电流互感器接线方式
- 格式:ppt
- 大小:440.00 KB
- 文档页数:8
电流互感器接线方法电流互感器是一种用来测量电流的传感器,它可以将高电流变换成低电流,从而方便我们进行测量和监控。
在实际应用中,电流互感器的接线方法是非常重要的,它直接影响到电流互感器的测量准确性和安全性。
下面我们将介绍电流互感器的接线方法。
首先,接线前需要确认电流互感器的额定电流和额定负荷,确保选择的导线和开关能够承受互感器的额定电流和负荷。
接线时需要断开电源,确保安全。
接线方法一般分为单相和三相两种情况。
对于单相接线,首先将电流互感器的一端连接到负载,另一端连接到电源。
在接线时,需要注意将导线连接牢固,确保电流能够正常传输。
同时,还需要注意接线的顺序,确保接线的正确性。
对于三相接线,首先需要确认电流互感器的相位顺序,然后根据相位顺序进行接线。
一般来说,A相、B相、C相的接线顺序是固定的,需要根据具体情况进行接线。
在接线时,需要注意保持各相之间的平衡,确保电流互感器的正常工作。
在接线完成后,需要进行接线测试,确保接线的准确性和安全性。
可以通过测量电流互感器的输出信号来确认接线是否正确。
同时,还需要检查接线部分是否有松动或者短路等情况,确保接线的稳定性和安全性。
总的来说,电流互感器的接线方法是非常重要的,它直接影响到电流互感器的测量准确性和安全性。
在接线时,需要注意选择合适的导线和开关,确保能够承受互感器的额定电流和负荷。
同时,还需要注意接线的顺序和平衡,确保接线的正确性和稳定性。
接线完成后,需要进行接线测试,确保接线的准确性和安全性。
希望以上内容能够对大家有所帮助。
电流互感器的接法不复杂,只有四种接线形式;
1、是单台电流互感器的接线形式;
只能反映单相电流的情况,适用于需要测量一相电流或三相负荷平衡,测量一相就可知道三相的情况,大部分接用电流表;
2、三相完全星形接线和三角形接线形式;
三相电流互感器能够及时准确了解三相负荷的变化情况,多用在变压器差动保护接线中;只使用三相完全星形接线的可在中性点直接接地系统中用于电能表的电流采集;三相三继电器接线方式不仅能反应各种类型的相间短路,也能反应单相接地短路,所以这种接线方式用于中性点直接接地系统中作为相间短路保护和单相接地短路的保护;
3、两相不完全星形接线形式;
在实际工作中用得最多;它节省了一台电流互感器,用A、C相的合成电流形成反相的B 相电流;二相双继电器接线方式能反应相间短路,但不能完全反应单相接地短路,所以不能作单相接地保护;这种接线方式用于中性点不接地系统或经消弧线圈接地系统作相间短路保护;
4、两相差电流接线形式;
也仅用于三相三线制电路中,中性点不接地,也无中性线,这种接线的优点是不但节省一块电流互感器,而且也可以用一块继电器反映三相电路中的各种相间短路故障,亦即用最少的继电器完成三相过电流保护,节省投资;但故障形式不同时,其灵敏度不同;这种接线方式常用于 10kV 及以下的配电网作相间短路保护;由于此种保护灵敏度低,现代已经很少用了;。
电流互感器接线图我们从使用功能上将电流互感器分为测量用电流互感器和保护用电流互感器两类,各种电流互感器的原理类似,本文总结各种电流互感器接线图,供参考使用。
一测量用电流互感器接线方法测量用电流互感器的作用是指在正常电压范围内,向测量、计量装置提供电网电流信息。
1普通电流互感器接线图电流互感器的一次侧电流是从P1端子进入,从P2端子出来;即P1端子连接电源侧,P2端子连接负载侧。
电流互感器的二次侧电流从S1流出,进入电流表的正接线柱,电流表负接线柱出来后流入电流互感器二次端子S2,原则上要求S2端子接地。
