几何基础 检测题
- 格式:doc
- 大小:72.50 KB
- 文档页数:4
中考复习测试题——基础与三角形姓名_____________学号_____ 一、选择题:1.下列长度的三条线段,能组成三角形的是( )A.3,4,8 B.5,6,10 C.5,5,11 D.5,6,112.如图,△ABC≌△DEC,B,C,D在同一直线上,且CE=3 cm,CD=6 cm,则BD的长为( ) A.9 cm B.6 cm C.3 cm D.不确定3.已知三角形的两边长分别为3和6,第三边长是方程x2-6x+8=0的解,则该三角形的周长为( ) A.11 B.13 C.11或13 D.124.如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是( )A.15° B.30° C.45° D.60°5.如图,DE是△ABC的边AB的垂直平分线,D为垂足,DE交AC于点E,且AC=8,BC=5,则△BEC的周长是( )A.12 B.13 C.14 D.15二、填空题:6.如图,AB∥CD,∠ABD的平分线与∠BDC的平分线交于点E,则∠1+∠2=__________.7.一个多边形的内角和比它的外角和的2倍少180°,这个多边形的边数是 .8.如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为__ _度.9.一副三角板如图放置,将三角板ADE绕点A逆时针旋转α(0°<α<90°),使得三角板ADE的一边所在的直线与BC垂直,则α的度数为____________.10.如图,在△ABC中,∠B=30°,AC=2,cos C=35.则AB边的长为.三、解答题:11.如图,在△ABC中,AB=AC,D是BC边上的中点,连接AD,BE平分∠ABC交AC于点E,过点E作EF∥BC 交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.12. 如图,∠AOB=60°,OC平分∠AOB,C为角平分线上一点,过点C作CD⊥OC,垂足为点C,交OB于点D,CE∥OA交OB于点E.(1)判断△CED的形状,并说明理由; (2)若OC=3,求CD的长.13.如图,已知在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:(1)△BFC≌△DFC;(2)AD=DE.14.如图,一艘货轮向正北方向航行,在点A处测得灯塔M在北偏西30°,货轮以每小时20海里的速度航行,1小时后到达B处,测得灯塔M在北偏西45°,问该货轮到达灯塔正东方向D处时,货轮与灯塔M的距离是多少?(精确到0.1海里,3≈1.732)15.如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM交DB于N.(1)求证:BD2=AD·CD;(2)若CD=6,AD=8,求MN的长.。
2024年数学五年级下册几何基础练习题(含答案)试题部分:一、选择题(每题2分,共20分)1. 下列哪个图形是一个正方形?A. 长方形B. 正方形C. 圆形D. 三角形2. 一个正方形的边长是5厘米,那么它的面积是多少平方厘米?A. 20B. 25C. 30D. 403. 一个长方形的长是8厘米,宽是4厘米,那么它的周长是多少厘米?A. 16B. 20C. 24D. 284. 一个三角形的两条边长分别是6厘米和8厘米,那么它的第三条边长可能是多少厘米?A. 2B. 4C. 10D. 125. 下列哪个图形是一个圆?A. 正方形B. 长方形C. 圆形D. 三角形6. 一个圆的半径是4厘米,那么它的面积是多少平方厘米?A. 16πB. 20πC. 24πD. 28π7. 一个等腰三角形的底边长是8厘米,腰长是5厘米,那么它的周长是多少厘米?A. 18B. 20C. 22D. 248. 下列哪个图形是一个长方形?A. 正方形B. 长方形C. 圆形D. 三角形9. 一个正方形的对角线长是10厘米,那么它的边长是多少厘米?A. 5B. 10C. 15D. 2010. 一个等边三角形的边长是6厘米,那么它的周长是多少厘米?A. 12B. 18C. 24D. 30二、判断题(每题2分,共10分)1. 正方形的四个角都是直角。
()2. 一个长方形的对角线相等。
()3. 一个圆的直径是半径的两倍。
()4. 一个等腰三角形的底边和腰长相等。
()5. 一个三角形的内角和是180度。
