江苏省镇江市2013届高三高考适应性测试数学卷6
- 格式:doc
- 大小:885.00 KB
- 文档页数:12
2013年普通高等学校统一考试试题(江苏卷)数学试卷及参考答案2013年普通高等学校统一考试试题(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分。
请把答案填写在答题卡相印位置上。
1.函数)42sin(3π+=x y 的最小正周期为 .2.设2)2(i z -=(i 为虚数单位),则复数z 的模为 .3.双曲线191622=-y x 的两条渐近线的方程为 . 4.集合}1,0,1{-共有 个子集.5.右图是一个算法的流程图,则输出的n 的值是 . 6.抽样统计甲、乙两位设计运动员的5此训练成绩(单位:环),结果如下:运动员 第一次第二次 第三次 第四次 第五次 甲 87 91 90 89 93 乙8990918892则成绩较为稳定(方差较小)的那位运动员成绩的方差为 . 7.现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m ,都取到奇数的概率为 .8.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V .9.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界)。
若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 .yx Oy =2x —1y =—12 xABC1ADE F1B1C2013年普通高等学校统一考试试题(江苏卷)数学试卷及参考答案y x lB FOcb a 10.设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=, 若AC AB DE 21λλ+=(21λλ,为实数),则21λλ+的值为 .11.已知)(x f 是定义在R 上的奇函数。
当0>x 时,x x x f 4)(2-=,则不等式x x f >)( 的解集用区间表示为 .12.在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a by a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆C 的离心率为 .13.在平面直角坐标系xOy 中,设定点),(a a A ,P 是函数xy 1=(0>x )图象上一动点, 若点A P ,之间的最短距离为22,则满足条件的实数a 的所有值为 . 14.在正项等比数列}{n a 中,215=a ,376=+a a ,则满足n n a a a a a a 2121>+++的 最大正整数n 的值为 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分) 已知)sin ,(cos )sin ,(cos ββαα=b a ,=,παβ<<<0.(1)若2||=-b a ,求证:b a ⊥;xyy =xy =x 2—4 xP (5,5)Q (﹣5, ﹣5)2013年普通高等学校统一考试试题(江苏卷)数学试卷及参考答案(2)设)1,0(=c ,若c b a =+,求βα,的值.16.(本小题满分14分)如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证: (1)平面//EFG 平面ABC ;(2)SA BC ⊥.17.(本小题满分14分)如图,在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l . 设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线, 求切线的方程;(2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐 标a 的取值范围.A B CSG F E xy A lO2013年普通高等学校统一考试试题(江苏卷)数学试卷及参考答案18.(本小题满分16分)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径。
江苏省镇江市2013届高三高考适应性测试数学卷5一.填空题(每题5分,共70分) 1. 复数(2)i i +的虚部是2.如{}23,2a a a ∈-,则实数a 的值等于3. 若函数1(),10()44,01xx x f x x ⎧-≤<⎪=⎨⎪≤≤⎩,则4(log 3)f =4.等比数列}{n a 中,n S 表示前n 顶和,324321,21a S a S =+=+,则公比q 为 5.在集合{}1,2,3中先后随机地取两个数,若把这两个数按照取的先后顺序组成一个二位数,则“个位数与十位数不相同”的概率是 .6.设,αβ为互不重合的平面,m ,n 为互不重合的直线,给出下列四个命题: ①若,,m n m n αα⊥⊂⊥则;②若,,m n m αα⊂⊂∥,n β∥β,则α∥β; ③若,,,,m n n m n αβαβαβ⊥=⊂⊥⊥ 则;④若,,//,//m m n n ααββ⊥⊥则, 其中所有正确命题的序号是 . 7.已知0>xy ,则|21||21|xy y x +++的最小值为 8.. 已知定义域为R 的函数()x f 在区间()+∞,8上为减函数,且函数()8+=x f y 为偶函数,则给出如下四个判断:正确的有①()()76f f > ②()()96f f > ③()()97f f > ④()()107f f >9.已知角A 、B 、C 是ABC 的内角,,,a b c 分别是其对边长,向量2(23sin ,cos),22A A m = ,(cos ,2)2A n =- ,m n ⊥ ,且2,a =3cos 3B =则b =10.直线1x y a b +=通过点(cos ,sin )M αα,则2211a b+的取值范围为 11.已知()sin()(0),()()363f x x f f πππωω=+>=,且()f x 在区间(,)63ππ有最小值,无最大值,则ω=__________.12. 