注:某些电流互感器一次标称,L1、L2,二次侧标称K1、K2。
2穿心式电流互感器接线图穿心式电流互感器接线与普通电流互感器类似,一次侧从互感器的P1面穿过,P2面出来,二次侧接线与普通互感器相同。
二电流互感器接线图电流互感器接线总体分为四个接线方式:1.单台电流互感器接线图只能反映单相电流的情况,适用于需要测量一相电流的情况。
单台电流互感器接线图2.三相完全星形接线和三角形接线形式电流互感器接线图三相电流互感器能够及时准确了解三相负荷的变化情况。
(三相完全星形电流互感器接线图)3.两相不完全星形接线形式电流互感器接线图在实际工作中用得最多,但仅限于三相三线制系统。
它节省了一台电流互感器,根据三相矢量和为零的原理,用A、C相的电流算出B相电流。
两相不完全星形接线形式电流互感器接线图4.两相差电流接线形式电流互感器接线图也仅用于三相三线制电路中,这种接线的优点是不但节省一块电流互感器,而且也可以用一块继电器反映三相电路中的各种相间短路故障,亦即用最少的继电器完成三相过电流保护,节省投资。
两相差电流接线形式电流互感器接线图5.其它接线方式5.1 原边串联、副边串联电流互感器原边串联、副边串联接线图如下所示,串联后效果:互感器变比不变,二次额定负荷增大一倍。
电流互感器原边串联、副边串联接线图5.2 原边串联、副边并联电流互感器原边串联、副边并联接线图如下所示,串并联后效果:互感器变比减小一倍,二次额定负荷增大一倍。
电流互感器接线方法电流互感器是一种用于测量电流的装置,它能够将高电流变换成低电流,以便于测量和控制。
在实际应用中,电流互感器的接线方法至关重要,它直接影响着电流信号的准确性和稳定性。
下面将介绍电流互感器的接线方法及注意事项。
首先,电流互感器的接线方法应根据具体的使用场景和设备要求来确定。
一般情况下,电流互感器的接线包括输入端和输出端。
输入端通常连接到被测电流回路中,而输出端则连接到测量仪表或控制装置中。
在接线时,需要注意保持电路的完整性和稳定性,避免出现接触不良或短路等问题。
其次,在选择电流互感器的接线方法时,需要考虑电流信号的大小和频率范围。
不同的电流互感器适用于不同范围的电流信号测量,因此在接线时需要根据实际情况选择合适的电流互感器型号和接线方式。
同时,还需要注意电流互感器的额定负荷和负载能力,确保接线不会超出其额定范围。
另外,在实际接线过程中,还需要注意接线的牢固性和可靠性。
电流互感器通常安装在电路板或设备内部,因此在接线时需要确保连接端子的牢固,避免因接触不良或松动导致测量误差或设备损坏。
同时,还需要注意绝缘处理,避免出现漏电或触电等安全隐患。
最后,在接线方法选择和实际操作中,需要严格按照电流互感器的使用说明和相关标准进行操作,确保接线符合安全和准确性要求。
同时,还需要定期检查和维护电流互感器的接线,确保其正常运行和使用寿命。
总之,电流互感器的接线方法是电流测量和控制中至关重要的一环,正确的接线方法能够保证电流信号的准确性和稳定性,避免出现测量误差和设备损坏。
因此,在实际操作中需要严格按照要求进行接线,并定期进行检查和维护,以确保电流互感器的正常运行和使用效果。
电流互感器的作用及接线方法从通过大电流的电线上,按照一定的比例感应出小电流供测量使用,也可以为继电保护和自动装置提供电源。
比如说现在有一条非常粗的电缆,它的电流非常大。
如果想要测它的电流,就需要把电缆断开,并且把电流表串联在这个电路中。
由于它非常粗,电流非常大,需要规格很大的电流表。
但是实际上是没有那么大的电流表,因为电流仪表的规格在5A 以下。