()三、计算题(每题2分,共40分)1. 一个长方形的长是12厘米,宽是8厘米,求它的面积。
2. 一个正方形的边长是7厘米,求它的周长。
3. 一个圆的半径是5厘米,求它的直径。
4. 一个三角形的两条边长分别是10厘米和15厘米,求它的第三条边长。
5. 一个长方形的长是15厘米,宽是10厘米,求它的周长。
6. 一个正方形的边长是6厘米,求它的面积。
2024年数学七年级上册解析几何基础练习题(含答案)试题部分一、选择题:1. 在平面直角坐标系中,点A(2, 3)关于x轴的对称点的坐标是()A. (2, 3)B. (2, 3)C. (2, 3)D. (2, 3)2. 下列选项中,点P(3, 5)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 已知点A(4, 0)和点B在x轴上,且AB=6,则点B的坐标可能是()A. (1, 0)B. (2, 0)C. (10, 0)D. (8, 0)4. 在平面直角坐标系中,点P(a, b)关于原点对称的点的坐标是()A. (a, b)B. (a, b)C. (a, b)D. (a, b)5. 已知点A(2, 3)和点B(2, 3),则线段AB的长度是()A. 4B. 5C. 6D. 86. 下列各点中,到原点距离相等的是()A. A(3, 4)和B(3, 4)B. A(3, 4)和B(3, 4)C. A(3, 4)和B(4, 3)D. A(3, 4)和B(4, 3)7. 在平面直角坐标系中,点P(3, 4)关于y轴的对称点的坐标是()A. (3, 4)B. (3, 4)C. (3, 4)D. (3, 4)8. 已知点A(3, 2)和点B(3, 2),则线段AB的长度是()A. 6B. 8C. 9D. 109. 在平面直角坐标系中,点P(0, 5)关于原点对称的点的坐标是()A. (0, 5)B. (0, 5)C. (5, 0)D. (5, 0)10. 下列各点中,到原点距离最短的是()A. A(3, 4)B. B(5, 5)C. C(6, 8)D. D(7, 24)二、判断题:1. 在平面直角坐标系中,第一象限内的点横纵坐标都是正数。
()2. 点(3, 0)和点(3, 0)关于原点对称。
()3. 在平面直角坐标系中,到原点距离相等的点一定在同一个圆上。
()4. 点(0, 4)关于x轴的对称点是(0, 4)。
几何基础训练题一、选择题(每题3分,共30分)1. 一个三角形的内角和是多少度?A. 90度B. 180度C. 360度D. 720度答案:B。
解析:三角形内角和定理表明三角形的内角和为180度。
2. 以下哪种图形不是四边形?A. 正方形B. 三角形C. 长方形D. 平行四边形答案:B。
解析:三角形有三条边,不属于四边形,四边形是有四条边的封闭图形。
3. 直角三角形的一个锐角是30度,另一个锐角是多少度?A. 30度B. 45度C. 60度D. 90度答案:C。
解析:直角三角形两锐角和为90度,一个锐角是30度,另一个就是90 - 30 = 60度。
4. 圆的直径是半径的几倍?A. 1倍B. 2倍C. 3倍D. 4倍答案:B。
解析:根据圆的定义,直径等于半径的2倍。
5. 等腰三角形的两条边叫做?A. 长腰和短腰B. 上腰和下腰C. 腰D. 斜边答案:C。
解析:等腰三角形相等的两条边叫做腰。
6. 正方体有几个面?A. 4个B. 5个C. 6个D. 8个答案:C。
解析:正方体是一种特殊的六面体,有六个面。
7. 梯形的一组对边是什么关系?A. 平行B. 垂直C. 相等D. 既不平行也不垂直答案:A。
解析:梯形是只有一组对边平行的四边形。
8. 一个多边形的外角和是多少度?A. 180度B. 360度C. 540度D. 720度答案:B。
解析:多边形的外角和恒为360度。
9. 等边三角形的每个内角是多少度?A. 30度B. 45度C. 60度D. 90度答案:C。
解析:因为等边三角形三个角相等,三角形内角和180度,所以每个内角是180÷3 = 60度。
10. 长方形的面积公式是?A. 长+宽B. 长×宽C. (长+宽)×2D. 长÷宽答案:B。
解析:长方形面积等于长乘以宽。
二、填空题(每题3分,共30分)1. 三角形按角分类可分为锐角三角形、直角三角形和(钝角三角形)。
初二平面几何基础练习题1. 问题描述:在平面上给定一个等边三角形ABC,边长为10cm。
求三角形ABC的高和面积。
解答:设三角形ABC的高为h,由于ABC是等边三角形,所以三角形ABC也是等腰三角形。