在区间[],1t t +上满足不等式3311x x -+≥的解有且只有一个,则实数t ∈13. 在△ABC 中,1tan ,0,()022C AH BC AB CA CB =⋅=⋅+=,H 在BC 边上,则过点B 以A 、H 为两焦点的双曲线的离心率为N MP QBA8kma km14. 已知数列{}n a 满足:1a m =(m 为正整数),1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若47a =,则m 所有可能的取值为二.解答题(请给出完整的推理和运算过程,否则不得分)15.(14分)设函数2()2(03)f x x x a x =-++≤≤的最大值为m ,最小值为n , 其中0,a a R ≠∈.(1)求m 、n 的值(用a 表示);(2)已知角β的顶点与平面直角坐标系xoy 中的原点o 重合,始边与x 轴的正半轴重合,终边经过点(1,3)A m n -+.求tan()3πβ+的值.16. (14分)在直角梯形PBCD 中,,2,42D C BC CD PD π∠=∠====,A 为PD 的中点,如下左图。
江苏省镇江市2013届高三高考适应性测试数学卷9一、填空题:本大题共14小题,每小题5分,共计70分.1.i 是虚数单位,复数2332iz i +=-+的虚部是 ;2.抛物线24y x =的焦点到准线的距离是 ;3. 已知等比数列{}n a 中,各项都是正数,且2312,21,a a a 成等差数列,则87109a a a a ++= ;4.已知集合{|5}A x x =>,集合{|}B x x a =>,若命题“x A ∈”是命 题“x B ∈”的充分不必要条件,则实数a 的取值范围是 ;5.某地为了调查职业满意度,决定用分层抽样的方法从公务员、教师、自由职业者三个群体的相关人员中,抽取若干人组成调查小组,有关数据见下表,若从调查小组中的公务员和6.已知函数221(0)()2(0)x x f x x x ⎧+≤=⎨->⎩,则不等式()2f x x -≤的解集是 ;7.若某程序框图如所示,则该程序运作后输出的y 等于 ;8.函数()2sin()f x x ωϕ=+(其中0ω>,22ππϕ-<<)的图象如图所示,若点A 是函数()f x 的图象与x 轴的交点,点B 、D 分别是函数()f x 的图象的最高点和最低点,点C (,0)12π是点B 在x轴上的射影,则AB BD ⋅= ;9.如图,在棱长为5的正方体ABCD —A1B1C1D1中,EF 是棱AB 上的一条线段,且EF=2,Q 是A1D1的中点,点P 是棱C1D1上的动点,则四面体PQEF 的体积为_________;10.如图,是二次函数a bx x x f +-=2)(的部分图象,则函数)(ln )(x f x x g '+=的零点所在的区间是(1,)2k k -,则整数k =____________;11.设1250,,,a a a 是从-1,0,1这三个整数中取值的数列,若222212501509,(1)(1)(1)107a a a a a a +++=++++++=且,则1250,,,a a a 中数字0的个数为 .12.设a 是实数.若函数()|||1|f x x a x =+--是定义在R 上的奇函数,但不是偶函数,则函数()f x 的递增区间为 .13.已知椭圆)0(12222>>=+b a b y a x 的左焦点1F ,O 为坐标原点,点P 在椭圆上,点Q 在椭圆的右准线上,若1111112,()(0)||||F P F O PQ F O F Q F P F O λλ==+>则椭圆的离心率为 . 14.函数()f x 满足1()ln 1()f x x f x +=-,且12,x x 均大于e ,12()()1f x f x +=, 则12()f x x 的最小值为 .二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.15.如图,在三棱柱ABC -A1B1C1中,AB =AC =2AA1, ∠BAA1=∠CAA1=60︒,D ,E 分别为AB ,A1C 中点. (1)求证:DE ∥平面BB1C1C ; (2)求证:BB1⊥平面A1BC .16. (本小题满分14分)已知a =(1+cos α,sin α),b =(1-cos ,sin ββ),(1,0)c =,(0,),(,2)απβππ∈∈,向量a与c 夹角为1θ,向量b 与c 夹角为2θ,且1θ-2θ=6π,若ABC ∆中角A 、B 、C 的对边分别为a 、b 、c ,且角A=βα-.求(Ⅰ)求角A 的大小; (Ⅱ)若ABC ∆的外接圆半径为43,试求b+c 取值范围.17.如图,海岸线θ2,=∠A MAN ,现用长为l 的栏网围成一养殖场,其中NA C MA B ∈∈,. (1)若l BC =,求养殖场面积最大值;(2)若B 、C 为定点,l BC <,在折线MBCN 内选点D ,使l DC BD =+,求四边形养殖场DBAC 的最大面积;(3)若(2)中B 、C 可选择,求四边形养殖场ACDB 面积的最大值.EABCC1B1 A1D18.(本题满分16分)给定椭圆2222:1(0)y x C a b a b +=>>,称圆心在坐标原点O ,C 的“伴随圆”. 若椭圆C的一个焦点为20)F ,其短轴上的一个端点到2F(Ⅰ)求椭圆C 及其“伴随圆”的方程;(Ⅱ)若过点(0,)(0)P m m <的直线l 与椭圆C 只有一个公共点,且l 截椭圆C 的“伴随圆”所得的弦长为m 的值;(Ⅲ)过椭圆C“伴椭圆”上一动点Q 作直线12,l l ,使得12,l l 与椭圆C 都只有一个公共点,试判断直线12,l l 的斜率之积是否为定值,并说明理由. 19. 设首项为1a 的正项数列{}n a 的前n 项和为n S ,q 为非零常数,已知对任意正整数,n m ,mn m m n S S q S +=+总成立.(Ⅰ)求证:数列{}n a 是等比数列;(Ⅱ)若不等的正整数,,m k h 成等差数列,试比较mhm h a a ⋅与2kk a的大小;(Ⅲ)若不等的正整数,,m k h 成等比数列,试比较11m h m ha a⋅与2k ka的大小.20. 已知函数()2f x ax bx c =++()0a ≠满足()00f =,对于任意x ∈R 都有()f x x≥,且 1122f x f x ⎛⎫⎛⎫-+=-- ⎪ ⎪⎝⎭⎝⎭,令()()()10g x f x x λλ=-->. 求函数()f x 的表达式; 求函数()g x 的单调区间;(3)研究函数()g x 在区间()0,1上的零点个数。