那怎么办呢?这时候就需要借助电流互感器了。
先选择合适的电流互感器,然后把电缆穿过电流互感器。
这时电流互感器就会从电缆上感应出电流,感应出来的电流大小刚好缩小了一定的倍数。
把感应出来的电流送给仪表测量,再把测量出来的结果乘以一定的倍数就可以得到真实结果。
我们从使用功能上将电流互感器分为测量用电流互感器和保护用电流互感器两类,各种电流互感器的原理类似,本文总结各种电流互感器接线图,供参考使用。
测量用电流互感器的作用是指在正常电压范围内,向测量、计量装置提供电网电流信息。
电流互感器的一次侧电流是从P1端子进入,从P2端子出来;即P1端子连接电源侧,P2端子连接负载侧。
电流互感器的二次侧电流从S1流出,进入电流表的正接线柱,电流表负接线柱出来后流入电流互感器二次端子S2,原则上要求S2端子接地。
注:某些电流互感器一次标称,L1、L2,二次则标称K1、K2。
穿心式电流互感器接线与普通电流互感器类似,一次侧从互感器的P1面穿过,P2面出来,二次侧接线与普通互感器相同。
电流互感器接线总体分为四个接线方式:1.单台电流互感器接线图只能反映单相电流的情况,适用于需要测量一相电流的情况。
单台电流互感器接线图2.三相完全星形接线和三角形接线形式电流互感器接线图三相电流互感器能够及时准确了解三相负荷的变化情况。
三相完全星形电流互感器接线图三相完全角形电流互感器接线图3.两相不完全星形接线形式电流互感器接线图在实际工作中用得最多,但仅限于三相三线制系统。
它节省了一台电流互感器,根据三相矢量和为零的原理,用A、C相的电流算出B相电流。
电流互感器的主要接线方式电流互感器在工厂供电系统中,广泛应用于测量、继电保护。
而电流互感器的接线有多种方式,分别应用于不同供电系统的继电保护。
电流互感器的接线方式所谓电流互感器的接线方式是指电流互感器与电流继电器之间的联接方式。
电流互感器在三相电路中有以下四种接线方式。
1.一相式接线方式:一相式接线方式如图所示,电流线圈通过的电流,反映一次电路相应相的相电流,通常用于负荷平衡的三相电路如低压动力线路中,供测量电流或接过负荷保护装置之用。
2.三相式完全星形接线:三相式完全星形接线方式如图所示,这种方式对各种故障都起作用。
当故障电流相同时,对所有故障都同样灵敏,对相同短路动作可靠,至少有两个继电器动作,因此主要用于高压大电流接地系统以及大型变压器、电动机的差动保护、相间短路保护和单相接地短路保护和负荷一般不平衡的三相四线制系统,也用在负荷可能不平衡的三相三线制系统中,作三相电流、电能测量3.两相不完全星形接线:两相不完全星形接线如图所示,在正常运行及三相短路时,中线通过电流为I0=I a+I c=-I b,反映的是未接电流互感器那一相的相电流。
如两只互感器接于A相和C相,AC相短路时,两只继电器均动作;当AB相或BC相短路时,只有一个继电器动作。
而在中性点直接接地系统中,当B相发生接地故障时,保护装置不动作。
所以这种接线保护不了所有单相接地故障和某些两相短路,但刚好满足中性点不直接接地系统允许一相接地继续运行一段时间的要求。
因此,这种接线广泛应用在中性点不接地系统。
4.两相电流差式接线:两相电流差式接线如图所示,这种接线方式的特点是流过电流继电器的电流是两只电流互感器的二次电流的相量差I R=I a-I b,因此对于不同形式的故障,流过继电器的电流不同。
在正常运行及三相短路时,流经电流继电器的电流是电流互感器二次绕组电流的 3 倍。
当装有电流互感器的A、C两相短路时,流经电流继电器的电流为电流互感器二次绕组的两倍。