连接AB的中点M与C,可得到三角形AMC。
由于AM与CM分别垂直于BC和AB,所以AM和CM就是三角形ABC的高。
根据勾股定理,三角形AMC的斜边AC等于三角形ABC的边长,即AC = 10cm。
由于三角形AMC是直角三角形,所以AM和CM相等,记为AM = CM = h。
根据勾股定理,有AC² = AM² + CM²,即10² = h²+ h² = 2h²。
解方程2h² = 100,可以得到h = √50 ≈ 7.07 cm。
三角形ABC的面积S可以通过底乘高的公式计算,即S = 0.5 × 10× h = 0.5 × 10 × 7.07 ≈ 35.35 cm²。
所以,三角形ABC的高为7.07 cm,面积为35.35 cm²。
2. 问题描述:在平面上给定一个矩形ABCD,已知AB = 12cm,BC = 8cm。
求矩形ABCD的对角线长度和周长。
解答:设矩形ABCD的对角线长度为d。
根据勾股定理,可以得到d² = AB² + BC² = 12² + 8² = 144 + 64 = 208。
解方程d² = 208,可以得到d = √208 ≈ 14.42 cm。
矩形ABCD的周长可以通过将四条边的长度相加得到,即周长 =AB + BC + CD + DA = 12 + 8 + 12 + 8 = 40 cm。
所以,矩形ABCD的对角线长度约为14.42 cm,周长为40 cm。
3. 问题描述:在平面上给定一个圆O,半径为6cm。
初中数学几何图形初步基础测试题附答案一、选择题1.如图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么下列结论错误的是()A.∠BAO与∠CAO相等B.∠BAC与∠ABD互补C.∠BAO与∠ABO互余D.∠ABO与∠DBO不等【答案】D【解析】【分析】【详解】解:已知AC//BD,根据平行线的的性质可得∠BAC+∠ABD=180°,选项B正确;因AO、BO分别是∠BAC、∠ABD的平分线,根据角平分线的定义可得∠BAO=∠CAO, ∠ABO=∠DBO,选项A正确,选项D不正确;由∠BAC+∠ABD=180°,∠BAO=∠CAO, ∠ABO=∠DBO即可得∠BAO+∠ABO=90°,选项A正确,故选D.2.如图,AB∥CD,EF平分∠GED,∠1=50°,则∠2=()A.50°B.60°C.65°D.70°【答案】C【解析】【分析】由平行线性质和角平分线定理即可求.【详解】∵AB∥CD∴∠GEC=∠1=50°∵EF平分∠GED∴∠2=∠GEF= 12∠GED=12(180°-∠GEC)=65°故答案为C.【点睛】本题考查的知识点是平行线性质和角平分线定理,解题关键是熟记角平分线定理.3.将如图所示的Rt△ACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是()A.B.C.D.【答案】D【解析】解:Rt△ACB绕直角边AC旋转一周,所得几何体是圆锥,主视图是等腰三角形.故选D.首先判断直角三角形ACB绕直角边AC旋转一周所得到的几何体是圆锥,再找出圆锥的主视图即可.4.如图为一直棱柱,其底面是三边长为5、12、13的直角三角形.若下列选项中的图形均由三个矩形与两个直角三角形组合而成,且其中一个为如图的直棱柱的展开图,则根据图形中标示的边长与直角记号判断,此展开图为何?()A.B.C.D.【答案】D【解析】分析:三棱柱的侧面展开图是长方形,底面是三角形,据此进行判断即可.详解:A选项中,展开图下方的直角三角形的斜边长为12,不合题意;B选项中,展开图上下两个直角三角形中的直角边不能与其它棱完全重合,不合题意;C选项中,展开图下方的直角三角形中的直角边不能与其它棱完全重合,不合题意;D选项中,展开图能折叠成一个三棱柱,符合题意;故选:D.点睛:本题主要考查了几何体的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.5.下列图形中,是正方体表面展开图的是()A.B.C.D.【答案】C【解析】【分析】利用正方体及其表面展开图的特点解题.【详解】解:A、B、D经过折叠后,下边没有面,所以不可以围成正方体,C能折成正方体.故选C.【点睛】本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形.6.