江苏省镇江市2013届高三高考适应性测试数学卷10一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置上.1.已知集合{|5}A x x =>,集合{|}B x x a =>,若命题“x A ∈”是命题“x B ∈”的充分 不必要条件,则实数a 的取值范围是 ▲ . 答案: 5a <2.复数1z i =-(i 是虚数单位),则22z z -= ▲ . 答案:12i -+3.为了解某校教师使用多媒体进行教学的情况,采用简单随机抽样的方法,从该校200名授课教师中抽取20名教师,调查了他们上学期使用多媒体进行教学的次数,结果用茎叶图表示如下:据此可估计该校上学期200名教师中,使用多媒体 进行教学次数在[]15,30内的人数为 ▲ . 答案:100解析:所抽取的20人中在[]15,30内的人数10人,故可得200名教师中使用多媒体进行教学次数在[]15,30内的人数为1020020⨯=100人。
4.如图是一个算法的流程图,则最后输出的W 的值为 ▲ . 答案:14解析:本题考查算法流程图。
0,11,23,36,4s t s t s t s t ==→==→==→==10s →= 所以输出14w s t =+=。
5.已知n s 是等差数列{n a }的前n 项和,若2s ≥4,4s ≤16,则5a 的最大值是 ▲ . 答案:96.用半径为210cm ,面积为π2100cm 2的扇形铁皮制作一个无盖的圆锥形容器(衔接部分忽略不计), 则该容器盛满水时的体积是 ▲ .(第3题图)(第4题)答案:331000cm π7.若在区间[1,5]和[2,4]上分别各取一个数,记为m 和n ,则方程22221x y m n+=表示焦点在x 轴上的椭圆的概率为 ▲ .答案:2解析:本题考查线性规划和几何概型。
由题意知15,24,m n m n ≤≤⎧⎪≤≤⎨⎪>⎩画可行域如图阴影部分。
2013年江苏高考数学模拟试卷(六)第1卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分.1. 若复数z 满足i i z +=-1)1((是虚数单位),则其共轭复数z = .2.“m <1”是“函数f (x )=x 2+2x +m 有零点”的 条件(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”之一).3.在△ABC 中,AB =2,AC =3,→AB ·→BC =1,则BC = .4.一种有奖活动,规则如下:参加者同时掷两个正方体骰子一次, 如果向上的两个面上的数字相同,则可获得奖励,其余情况不奖励.那么,一个参加者获奖的概率为 . 5.为了在下面的程序运行之后得到输出25=y ,则键盘输入x 的值应该为 .6.如图,直线与圆122=+y x 分别在第一和第二象限内交于21,P P 两点,若点1P 的横坐标为35,∠21OP P =3π,则点2P 的横坐标为 . 7.已知不等式组⎩⎪⎨⎪⎧x ≤1,x +y +2≥0,kx -y ≥0.表示的平面区域为Ω,其中k ≥0,则当Ω的面积取得最小值时的k 的值为 . 8.若关于x 的方程2-|x |-x 2+a =0有两个不相等的实数解,则实数a 的取值范围是 .9.用长为18m 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为:1,该长方体的最大体积是___ _____.10.直线)20(<<±=m m x 和kx y =把圆422=+y x 分成四个部分,则22(1)k m +的最小值为 .11.已知双曲线12222=-by a x ()0,1>>b a 的焦距为c 2,离心率为e ,若点(-1,0)和(1,0)到直线1=-b y a x 的距离之和为S ≥c 54,则e 的取值范围是 . Read xIf x <0 Theny =(x +1)(x +1)Elsey =(x-1)(x -1) End If Print y End12.已知定义在R 上的函数⎩⎨⎧∉-∈=]1,0[3]1,0[1)(x x x x f ,则1)]([=x f f 成立的整数x 的取值的集合为 . 13.定义在[2,4]上的函数x x x x f ln 3221)(2++-=的值域为 . 14.在如右图所示的数表中,第i 行第j 列的数记为a i ,j ,且满足a 1,j =2j -1,a i ,1=i ,a i +1,j +1=a i ,j +a i +1,j (i ,j ∈N *);又记第3行的数3,5,8,13,22,39,…. 则第3行第n 个数为 .二、解答题:本大题共6小题,共90分.15.(本小题满分14分)如图,在四棱锥S -ABCD 中,底面ABCD 是正方形,四个侧面都是等边三角形,AC 与BD 交于点O ,E 为侧棱SC 上的一点.(1)求证:平面BDE ⊥平面SAC ; (2)若SA //平面BDE ,求:SE EC 的值。
苏、锡、常、镇四市2013届高三教学情况调查(二)2013.5一、填空题:本大题共14小题,每小题5分,共70分。
不需要写出解答过程,请把答案直接填在答题卡相应位置上;1、 已知i 是虚数单位,复数31i z i+=+对应的点在第 象限。
2、 设全集U R =,集合{}13A x|x =-≤≤,集合{}1B x |x =>,则UA CB = 。
3、 已知数列{}n a 的通项公式为21n a n =-,则数据1a ,2a ,3a ,4a ,5a 的方差为 。
4、 “3x >”是“5x >”的条件。
(请在“充要”、“充分不必要”、“必要不充分”、“既不充分也不必要”中选择一个合适的填空)。
5、 若双曲线()2210y x a a -=>的一个焦点到一条渐近线的距离等,则此双曲线方程为 。