电流互感器接线方法电流互感器是一种用于测量电流的装置,通常用于配电系统和电力系统中。
它可以将高电流转换为低电流,从而方便进行测量和监控。
在实际应用中,正确的接线方法对于电流互感器的准确性和稳定性至关重要。
下面将介绍电流互感器的接线方法,希望能够为大家提供一些帮助。
首先,接线前需要确认电流互感器的额定电流和额定负荷。
在进行接线之前,必须要明确电流互感器的额定电流,以及所要测量的电路的最大电流值。
同时,还需要了解电流互感器的额定负荷,确保其能够承受电路中可能出现的瞬时过载电流。
其次,根据电流互感器的类型和工作原理选择合适的接线方法。
根据电流互感器的类型和工作原理的不同,其接线方法也会有所区别。
一般来说,电流互感器的接线方法可以分为串联接线和并联接线两种。
在具体应用中,需要根据实际情况选择合适的接线方法,以确保测量的准确性和稳定性。
接着,进行接线操作时需要注意保持接线的整洁和稳固。
在进行接线时,需要确保接线端子的连接牢固可靠,避免出现接触不良或者接触松动的情况。
同时,还需要注意保持接线的整洁,避免出现线路交叉或者短路的情况,从而影响电流互感器的正常工作。
最后,进行接线后需要进行接线测试和校准。
在完成接线之后,需要进行接线测试和校准,以确保电流互感器的测量结果准确可靠。
在进行测试和校准时,需要使用专业的测试仪器和设备,按照相应的操作规程进行操作,以确保测试结果的准确性和可靠性。
总的来说,电流互感器的接线方法对于电力系统的正常运行和安全稳定具有重要的意义。
正确的接线方法能够保证电流互感器的准确性和稳定性,从而为电力系统的运行提供可靠的数据支持。
因此,在进行电流互感器的接线时,需要根据具体情况选择合适的接线方法,并严格按照操作规程进行操作,以确保接线的正确性和可靠性。
希望以上内容能够对大家有所帮助,谢谢阅读!。
电流互感器的接线方式按其所接负载的运行要求确定。
最常用的接线方式为单相、三相星形和不完全星形三种。
额定变比和误差:电流互感器的额定变比KN指电流互感器的额定电流比。
即:KN=I1N/I2N
电流互感器原边电流在一定范围内变动时,一般规定为10~120%I1N,副边电流应按比例变化,而且原、副边电压(或电流)应该同相位。
但由于互感器存在内阻抗、励磁电流和损耗等因素而使比值及相位出现误差,分别称为比差和角差。
比差为经折算后的二次电流与一次电流量值大小之差对后者之比,即fI 为电流互感器的比差。
当KNI2》I1时,比差为正,反之为负。
对于没有采取补偿措施的电流互感器,比差为负值,角差为正值,比差的绝对值和角差均随电流增大而减小。
采用补偿的办法可以减小互感器的误差。
一般通过在互感器上加绕附加绕组或增添附加铁心,以及接入相应的电阻、电感、电容元件来补偿。
常用的补偿法有匝数补偿、分数匝补偿、小铁心补偿、并联电容补偿等。
艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。
如需进一步了解相关互感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城。
电流互感器接线图我们从使用功能上将电流互感器分为测量用电流互感器和保护用电流互感器两类,各种电流互感器的原理类似,本文总结各种电流互感器接线图,供参考使用。
测量用电流互感器接线方法测量用电流互感器的作用是指在正常电压范围内,向测量、计量装置提供电网电流信息。
普通电流互感器接线图电流互感器的一次侧电流是从P1端子进入,从P2端子出来;即P1端子连接电源侧,P2端子连接负载侧。