如图,已知圆柱底面的周长为4 dm,圆柱的高为2 dm,在圆柱的侧面上,过点A和点C 嵌有一圈金属丝,则这圈金属丝的周长的最小值为()A.5B.2 dm C.25D.42【答案】D【解析】【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC 的长度.∵圆柱底面的周长为4dm ,圆柱高为2dm ,∴AB=2dm ,BC=BC′=2dm ,∴AC 2=22+22=4+4=8,∴AC=22dm ,∴这圈金属丝的周长最小为2AC=42dm .故选D .【点睛】本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.7.如图,已知直线AB 和CD 相交于G 点,CG EG ⊥,GF 平分AGE ∠,34CGF ∠=︒,则BGD ∠大小为( )A .22︒B .34︒C .56︒D .90︒【答案】A【解析】【分析】 先根据垂直的定义求出∠EGF 的度数,然后根据GF 平分∠ABE 可得出∠AGF 的度数,再由∠AGC=∠AGF-∠CGF 求出∠AGC 的度数,最后根据对顶角相等可得出∠BGD 的度数.【详解】解:∵CG ⊥EG ,∴∠EGF=90°-∠CGF=90°-34°=56°,又GF 平分∠AGE ,∴∠AGF=∠EGF=56°,∴∠AGC=∠AGF-∠CGF=56°-34°=22°,∴∠BGD=∠AGC=22°.故选:A .【点睛】本题考查了对顶角的性质,垂直的定义以及角平分线的定义,掌握基本概念和性质是解题8.已知:在Rt△ABC中,∠C=90°,BC=1,AC=3,点D是斜边AB的中点,点E是边AC 上一点,则DE+BE的最小值为()A.2B.31C.3D.23【答案】C【解析】【分析】作B关于AC的对称点B',连接B′D,易求∠ABB'=60°,则AB=AB',且△ABB'为等边三角形,BE+DE=DE+EB'为B'与直线AB之间的连接线段,其最小值为B'到AB的距离=AC=3,所以最小值为3.【详解】解:作B关于AC的对称点B',连接B′D,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,∵AB=AB',∴△ABB'为等边三角形,∴BE+DE=DE+EB'为B'与直线AB之间的连接线段,∴最小值为B'到AB的距离3故选C.【点睛】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.9.已知点C在线段AB上,则下列条件中,不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.12 BC AB【答案】C【解析】【分析】根据线段中点的定义,结合选项一一分析,排除答案.显然A、B、D都可以确定点C是线段AB中点【详解】解:A、AC=BC,则点C是线段AB中点;B、AB=2AC,则点C是线段AB中点;C、AC+BC=AB,则C可以是线段AB上任意一点;D、BC=12AB,则点C是线段AB中点.故选:C.【点睛】本题主要考查线段中点,解决此题时,能根据各选项举出一个反例即可.10.一把直尺和一块三角板ABC(含30°,60°角)的摆放位置如图,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CED =50°,那么∠BAF=()A.10°B.50°C.45°D.40°【答案】A【解析】【分析】先根据∠CED=50°,DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小.【详解】∵DE∥AF,∠CED=50°,∴∠CAF=∠CED=50°,∵∠BAC=60°,∴∠BAF=60°﹣50°=10°,故选:A.【点睛】此题考查平行线的性质,几何图形中角的和差关系,掌握平行线的性质是解题的关键. 11.如图,点A、B、C是直线l上的三个点,图中共有线段条数是()A.1条B.2条C.3条D.4条【答案】C【解析】解:图中线段有:线段AB、线段AC、线段BC,共三条.故选C.12.如图,圆柱形玻璃板,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的A处,则蚂蚁到达蜂蜜的最短距离()cm.A.14 B.15 C.16 D.17【答案】B【解析】【分析】在侧面展开图中,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,求出A′Q,CQ,根据勾股定理求出A′C 即可.