6、 根据右图所示的流程图,输出的结果T 为 。
7、 在1和9之间插入三个正数,使这五个数成等比数列,则插入的三个数的和为 。
8、 在不等式组031y x x y x ⎧⎪≤⎪<≤⎨⎪⎪>⎩,所表示的平面区域内的所有格点(横、纵坐标均为整数的点称为格点)中任取3个点,则该3点恰能作为一个三角形的三个顶点的概率为 。
9、 在矩形ABCD 中,对角线AC 与相邻两边所成的角为α,β,则有221cos αcos β+=。
类比到空间中的一个正确命题是:在长方体1111ABCD A BC D -中,对角线1AC 与相邻三个面所成的角为α,β,γ,则有 。
10、 已知圆C :()()()2210x a y a a -+-=>与直线3y x =相交于P 、Q 两点,若90PCQ ︒∠=,则实数a = 。
11、 分别在曲线x y e =与直线1y ex =-上各取一点M 与N ,则MN 的最小值为 。
12、 已知向量a ,b 满足a = ,1b = ,且对一切实数x ,a xb a b +≥+ 恒成立,则a 与b 的夹角大小为 。
镇江市2013届高三数学一模试卷及评分标准2013. 1.25注意事项: 1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分160分,考试时间120分钟.2.答题前,请您务必将自己的姓名、考试号用0.5毫米黑色字迹的签字笔填写在试卷的指定位置.3.答题时,必须用书写黑色字迹的0.5毫米签字笔写在试卷的指定位置,在其它位置作答一律无效.4.如有作图需要,可用2B 铅笔作答,并请加黑加粗,描写清楚.一、填空题:本大题共14小题,每小题5分,共70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上......... 1.已知集合M ={1 ,2,3, 4,5},N ={2,4,6,8,10},则M ∩N = ▲ .2.已知向量(12,2)a x =- ,()2,1b - =,若a b ⊥,则实数x = ▲ .3.直线1:240l x y +-=与 2:(2)10l mx m y +--=平行,则实数m = ▲ .4.方程lg(2)1x x +=有 ▲ 个不同的实数根.5. 已知0ω>,函数3sin()4y x πωπ=+的周期比振幅小1,则ω= ▲ .6. 在△ABC 中,sin :sin :sin 2:3:4A B C =,则cos C = ▲ .7. 在等比数列{}n a 中,n S 为其前n 项和,已知5423a S =+,6523a S =+,则此数列的公比q 为 ▲ . 8. 观察下列等式: 31×2×12=1-122, 31×2×12+42×3×122=1-13×22, 31×2×12+42×3×122+53×4×123=1-14×23,…,由以上等式推测到一个一般的结论:对于n ∈N *, 31×2×12+42×3×122+…+n +2n (n +1)×12n = ▲ . 9. 圆心在抛物线22x y =上,并且和抛物线的准线及y 轴都相切的圆的标准方程 为 ▲ .10. 在菱形ABCD 中,AB =23B π∠=,3BC BE =,3DA DF = ,则EF AC ⋅=▲ .11.设双曲线22221x y a b-=的左、右焦点分别为12,F F ,点P 在双曲线的右支上,且124PF PF =,则此双曲线离心率的最大值为 ▲ .12. 从直线3480x y ++=上一点P 向圆22:2210C x y x y +--+=引切线,PA PB ,,A B 为切点,则四边形PACB 的周长最小值为 ▲ .13. 每年的1月1日是元旦节,7月1日是建党节,而2013年的春节是2月10日,因为2sin11sin71sin[( ▲ )30]sin2013sin210+= ,新年将注定不平凡,请在括号内填写一个由月份和日期构成的正整数,使得等式成立,也正好组成我国另外一个重要节日.14. 已知x ,y 为正数,则22x yx y x y+++的最大值为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知:p 128x <<;:q 不等式240x mx -+≥恒成立,若p ⌝是q ⌝的必要条件,求实数m 的取值范围.16.(本小题满分14分)已知△ABC 的面积为S ,且AB AC S ⋅=.(1)求tan 2A 的值;(2)若4B π=,3CB CA -= ,求△ABC 的面积S .17.(本小题满分14分)已知0a >,函数3()(f x ax bx x =-∈R)图象上相异两点,A B 处的切线分别为12,l l , 且1l ∥2l .(1)判断函数()f x 的奇偶性;并判断,A B 是否关于原点对称; (2)若直线12,l l 都与AB 垂直,求实数b 的取值范围.18.(本小题满分16分)一位幼儿园老师给班上(3)k k ≥个小朋友分糖果.她发现糖果盒中原有糖果数为0a ,就先从别处抓2块糖加入盒中,然后把盒内糖果的12分给第一个小朋友;再从别处抓2块糖加入盒中,然后把盒内糖果的13分给第二个小朋友;…,以后她总是在分给一个小朋友后,就从别处抓2块糖放入盒中,然后把盒内糖果的11n +分给第(1,2,3,)n n k = 个小朋友.如果设分给第n 个小朋友后(未加入2块糖果前)盒内剩下的糖果数为n a . (1) 当3k =,012a =时,分别求123,,a a a ;(2) 请用1n a -表示n a ;令(1)n n b n a =+,求数列{}n b 的通项公式;(3)是否存在正整数(3)k k ≥和非负整数0a ,使得数列{}n a ()n k ≤成等差数列,如果存在,请求出所有的k 和0a ,如果不存在,请说明理由.19.(本小题满分16分)已知椭圆O 的中心在原点,长轴在x 轴上,右顶点(2,0)A 到右焦点的距离与它到右准线的距离之比为23. 不过A 点的动直线12y x m =+交椭圆O 于P ,Q 两点. (1) 求椭圆的标准方程;(2)证明P ,Q 两点的横坐标的平方和为定值;(3)过点 A,P ,Q 的动圆记为圆C ,动圆C 过不同于A 的定点,请求出该定点坐标.20.