电流互感器的二次侧电流从S1流出,进入电流表的正接线柱,电流表负接线柱出来后流入电流互感器二次端子S2,原则上要求S2端子接地。
注:某些电流互感器一次标称,L1、L2,二次侧标称K1、K2。
2穿心式电流互感器接线图穿心式电流互感器接线与普通电流互感器类似,一次侧从互感器的P1面穿过,P2面出来,二次侧接线与普通互感器相同。
二电流互感器接线图电流互感器接线总体分为四个接线方式:1.单台电流互感器接线图只能反映单相电流的情况,适用于需要测量一相电流的情况。
单台电流互感器接线图2.三相完全星形接线和三角形接线形式电流互感器接线图三相电流互感器能够及时准确了解三相负荷的变化情况。
(三相完全星形电流互感器接线图)3.两相不完全星形接线形式电流互感器接线图在实际工作中用得最多,但仅限于三相三线制系统。
它节省了一台电流互感器,根据三相矢量和为零的原理,用A、C相的电流算出B相电流。
两相不完全星形接线形式电流互感器接线图4.两相差电流接线形式电流互感器接线图也仅用于三相三线制电路中,这种接线的优点是不但节省一块电流互感器,而且也可以用一块继电器反映三相电路中的各种相间短路故障,亦即用最少的继电器完成三相过电流保护,节省投资。
两相差电流接线形式电流互感器接线图5.其它接线方式原边串联、副边串联电流互感器原边串联、副边串联接线图如下所示,串联后效果:互感器变比不变,二次额定负荷增大一倍。
电流互感器原边串联、副边串联接线图原边串联、副边并联电流互感器原边串联、副边并联接线图如下所示,串并联后效果:互感器变比减小一倍,二次额定负荷增大一倍。
电流互感器的原理和接线图电流互感器的作⽤:从通过⼤电流的电线上,按照⼀定的⽐例感应出⼩电流供测量使⽤,也可以为继电保护和⾃动装置提供电源。
举例说明:⽐如说现在有⼀条⾮常粗的电缆,它的电流⾮常⼤。
如果想要测它的电流,就需要把电缆断开,并且把电流表串联在这个电路中。
由于它⾮常粗,电流⾮常⼤,需要规格很⼤的电流表。
但是实际上是没有那么⼤的电流表,因为电流仪表的规格都5A以下。
那怎么办呢?这时候就需要借助电流互感器了。
先选择合适的电流互感器,然后把电缆穿过电流互感器。
这时电流互感器就会从电缆上感应出电流,感应出来的电流⼤⼩刚好缩⼩了⼀定的倍数。
把感应出来的电流送给仪表测量,再把测量出来的结果乘以⼀定的倍数就可以得到真实结果。
我们从使⽤功能上将电流互感器分为测量⽤电流互感器和保护⽤电流互感器两类,各种电流互感器的原理类似,本⽂总结各种电流互感器接线图,供参考使⽤。
⼀、测量⽤电流互感器接线⽅法测量⽤电流互感器的作⽤是指在正常电压范围内,向测量、计量装置提供电⽹电流信息。
(1)普通电流互感器接线图电流互感器的⼀次侧电流是从P1端⼦进⼊,从P2端⼦出来;即P1端⼦连接电源侧,P2端⼦连接负载侧。
电流互感器的⼆次侧电流从S1流出,进⼊电流表的正接线柱,电流表负接线柱出来后流⼊电流互感器⼆次端⼦S2,原则上要求S2端⼦接地。
注:某些电流互感器⼀次标称,L1、L2,⼆次侧标称K1、K2。
(2)穿⼼式电流互感器接线图穿⼼式电流互感器接线与普通电流互感器类似,⼀次侧从互感器的P1⾯穿过,P2⾯出来,⼆次侧接线与普通互感器相同。
⼆、电流互感器接线图电流互感器接线总体分为四个接线⽅式:(1)单台电流互感器接线图只能反映单相电流的情况,适⽤于需要测量⼀相电流的情况。
单台电流互感器接线图(2)三相完全星形接线和三⾓形接线形式电流互感器接线图三相电流互感器能够及时准确了解三相负荷的变化情况。