【详解】解:沿过A的圆柱的高剪开,得出矩形EFGH,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,∵AE=A′E,A′P=AP,∴AP+PC=A′P+PC=A′C,∵CQ=12×18cm=9cm,A′Q=12cm﹣4cm+4cm=12cm,在Rt△A′QC中,由勾股定理得:A′C=22=15cm,129故选:B.【点睛】本题考查了圆柱的最短路径问题,掌握圆柱的侧面展开图、勾股定理是解题的关键.13.如图是正方体的表面展开图,请问展开前与“我”字相对的面上的字是()A.是B.好C.朋D.友【答案】A【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“是”是相对面,“们”与“朋”是相对面,“好”与“友”是相对面.故选:A.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.14.用一副三角板(两块)画角,能画出的角的度数是()A.145C B.95C C.115C D.105C【答案】D【解析】【分析】一副三角板由两个三角板组成,其中一个三角板的度数有45°、45°、90°,另一个三角板的度数有30°、60°、90°,将两个三角板各取一个角度相加,和等于选项中的角度即可拼成.【详解】选项的角度数中个位是5°,故用45°角与另一个三角板的三个角分别相加,结果分别为:45°+30°=75°,45°+60°=105°,45°+90°=135°,故选:D.【点睛】此题主要考查学生对角的计算这一知识点的理解和掌握,解答此题的关键是分清两块三角板的锐角的度数分别是多少,比较简单,属于基础题.15.若∠AOB =60°,∠AOC =40°,则∠BOC等于()A.100°B.20°C.20°或100°D.40°【答案】C【解析】【分析】画出符合题意的两个图形,根据图形即可得出答案.【详解】解: 如图1,当∠AOC在∠AOB的外部时,∵∠AOB=60°,∠AOC=40°∴∠BOC=∠AOB+∠AOC=60°+40°=100°如图2,当∠AOC在∠AOB的内部时,∵∠AOB=60°,∠AOC=40°∴∠BOC=∠AOB-∠AOC=60°-40°=20°即∠BOC的度数是100°或20°故选:C【点睛】本题考查了角的有关计算的应用,主要考查学生根据图形进行计算的能力,分类讨论思想和数形结合思想的运用.16.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为()A.圆锥,正方体,三棱锥,圆柱B.圆锥,正方体,四棱锥,圆柱C.圆锥,正方体,四棱柱,圆柱D.正方体,圆锥,圆柱,三棱柱【答案】D【解析】【分析】根据常见的几何体的展开图进行判断,即可得出结果.【详解】根据几何体的平面展开图,则从左到右,其对应的几何体名称分别为:正方体,圆锥,圆柱,三棱柱.故选D.【点睛】本题考查了常见几何体的展开图;熟记常见几何体的平面展开图的特征,是解题的关键.17.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°【答案】B【解析】【分析】根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【详解】∵DE∥BC,∴∠1=∠ABC=70°,∵BE平分∠ABC,∴1352CBE ABC∠=∠=︒,故选:B.【点睛】此题主要考查了平行线的性质,以及角平分线的定义,解题的关键是掌握两直线平行,内错角相等.18.如图,该表面展开图按虚线折叠成正方体后,相对面上的两个数互为相反数,则()x y+的值为()A.-2 B.-3 C.2 D.1【答案】C【解析】【分析】利用正方体及其表面展开图的特点,根据相对面上的两个数互为相反数,列出方程求出x、y的值,从而得到x+y的值.【详解】这是一个正方体的平面展开图,共有六个面,其中面“1”与面“x”相对,面“-3”与面“y”相对.因为相对面上的两个数互为相反数,所以1+0 30xy=⎧⎨-+=⎩解得:-13 xy=⎧⎨=⎩则x+y=2故选:C【点睛】本题考查了正方体的平面展开图,注意从相对面入手,分析及解答问题.19.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠DFB=12∠CGE.其中正确的结论是( )A.②③B.①②④C.①③④D.