(本小题满分16分)已知函数22()1x f x x x =-+,对一切正整数n ,数列{}n a 定义如下:112a =,且1()n n a f a +=,前n 项和为n S . (1)求函数()f x 的单调区间,并求值域; (2)证明{}{}()(())x f x x x f f x x ===;(3)对一切正整数n ,证明:○1 1n n a a +<;○21n S <.数学Ⅱ(附加题)注意事项:考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷只有解答题,供理工方向考生使用.本试卷第21题有4个小题供选做,每位考生在4个选做题中选答2题,3题或4题均答的按选做题中的前2题计分.第22、23题为必答题.每小题10分,共40分.考试用时30分钟.2.答题前,考生务必将自己的学校、姓名、考试号填写在试卷及答题卡的规定位置. 3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.本卷考试结束后,上交答题卡.4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.5.请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔.21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题......,并在相应的.....答题区域....内.作答..,若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A .(选修4-1 几何证明选讲) 如图,⊙O 的直径AB 的延长线与弦CD 的延长线相交于点P ,E 为⊙O 上一点,AE =AC , DE 交AB 于点F .求证:△PDF ∽△POC . B .(选修4—2:矩阵与变换)求曲线C :1xy =在矩阵2222A ⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦ 对应的变换下得到的曲线C '的方程.(第21-A 题)A BPF OE DC·C .(选修4—4:坐标系与参数方程) 求圆3cos ρθ=被直线22,14x t y t=+⎧⎨=+⎩(t 是参数)截得的弦长.D.(选修4—5:不等式选讲)设函数()f x =.(1)当5a =-时,求函数()f x 的定义域;(2)若函数()f x 的定义域为R ,试求a 的取值范围.[必做题] 第22、23题,每小题10分,计20分.请把答案写在答题纸的指定区域内. 22.(本小题满分10分)斜率为1的直线与抛物线22y x =交于不同两点,A B ,求线段AB 中点M 的轨迹方程. .23.(本小题满分10分)已知函数()ln(2)f x x ax =-+在区间(0,1)上是增函数.(1)求实数a 的取值范围;(2)若数列{}n a 满足1(0,1)a ∈,1ln(2)n n n a a a +=-+,n ∈N* ,证明101n n a a +<<<.高三数学期末检测答案及评分标准2013.01一、填空题(每题5分)1.{}4,2;2. 0;3.32; 4. 2; 5. 1 ; 6.41-; 7. 3; 8. ()n n 2111⋅+-9.()121122=⎪⎭⎫⎝⎛-+±y x ; 10.12-; 11. 35; 12.224+; 13. 101; 14. 32.【说明】13. (10月1日国庆节)本题的一般结论是()()x x x x 3sin 60sin 60sin sin 400=+⋅-⋅,可以应用课本习题中结论22sin()sin()sin sin αβαβαβ+-=-证得. 14. 本题可以进一步推广为:是否存在实数k ,使得2222x y x yk x y x y x y x y+≤≤+++++当 0xy >时恒成立?二、解答题:15.解::p 128x <<,即30<<x ,……3分 p ⌝是q ⌝的必要条件,∴p 是q 的充分条件,……5分∴不等式240x mx -+≥对()3,0∈∀x 恒成立,……7分xx x x m 442+=+≤∴对()3,0∈∀x 恒成立,……10分44x x +≥ ,当且仅当2x =时,等号成立.……13分 4≤∴m .……14分 【说明】本题考查简易逻辑、命题真假判断、简单指数不等式的解法、函数的最值、基本不等式应用;考查不等式恒成立问题;考查转化思想.16.解:(1)设△ABC 的角C B A ,,所对应的边分别为c b a ,,.AB AC S ⋅= ,A bc A bc sin 21cos =∴,……2分A A sin 21cos =∴, 2tan =∴A .……4分 34t a n 1t a n 22t a n 2-=-=∴AA A .……5分(2)3CB CA -= ,即3==c ,……6分 20,2t a n π<<=A A ,……7分55cos ,552sin ==∴A A . ……9分 ()sin sin sin cos cos sin C A B A B A B∴=+=+==……11分 由正弦定理知:5sin sin sin sin =⋅=⇒=B Ccb B b Cc ,……13分35523521sin 21=⋅⋅==A bc S .……14分【说明】本题主要考查和差三角函数、倍角公式、正弦定理的应用、平面向量的运算;考查运算变形和求解能力.17.解:(1)()()()()()x f bx ax x b x a x f -=--=---=-33,……2分()x f ∴为奇函数.……3分设()()2211,,,y x B y x A 且21x x ≠,又()b ax x f -='23,……5分()x f 在两个相异点,A B 处的切线分别为12,l l ,且1l ∥2l ,∴()()()22111222330k f x ax b k f x ax b a ''==-===->,∴2221x x =又21x x ≠,∴21x x -=,……6分 又()f x 为奇函数,∴点B A ,关于原点对称.