三相完全星形电流互感器接线图三相完全⾓形电流互感器接线图(3)两相不完全星形接线形式电流互感器接线图在实际⼯作中⽤得最多,但仅限于三相三线制系统。
电流互感器的接线方式、饱和及伏安特性,值得收藏!电流互感器(CT)是电力系统重要的电气设备,它承担着高、低压系统之间的隔离及高压量向低压量转换的职能。
在系统的保护、测量、计量等设备的正常工作中扮演着极其重要的角色。
整理了关于CT的相关知识点与大家分享,具体内容包括以下四个方面:1.电流互感器二次回路接线方式2.电流互感器的饱和3.电流互感器伏安特性4.电流互感器回路接线错误案例分析01电流互感器二次回路接线方式在变电站中,常用的电流互感器二次回路接线方式有单相接线、两相星形(或不完全星形)接线、三相星形(或全星形)接线、三角形接线及和电流接线等,它们根据需要应用于不同场合。
现将各种接线的特点及应用场合介绍如下。
(1)单相接线方式单相式接线,这种接线只有一只电流互感器组成,接线简单。
它可以用于小电流接地系统零序电流的测量,也可以用于三相对称电流中电流的测量或过负荷保护等。
(2)两相星形接线方式两相星形接线,这种接线由两相电流互感器组成,与三相星形接线相比,它缺少一只电流互感器(一般为B相),所以又叫不完全星形接线。
它一般用于小电流接地系统的测量和保护回路,由于该系统没有零序电流,另外一相电流可以通过计算得出,所以该接线可以测量三相电流、有功功率、无功功率、电能等。
反应各类相间故障,但不能完全反应接地故障。
对于小电流接地系统,不完全星形接线不但节约了一相电流互感器的投资,在同一母线的不同出线发生异名相接地故障时,还能使跳开两条线路的几率下降了三分之二。
只有当AC相接地时才会跳开两条线路,AB、BC相接地时,由于B相没有电流互感器,则B相接地的一条线路将不跳闻。
由于小接地电流系统允许单相接地运行2小时,所以这一措施能够提高供电可靠性。
需要指出的是,同一母线上出线的电流互感器必须接在相同的相,否则有些故障时保护将不能动作。
(3)三相星形接线方式三相星形接线又叫全星形接线,这种接线由三只互感器按星形连接而成,相当于三只互感器公用零线。
电流互感器接线方法电流互感器是一种用来测量电流的装置,它可以将高电流变换成低电流,从而方便进行测量和控制。
在实际应用中,电流互感器的接线方法至关重要,不仅关乎测量的准确性,还涉及到设备的安全运行。
因此,正确的接线方法对于电流互感器的正常工作至关重要。
首先,我们需要了解电流互感器的基本接线原理。
电流互感器通常具有一组输入端和一组输出端,其工作原理是通过电磁感应来实现的。
当通过输入端流过电流时,电流互感器内部的线圈会产生磁场,从而感应出输出端的电流。
因此,在接线时,我们需要确保输入端和输出端的连接正确,以保证电流互感器的正常工作。
接下来,我们来介绍一种常见的电流互感器接线方法。
首先,我们需要准备好电流互感器、电流表和相关的接线电缆。
接着,我们将电流互感器的输入端与被测电路的电流输入端相连,通常采用串联的方式进行连接。
然后,将电流互感器的输出端与电流表相连,以便进行电流的测量。
在接线过程中,需要注意保持电缆的连接牢固,以防止接触不良或者断路现象的发生。
在实际操作中,我们还需要注意一些细节问题。
首先,需要确保电流互感器的额定电流范围与被测电路的电流范围相匹配,以免造成电流互感器的过载或者测量不准确。
其次,需要注意接线电缆的选择,通常建议选择导电性能好、绝缘性能优秀的电缆,以确保测量的准确性和安全性。
此外,还需要注意接线过程中的防护措施,确保操作人员的人身安全。
总的来说,电流互感器的接线方法是电气测量中的重要环节,正确的接线方法可以保证测量的准确性和设备的安全运行。