①②③④【答案】B【解析】【分析】根据平行线的性质、角平分线的定义、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;②∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;③条件不足,无法证明CA平分∠BCG,故错误;④∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+12(∠ABC+∠ACB)=135°,∴∠DFE=360°-135°-90°=135°,∴∠DFB=45°=12∠CGE,,正确.故选B.【点睛】本题主要考查了角平分线的定义,平行线的性质,三角形内角和定理及多边形内角和,三角形外角的性质,熟知直角三角形的两锐角互余是解答此题的关键.20.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A.B.C.D.【答案】D【解析】解:如右图,连接OP,由于OP是Rt△AOB斜边上的中线,所以OP=12AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.故选D.。
A 立体几何基础训练题3一、选择题1.下列四个结论:⑴两条直线都和同一个平面平行,则这两条直线平行。
⑵两条直线没有公共点,则这两条直线平行。
⑶两条直线都和第三条直线垂直,则这两条直线平行。
⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行。
其中正确的个数为( )A .0B .1C .2D .32.下面列举的图形一定是平面图形的是( )A .有一个角是直角的四边形B .有两个角是直角的四边形C .有三个角是直角的四边形D .有四个角是直角的四边形3.垂直于同一条直线的两条直线一定( )A .平行B .相交C .异面D .以上都有可能4.如右图所示,正三棱锥V ABC -(顶点在底面的射影是底面正三角形的中心)中,,,D E F 分别是 ,,VC VA AC 的中点,P 为VB 上任意一点,则直线DE 与PF 所成的角的大小是( ) A .030 B . 090 C . 060 D .随P 点的变化而变化。
5.互不重合的三个平面最多可以把空间分成( )个部分A .4B .5C .7D .8 6.下列命题中:(1)、平行于同一直线的两个平面平行;(2)、平行于同一平面的两个平面平行;(3)、垂直于同一直线的两直线平行;(4)、垂直于同一平面的两直线平行.其中正确的个数有_____________。
7.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是( )A.16π B.20π C.24π D.32π8.下列说法不正确的....是( ) A .空间中,一组对边平行且相等的四边形是一定是平行四边形;B .同一平面的两条垂线一定共面;C .过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;D .过一条直线有且只有一个平面与已知平面垂直.9.下列说法不正确的....是( ) A .空间中,一组对边平行且相等的四边形是一定是平行四边形;B .同一平面的两条垂线一定共面;C .过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;D .过一条直线有且只有一个平面与已知平面垂直.二.解答题:10.已知,,,E F G H 为空间四边形ABCD 的边,,,AB BC CD DA 上的点, 且//EH FG .求证://EH BD .HGF E DBA C11. 如图:S 是平行四边形ABCD 平面外一点,,M N 分别是,SA BD 上的点,且SM AM =NDBN , 求证://MN 面SBC12.如图所示,已知正四棱锥S —ABCD 侧棱长为2,面边长为3,E 是SA 的中点,则异面直线BE 与SC 所成角的大小为多少度呢?13. 已知正三棱柱ABC —A1B1C1中,A 1B ⊥CB 1,则A 1B 与AC 1所成的角为多少度呢?附加题:已知直四棱柱ABCD —A 1B 1C 1D 1的底面是菱形,,F 为棱BB 1的中点,M 为线段AC 1的中点. (1)求证:直线MF //平面ABCD ;(2)求证:平面AFC 1⊥平面ACC 1A 1;A BA11。
几何基础过关测试题
班级:姓名:得分:
测试时间:80分钟满分:100分
一、选择题(每小题2分,共20分)
1. 下列条件中,能判定△ABC≌△DEF的是()