……7分(2)由(1)知()()1111,,,y x B y x A --, ∴b ax x y k AB -==2111,……8分 又()x f 在A 处的切线的斜率()b ax x f k -='=2113, 直线12,l l 都与AB 垂直,∴()()22111,31AB k k axbaxb⋅=--⋅-=-,……9分令021≥=ax t ,即方程014322=++-b bt t 有非负实根,……10分∴302≥⇒≥∆b ,又212103b t t +=> , ∴0034>⇒>b b.综上3≥b .……14分 【说明】本题考查函数性质和导数的运算与应用、一元二次方程根的分布;考查换元法考查推理论证能力.21. 解:(1)当3k =,012a =时, ()()72212001=+-+=a a a ,()()62312112=+-+=a a a ,()()62412223=+-+=a a a .……3分 (2)由题意知:()()()212112111++=++-+=---n n n n a n n a n a a ,……6分即()()n na a n a n n n n 22111+=+=+--, (1)n n b n a =+,12,n n b b n -∴-=……7分112102,22,2.n n n n b b n b b n b b ---∴-=-=--=累加得()()12220+=+=-n n n n b b n ,……9分 又00a b=,∴()01a n n b n ++=.……10分(3)由()01a n n b n ++=,得1++=n a n a n ,……12分 若存在正整数(3)k k ≥和非负整数0a ,使得数列{}n a ()n k ≤成等差数列,则1322a a a +=,……14分 即00001(1)3220243a a a a ⎛⎫+++=+⇒= ⎪⎝⎭,……15分当00=a 时, n a n =,对任意正整数(3)k k ≥,有{}n a ()n k ≤成等差数列. ……16分 [注:如果验证012,,a a a 不能成等差数列,不扣分]【说明】本题主要考查数列的定义、通项求法;考查反证法;考查递推思想;考查推理论证能力;考查阅读理解能力、建模能力、应用数学解决问题能力.本题还可以设计:如果班上有5名小朋友,每个小朋友都分到糖果,求0a 的最小值.19.解:(1)设椭圆的标准方程为()012222>>=+b a by a x .由题意得23,2==e a .……2分3=∴c , 1b =, ……2分 ∴椭圆的标准方程为1422=+y x .……4分 (2)证明:设点),(),,(2211y x Q y x P将m x y +=21带入椭圆,化简得:0)1(2222=-++m mx x ○1 ∴212122,2(1)x x m x x m +=-=-,……6分 ∴222121212()24x x x x x x +=+-=, ∴P ,Q 两点的横坐标的平方和为定值4.……7分(3)(法一)设圆的一般方程为:220x y Dx Ey F ++++=,则圆心为(,22D E --),PQ 中点M (2,m m -), PQ 的垂直平分线的方程为:m x y 232--=, ……8分圆心(2,2E D --)满足m x y 232--=,所以322E D m -=-○2,……9分 圆过定点(2,0),所以420D F++=○3,……10分 圆过1122(,),(,)P x y Q x y , 则2211112222220,0,x y Dx Ey F x y Dx Ey F ++++=++++=⎧⎨⎩ 两式相加得: 22221212121220,x x y y Dx Dx Ey Ey F ++++++++=222212121212(1)(1)()()2044x x x x D x x E y y F ++-+-+++++=,……11分12y y m += , 5220m D m E F -++=∴○4.……12分因为动直线12y x m =+与椭圆C 交与P ,Q (均不与A 点重合)所以1-≠m ,由○2○3○4解得:3(1)3335,,,42222m D E m F m -==+=-- ……13分代入圆的方程为:223(1)3335()042222m x y x m y m -++++--=, 整理得:22335333()()0422422x y x y m x y +-+-++-=,……14分所以:223350,4223330,422x y x y x y ⎧+-+-=⎪⎪⎨⎪+-=⎪⎩……15分 解得:0,1,x y =⎧⎨=⎩或2,0x y =⎧⎨=⎩(舍).所以圆过定点(0,1).……16分(法二) 设圆的一般方程为:220x y Dx Ey F ++++=,将m x y +=21代入的圆的方程: 024522=+++⎪⎭⎫⎝⎛+++F mE m x E D m x ○5.……8分 方程○1与方程○5为同解方程.22122(1)542E m mE Fm D m m ++-+=+=, ……11分 圆过定点(2,0),所以024=++F D , ……12分因为动直线m x y +=21与椭圆C 交与P ,Q (均不与A 点重合)所以1-≠m . 解得: 3(1)3335,,42222m D E m F m -==+=--,……13分 (以下相同) 【说明】本题考查圆锥曲线的基本量间关系、直线与圆锥曲线的位置关系;考查定点定值问题;考查运算求解能力和推理论证能力.20.解:(1)定义域∈x R ,()()()()()22222221211212+-+-=+---+-='x xxx x xx x x x x x f ,……1分()200<<⇒>'x x f ,()200><⇒<'x x x f 或.……2分函数()f x 的单调增区间为()2,0,单调减区间为()()∞+∞-,和20, .……3分 (法一)()00=f ,4(2)3f =,当x →∞时, ()211111f x x x =→⎛⎫-+ ⎪⎝⎭,……4分(,0]x ∈-∞时,()f x 为减函数,()[0,1)f x ∈;当[0,)x ∈+∞时, 4()[0,]3f x ∈;函数()f x 的值域为⎥⎦⎤⎢⎣⎡34,0.