在实际操作中,我们需要根据具体的情况选择合适的接线方法,并严格按照操作规程进行操作。
只有这样,才能确保电流互感器的正常工作,并获得准确可靠的测量数据。
通过本文的介绍,相信读者对电流互感器的接线方法有了更深入的了解。
同时,也希望读者在实际操作中能够严格按照操作规程进行操作,确保电流互感器的正常工作,从而为电气测量工作提供可靠的支持。
从接线方式区别电流与电压互感器的方法电流互感器(俗称CT)、电压互感器(俗称PT)是高压开关柜、低压成套设备中的重要部件。
与电流表、电压表、功率表、频率表等测量仪表、继电保护、自动励磁调整等装置相连,直接与电力系统安全稳定运行紧密相连。
电压互感器的规格、品种分超高压、高压、低压,各种变比的互感器的数量和接线方法,主要是由供电电压及供电方式来决定的。
按电流互感器照用途不同大致可分为两类:测量用电流互感器、保护用电流互感器,其依据依据电磁感应原理工作。
具体区分电流互感器和电压互感器的方式有很多。
今天我们介绍一种通过接线方式来区分的方法。
1、电流互感器接线方式:在单相回路中仅有一个回路,这样可用一台电流互感器来测量回路中的电流。
我们实际使用的电灯的回路中就是采用这种方式。
在三相三线的电气回路中,因为没有相线和中性线间负荷,便可以用两台电流互感器,接成V型接线的方式,接二只电流表测量电流,这种接线方法是将两只电流表,接在二次线路的公用导线上。
为了节约器材和简化接线,在三相负荷基本平衡时,也可以用一台电流互感器接一只电流表参考使用。
同时在三相三线式的回路里,有时也采用三台电流互感器接成角型接线,分别测量三相电流。
在三相四线制供电系统中,应安装三台电流互感器分别供电流表使用,接线方式可采用星形接线。
2、电压互感器接线方式:在单相回路中仅有一个回路,只须一台单相电压互感器将一次线圈接到高压电源线上,低压线圈(二次线圈)接到电压表接线端上。
在三相回路中,为了安装电能表,电力表,电流表等,以观察三相电压,可以采用三相电压互感器或采用三台单相的电压互感器组配在一起接成星形或角型接线,有时也用两台电压互感器接成V型接线来测量三相电压。
此外,电流互感器一般用在低压成套设备中,设备中出线柜、进线柜都会有,而计量柜一般没有,电压互感器在高压开关柜中会有应用。
电流互感器的常见接线方式
1、三相完全星形接线可以准确反映三相中每一相的真实电流。
该方式应用在大电流接地系统中,保护线路的三相短路、两相短路和单相接地短路。
2、两相两继电器不完全星形接线可以准确反映两相的真实电流。
该方式应用在6〜10kV中性点不接地的小电流接地系统中,保护线路的
三相短路和两相短路。
•
-f
■
1
完全星形接线两相两继电器不完全星形接线
3、两相差接反映两相差电流。
该接线方式应用在6〜10kV中性点不
接地的小电流接地系统中,保护线路的三相短路、两相短路、小容量电动机保护、小容量变压器保护。
4、单相接线在三相电流平衡时,可以用单相电流反映三相电流值, 主要用于测量回路。
5、两相三继电器完全星形接线,流入第三个继电器的电流是Ij = Iu + lw=—Iv。
该接线方式应用在大电流接地系统中,保护线路的三相短路和两相短路。
(1)在三相三线制系统中,当各项负荷平衡时,可在一相中装电流互感器,测量一相的电流。
(2)星形接线,可测量三相负荷电流,监视每相负荷不对称情况。
(3)不完全星形接线,可用来测量平衡负荷或不平衡负荷的三相系统
各相电流。
高压配电柜中电流互感器工作原理及接线方法简介
1、只有AB两相是的电流互感器接线原理
