46,这就是3.4567保留到小数点后两位的近似数。
人教版数学四年级下册求一个小数的近似数说课稿3篇〖人教版数学四年级下册求一个小数的近似数说课稿第【1】篇〗说教学目标:能根据要求用四舍五入法求一个小数的近似数说教学重难点:求一个小数的近似数。
说教学过程:一、复习导入:根据要求把245600985改写成近似数。
省略亿位后面的尾数是()省略百万位后面的尾数是()省略万位后面的尾数是()四舍五入到百位是()师:求一个整数的近似数用的是“四舍五入”法。
在实际应用小数的时候,往往没必要说出它的准确数,只要说出它的近似数就够了。
例如,量得豆豆身高是0.984米,平常不需要说得那么准确,只说大约0.98米或1米。
求一个小数的近似数与求整数的近似数相似,我们今天来研究怎样求一个小数的近数。
板书课题:求一个小数的近似数。
一、学习新知1.求一个小数的近似数。
出示例1:0.984保留两位小数、一位小数和整数,它的近似数各是多少(1)首先要理解保留整数、一位小数、两位小数......的含义。
还可以怎样表述引导学生理解,保留整数就是省略整数后面的尾数;保留一位小数就是省略十分位后面的尾数,或者说精确到十分位;保留两位小数就是精确到百分位,也就是省略百分位后面的尾数。
(2)求一个小数的近似数的方法是什么引导学生明确,仍然采用“四舍五入”法,看省略部分的最高位,是5以上的数,省去后在前一位加l,是4以下的数舍去。
在明确上述两点的基础上,让学生自己试算,得出:0.984≈0.98 0.984≈1.0 0.984≈1引导学生分别说明省略的方法。
注意:在表示近似数时,小数末尾的0不能去掉。
小结:求近似数时,保留整数,表示精确到个位;保留一位小数,表示精确到十分位;保留两位小数,表示精确到百分位……2、p52做一做三、巩固练习四、课堂总结说教学反思:求小数的近似数和求整数的近似数的方法完全相同,我对于这节课是这样理解的,前面所学的知识有些学生可能忘记了,而且求一个数的近似数的说法是有多种,实质表示的意义是一样的,在课前引导学生复习多种说法,果然学生很难记起所学的说法。
《求近似数》(教案)青岛版四年级上册数学我今天要教的是青岛版四年级上册数学的《求近似数》。
一、教学内容我将会覆盖教材的第三课时,其中包括小数及分数的近似数求法。
二、教学目标我的目标是让学生掌握求小数及分数近似数的基本方法。
三、教学难点与重点难点是理解并运用“四舍五入”法。
重点是掌握求近似数的基本步骤。
四、教具与学具准备我已经准备好了PPT和计算器。
五、教学过程我会通过一个实际情景引入:“假设你要买3.2元的书,你给店员4元,店员应该找你多少零钱?”让学生思考并回答。
接着,我会讲解求小数的近似数的方法,并举例说明。
例如,如果要求3.2的近似数,我们可以看3.2的下一位数是2,小于5,所以3.2的近似数就是3。
然后,我会让学生进行随堂练习,例如:“求2.8的近似数。
”我会让学生再进行一些练习,例如:“求4/5的近似数。
”六、板书设计七、作业设计作业题目:求下列数的近似数:5.7,1/2,3.14。
答案:5.7的近似数是6,1/2的近似数是0.5,3.14的近似数是3.1。
八、课后反思及拓展延伸课后,我会反思我这节课的讲解是否清晰,学生是否掌握了求近似数的方法。
对于拓展延伸,我可以让学生思考:还有没有其他的求近似数的方法?重点和难点解析在上述教案中,有几个重点和难点是我认为需要特别关注的。
一、实际情景引入我选择了购买书籍的实际情景来引入求近似数的概念,这是因为它贴近学生的生活,能够激发学生的兴趣,并且使他们能够直观地理解为什么要求近似数。
在这个情景中,学生可以看到,当我们给出4元去买3.2元的书时,店员需要找给我们0.8元。
这个过程中,实际上就是求近似数的一个例子。
通过这个实际情景的引入,我希望学生能够理解到求近似数在生活中的实际应用,从而激发他们对这个课题的兴趣。
二、求小数的近似数在讲解求小数的近似数时,我强调了“四舍五入”法。
我会向学生展示一个数,例如3.2,然后解释如何通过“四舍五入”法来求它的近似数。
四年级上册数学近似数近似数是指把一个数改写成一个比它约简的和刻画它的一定程度相符的数。
简单来说,近似数就是用一个与原数接近但比原数稍大或稍小的数来代替它。
近似数在日常生活中的应用十分广泛。
例如,我们在购物时估算商品的价格,或者在进行运算时快速计算结果。
近似数也是数学中的一个重要概念,需要我们掌握并灵活运用。
近似数的表示方法有两种:截取法和控制法。
截取法就是根据实际需要,将一个数截取到一定的位数。
而控制法则是根据误差的范围,控制近似数与原数之间的误差。
在进行近似数的计算时,我们需要掌握四舍五入的原则。
当我们要近似一个数时,如果该数的小数部分大于等于5,则将整数部分加1;如果小数部分小于5,则截取整数部分。
例如,假设我们要近似数3.82,如果我们要截取整数部分,则近似数为3;如果我们要控制到小数点后一位,则近似数为3.8。
近似数在数学运算中也经常被用到。
例如,当我们进行加法、减法、乘法或除法时,如果数字很大或很小,我们可以使用近似数进行计算,简化运算过程。
下面我们来看一个实际的例子。
假设我们要计算1.39 × 7.62,我们可以使用近似数进行计算。
将1.39近似为1.40,将7.62近似为7.60,然后进行乘法运算得到10.64。
我们可以发现,使用近似数进行计算能够简化计算过程,并且得到的结果与精确计算结果相差不大。
近似数还可以用于测量和排比。
在测量过程中,我们往往无法得到精确的数值,只能得到一个近似值。
而在排比过程中,我们可以根据需要选择合适的近似数,使得排比结果更加直观和易读。
总结来说,近似数是数学中一个重要的概念,能够帮助我们在日常生活和数学运算中快速估算和计算。
掌握近似数的概念和运用方法,能够提高我们的数学能力和解决实际问题的能力。
无论是在购物、测量还是数学运算中,近似数都起着重要的作用。
所以,我们应该充分理解和掌握近似数的概念和运用方法,提高我们的数学水平和实践能力。
1、四舍五入法求近似数
考点:掌握四舍五入法,能根据需要将一个数四舍五入到指定的小数位。
例题:将387四舍五入到十位是多少?答案:390。
2、用近似数描述一组数据的集中趋势
考点:理解用近似数表示一组数据的集中趋势的意义和方法。
例题:一个班上50名学生的身高数据,用平均身高近似描述他们的身高趋势。
3、近似数的加减运算
考点:能对近似数进行加减运算,并理解运算后的近似值变化。
例题:近似数387与413的和是多少?答案:799。
4、近似数的乘除运算
考点:能对近似数进行乘除运算,并理解运算后的近似值变化。
例题:近似数4500除以50的商是多少?答案:90。
5、生活中的近似数
考点:能在生活中找到近似数的应用,如预估人数、物件数量等。
例题:预估一场音乐会大约有多少观众?答案:2000人(这是一个近似数)。
6、不同近似表示方法的识别
考点:能识别并解释不同表示方法的近似数,如整百、整千的近似数等。
例题:一个物件重约200克,它的重量可以用近似数2千克来表示,为什么?答案:因为2千克等于2000克,而2000克接近200克。