……5分(法二)当0=x 时,()00=f ,当0≠x 时,()22114113311()124f x x x x ==≤⎛⎫-+-+ ⎪⎝⎭,且()0f x >,4(2)3f =,∴函数()f x 的值域为⎥⎦⎤⎢⎣⎡34,0.……5分 (法三)判别式法(略)(2)设{}{}(),(())A x f x x B x f f x x ====,设0x A ∈,则000(())()f f x f x x ==,则0x B ∈,A B ∴⊆.……6分当0x ≥时, 2222(1)011()1x x x x x x x x f x x -≥⇔≤⇔≤⇔-+-+≤ 恒成立. 当且仅当0,1x =时,().f x x =……7分 令()t f x =,当且仅当1x =时,() 1.t f x ==当0x <时,由(1)(())()0f f x f t =>, ∴当0x <时,(())f f x x =无解……8分 当01x <≠时, (())()()f f x f t t f x x =<=< ,∴当01x <≠时,(())f f x x =在无解.……9分综上,除0,1x =外,方程(())f f x x =无解, .A B ∴=∴{}{}()(())x f x x x f f x x ===.……10分(3) ○1显然22122131()24n n n n n na a a a a a +==-+-+,又112a =,0n a ∴>,1211111211n n n n n nna a a a a a a +∴==≤=-+-+-,……11分所以,1.n n a a +≤ 若n n a a =+1,则1=n a 矛盾.所以 n n a a <+1.……12分○2(法一)21222111111111111,1,1,1n n n n n n n n n n a a a a a a a a a a -------=∴=-+∴-=-+-+ 211111111111,11111111(1)1nn n n n n n a a a a a a a ------∴===---+-- 1111(2),1111n n na n a a --∴=-≥--……14分11121111121111()1,111111111n n n n i i i i i n S a a a a a a a +=++-=+-+=-=-=-∴-----=∑∑……15分 1102n n a a +<<<111 1.1n n a S a ++=-<-∴……16分(法二)2121122111111111111n n n n n n n n a a a a a a a a -------==<-+-+-+ ……13分11111(1)n n a a --=-1111111n n a a --=--1222111n n n a a a ---=-+-+……14分12233111n n n n a a a a ----=--+-+1211111n n a a a a --==----+- ……15分1211n n a a a --=---- , n S ∴=121n a a a +++< .……16分【说明】本题以高等数学中不动点、函数迭代等理论为背景,考查函数的图象与性质、导数的运算与应用;考查函数思想;考查推理论证能力、运算能力. 其中第2问证法较多. 本题可以进一步设计证明11112n n n a a ++≤-. 如令1n nb a =,可证明对任意正整数,m n 有,m n b b 互素.理 科 附 加 题 答 案21.【选做题】A .证明:∵AE =AC ,∠CDE =∠AOC ,……2分又∠CDE =∠P +∠PFD ,∠AOC =∠P +∠OCP ,……6分从而∠PFD =∠OCP .……7分 在△PDF 与△POC 中, ∠P =∠P ,∠PFD =∠OCP , 故△PDF ∽△POC .……10分B.解:设00(,)P x y 为曲线1xy=上的任意一点,在矩阵A 变换下得到另一点00(,)P x y ''', 则有00x x y y'⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥'⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦00 ,……4分 即000000),),x x y y y x ⎧'+⎪⎪⎨⎪'-⎪⎩ ……6分 所以000000),),x x y y x y ⎧''=-⎪⎪⎨⎪''=+⎪⎩……8分 又因为点P 在曲线1xy =上,所以001x y =, 故有22002x y ''-= 即所得曲线方程222x y -=.…… 10分C . 解:将极坐标方程转化成直角坐标方程:3cos ρθ=即:223x y x +=,即2239()24x y -+=;……4分22,14,x t y t =+⎧⎨=+⎩ 即:23x y -= ,…… 6分 0d ==,…… 8分即直线经过圆心,所以直线截得的弦长为3.…… 10分D. 解:(1)由题设知:1250x x ++--≥, 如图,在同一坐标系中作出函数12y x x =++- 和5y =的图象(如图所示),知定义域为(][),23,-∞-+∞ .……5分(2)由题设知,当x R ∈时,恒有120x x a ++-+≥,即12x x a ++-≥- 由(1)123x x ++-≥,∴ 3,3a a -≤∴≥-.……10分 [必做题]22.解:设直线方程:m x y +=,()()()y x M y x B y x A ,,,,,2211将m x y +=代入22y x =,得()02222=+-+m x m x ,……2分 所以()22122122240,22,,m m x x m x x m ⎧∆=-->⎪⎪+=-⎨⎪=⎪⎩……6分∴21<m ,1,211221=+=>-=+=m x y m x x x ,……9分 线段AB 中点M 的轨迹方程为:⎪⎭⎫ ⎝⎛>=211x y .……10分23.解:(1) 函数()ln(2)f x x ax =-+在区间(0,1)上是增函数.∴()021≥+--='a xx f 在区间(0,1)上恒成立,……2分 x a -≥∴21,又()xx g -=21在区间(0,1)上是增函数 ()11=≥∴g a 即实数a 的取值范围为1≥a .……3分(2)先用数学归纳法证明10<<n a . 当1=n 时,1(0,1)a ∈成立, ……4分假设k n =时,10<<k a 成立,……5分当1+=k n 时,由(1)知1=a 时,函数()()x x x f +-=2ln 在区间(0,1)上是增函数∴()()k k k k a a a f a +-==+2ln 1 ∴()()()1102ln 0=<<=<f a f f k ,……7分即101<<+k a 成立, ∴当*∈N n 时,10<<n a 成立.……8分 下证1+<n n a a . ()101,ln 2ln10.n n n n a a a a +<<∴-=->= ……9分1+<∴n n a a . 综上101<<<+n n a a .……10分。