比如电流互感器只接AB两相,如果三相平衡就很好理解只要知道一相,其他两相都一样,如不平衡A相10A ,B相20A这A相的10A回到原点还是要通过BC相回来的B相这20A也还是要通过AC 相回来的,某一相电流的上升必然会影响到其他两相,这样就可以间接地测量出另一相的电流了,在有中线N 的情况下这样得出的结果就不是另一相的电流了。
2、电流互感器的接线方式
1、一般情况下,电流互感器是LI流进,L2流出;二次侧接U2流出,U1接星行公共端(即负极性)。
2、你一次侧L2流进,LI流出,就是我们常说的一次“极性反了”,虽然二次接法正确,但电流方向正好是反方向了。
3、三相接成星形或者接成两相,测量的是ABC各相的相电流接成三角测的是三相的不平衡电流
3、零序电流互感器的接线方式
1、原理:零序电流保护的基本原理是基于基尔霍夫电流定律:流入电路中任一节点的复电流的代数和等于零。
在线路与电气设备正常的情况下,各相电流的矢量和等于零,因此,零序电流互感器的二次侧绕组无信号输出,执行元件不动作。
当发生接地故障时的各相电流的矢量和不为零,故障电流使零序电流互感器的环形铁芯中产生磁通,零序电流互感器的二次侧感应电压使执行元件动作,带动脱扣装置,切换供电网络,达到接地故障保护的目的。
2、作用:当电路中发生触电或漏电故障时,保护动作,切断电源。
3、使用:可在三相线路上各装一个电流互感器,或让三相导线一起穿过一零序电流互感器,也可在中性线N上安装一个零序电流互感器,利用其来检测三相的电流矢量和。
电流互感器接线方式(转载)技术交流2010-03-27 09:02:22 阅读3069 评论0 字号:大中小订阅电流互感器在交流回路中使用,在交流回路中电流的方向随时间在改变。
电流互感器的极性指的是某一时刻一次侧极性与二次侧某一端极性相同,即同时为正、或同时为负,称此极性为同极性端或同名端,用符号"*"、"-" 或"."表示。
(也可理解为一次电流与二次电流的方向关系)。
按照规定,电流互感器一次线圈首端标为L1,尾端标为L2;二次线圈的首端标为K1,尾端标为K2。
在接线中L1 和K1 称为同极性端,L2 和K2 也为同极性端。
其三种标注方法如图 1 所示。
电流互感器同极性端的判别与耦合线圈的极性判别相同。
较简单的方法例如用 1.5V 干电池接一次线圈,用一高内阻、大量程的直流电压表接二次线圈。
当开关闭合时,如果发现电压表指针正向偏转,可判定 1 和 2 是同极性端,当开关闭合时,如果发现电压表指针反向偏转,可判定1 和 2 不是同极性端。
3 电流互感器的极性与常用电流保护以及易出错的二次接线3.1 一相接线图 1 电流互感器的三种极性标注图2 一相接线一相式电流保护的电流互感器主要用于测量对称三相负载或相负荷平衡度小的三相装置中的一相电流。
电流互感器的接线与极性的关系不大,但需注意的是二次侧要有保护接地,防止一次侧发生过电流现象时,电流互感器被击穿,烧坏二次侧仪表、继电设备。
但是严禁多点接地。
两点接地二次电流在继电器前形成分路,会造成继电器无动作。
因此在《继电保护技术规程》中规定对于有几组电流互感器连接在一起的保护装置,则应在保护屏上经端子排接地。
如变压器的差动保护,并且几组电流互感器组合后只有一个独立的接地点。
3.2 两相式不完全星形接线两相式不完全星形接线用于相负荷平衡和不平衡的三相系统中。
如图 3 所示。
若有一相二次极性那么流过3KA 的电流为I A I e ,由向量差得其电流值为Ia 的 3 倍,相位滞后I a 300 角,如果三只继电器整定值是一样的,3KA 会提前动作,造成保护误动。