A. AB=DE,BC=EF,∠A=∠D
B. ∠A=∠D, ∠C=∠F, AC=EF
C. ∠B=∠E, ∠A=∠D, AC=EF
D. AB=DE,BC=EF,两个三角形的周长相等
2. 等腰三角形的一边长等于5,一边长等于10,则它的周长是()
A. 20
B. 25
C. 20或25
D. 不确定
3. 如图1,AE=CF,AB=CD,DE⊥AC,BF⊥AC,且垂足分别为E、F.则判定△ABF≌△CDE
的依据是()
A. SSS
B. SAS
C. ASA
D. HL
图1 图2 图3
4. 如图2所示,△ABC≌△CDA,AB=4,BC=5,CA=6.则AD的长为()
A. 6
B. 5
C. 4
D. 不能确定
5. 如图3,AB=CD,AE⊥BD于E,CF⊥BD于F,AE=CF,则图中全等三角形有()
A. 1对
B. 2对
C. 3对
D. 4对
6. 有一个等腰三角形的周长为25cm,一边长为11cm,那么腰长为()
A. 11cm
B. 7cm
C. 14cm
D. 7cm或11cm
7. 等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()
A. 60°
B. 120°
C. 60°或150°
D. 60°或120°
8. 如图4,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,那
么∠ABC的大小是()
A. 40°
B. 45°
C. 50°
D. 60°
9. 如图5,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:○1AC=AF,○2∠FAB=∠EAB,
○3EF=BC,○4∠EAB=∠FAC,其中正确结论的个数是() A. 1个 B. 2个 C. 3个 D. 4个
图4 图5
10.已知平面上的两点A,B,下列说法不正确的是()
A. 点A,B关于线段AB的垂直平分线对称
B. 线段AB可以看作是以直线AB为轴的轴对称图形
C. 线段AB是轴对称图形,有且只有一条对称轴
D. 线段AB是轴对称图形,有两条对称轴
二、填空题(每小题2分,共20分)
11.如图6,在△ABC和△DEF中,如果AB=DE,BC=EF,只要找出= 或
∥,就可证明△ABC≌△DEF.
12.如图7,AB=CD ,AD=CB, ∠2=40°, ∠3=80°,则∠B= .
图6 图7 图8
13.如图8,已知∠B=∠C=50°, ∠A=60°,则∠AEC= ;若AE=AD,AB=7,
则AC= .
14.如图9,BA⊥AC,BA∥CD,AB=CE,AC=CD,则△ABC≌,理由是 .
15.如图10,BD是△ABC的角平分线,∠C=90°,AC=CB,DE⊥AB于E,若AB=5cm,
则△ADE的周长为 .
图9 图10 图11
16.如图11,△ABC中,AB=AC,∠C=65°,MN为AB的垂直平分线,则∠1= ,∠2= .
17.已知在△ABC中,AB=AC,且2∠B=∠BAC,则∠B= .
18.若等腰三角形有一个角是60°,其中一条边的长为a,则其周长是 .
19.如图12所示,在△ABC中,已知∠B和∠C的角平分线相交于点F,过点F作
DE∥BC交AB于点D,交AC于点E,若BD+CE=9,则线段DE的长为 . 20.如图13,AB=AC,FD⊥BC于D,DE⊥AB于E,若∠AFD=145°,则∠EDF= .
图12 图13
三、解答题(每小题10分,共60分)
21.如图14,CE⊥AB,DF⊥AB,垂足分别为E、F,AC=DB且 AC∥DB,那么CE=DF吗?说说你的理由.
图14
22.如图15,D、E是AB、AC上的点,且AD=AE,DB=EC,证明:∠B=∠C.
图15
23.如图16,在△ABC中,∠ACB=90°,DE是AB的垂直平分线,∠CAE:∠EAB=4:1,
求∠B的度数?
图16
24.已知:如图17,△ABC中,BD=CD,∠ABD=∠ACD.求证:AD是∠BAC的角平分线.
图17
25.如图18,在△ABC和△DBC中,∠ACB=∠DBC=90°,E是BC的中点,EF⊥AB于F,且AB=DE.
(1)求证:△BCD是等腰三角形;
(2)若BD=8cm,求AC的长.
图18
26.如图19,在等边△ABC中,点D、E分别在边BC,AB上,且BD=AE,AD与CE相交于点F.
(1)求证:AD=CE;
(2)求∠DFC的度数.
图19。