江苏省镇江市2013届高三高考适应性测试数学卷7一、填空题(每题5分,共70分)1、若关于x 的不等式2230x x a -+<的解集为(,1)m ,则实数m =2、若将复数()()i i -+2112表示为(,,p qi p q R i +∈是虚数单位)的形式,则p q += .3、已知命题P :“R x ∈∀,0322≥-+x x ”,请写出命题P 的否定: 4、从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图)。
由图中数据可知a = 。
若要从身高在[ 120 , 130),[130 ,140) , [140 , 150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为 。
5、设向量(cos ,sin )a αα=,(cos ,sin )b ββ=,其中πβα<<<0,若|2||2|a b a b +=-,则βα-= .6、圆2244100x y x y +---=上的点到直线140x y +-=的最大距离与最小距离之差是_____________.7、已知等比数列{}n a 满足0,1,2,n a n >=,且25252(3)nn a a n -⋅=≥,则当1n ≥时,2123221l o g l o g l o g n a a a -+++=______8、已知F 1、F 2是椭圆2222)10(a y a x -+=1(5<a <10)的两个焦点,B 是短轴的一个端点,则 △F 1BF 2的面积的最大值是9、α、β是两个不同的平面,m 、n 是平面α及β之外的两条不同直线,给出四个论断:①m ⊥n②α⊥β③n ⊥β④m ⊥α以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个..命题: _____. 10、将正偶数集合,6,4,2{…}从小到大按第n 组有n2个偶数进行分组如下: 第一组 第二组 第三组 …………}4,2{ }12,10,8,6{ }28,26,24,22,20,18,16,14{ …………则2010位于第_______组。
江苏省2013届高三二模适应性考试试题一、填空题(本题共14小题,每小题5分,共计70分)1.已知复数2012201320132012iz i+=-的虚部为 .2.已知集合211{|},{|340,}3A xB x x x x Z x =≤=--≤∈,则A B = .3.从甲、乙、丙、丁四人中任选两名代表,甲被选中的概率为 .4.根据图中的伪代码,输出的结果I 为 .5.若12320122013,,,,,x x x x x 的方差为3,则12201220133(2),3(2),,3(2),3(2)x x x x ---- 的方差为 .6.一个底面边长为2cm ,高为3cm 的正三棱锥,其顶点位于球心,底面三个顶点位于球面上,则该球的体积 为 3cm . 7.已知1,0()1,0x f x x ≥⎧=⎨-<⎩,则不等式(2)(2)5x x f x +++≤的解集是 .8.已知两点(3,2)A 和(1,4)B -到直线:30l mx y ++=的距离相等,则实数m 的值为 . 9.已知动圆M 的圆心在抛物线2:2012x y Γ=上,且与直线503y =-相切,则动圆M 过定点 . 10.已知,αβ为锐角,且满足sin sin sin cos cos sin cos cos αβαβαβαβ=++,则cos()αβ+= . 11.在闭区间[1,1]-上任取两个实数,则它们的和不大于1的概率是 . 12.已知,(0,1]x y ∈,的最大值为 .13.任取三个互不相等的正整数,,a b c ,若100a b c ++<,则由这三个数构成的不同的等差数列共有 个. 14.如果对任意一个三角形,只要它的三边长,,a b c 都在函数()f x 的定义域内,就有(),(),()f a f b f c 也是某个三角形的三边长,则称()f x 为“保三角形函数”,若函数()ln ()h x x x M =≥是保三角形函数,则M 的最小值为 .二、解答题(本题共6小题,共计90分)15.在ABC ∆中,角,,A B C 所对的边长分别为,,a b c ,1sin 5ac B AB AC bc +⋅= .(1)求tan 2A的值;(2)若a =求ABC ∆面积的最大值.16.如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,//AB CD ,AD DC ⊥,,E F 分别为,BC PA 的中点. (1)求证:AD PC ⊥;(2)求证://EF 平面PCD .17.某个公园有个池塘,其形状为直角ABC ∆,90C ∠= ,200AB =米,100BC =米.(1)现在准备养一批供游客观赏的鱼,分别在,,AB BC CA 上取点,,D E F ,如图(1),使得//,EF AB EF ED ⊥, 游客在DEF ∆内喂食,求DEF ∆面积S 的最大值;(2)现在准备新建造一个荷塘,分别在,,AB BC CA 上取点,,D E F ,如图(2),建造DEF ∆连廊(不考虑宽度)供游客休憩,且使DEF ∆为正三角形,求DEF ∆边长的最小值.18.椭圆22122:1(0)x y a b a b Γ+=>>的左右焦点分别为12,F F ,左右顶点分别为,A B ,离心率为23,且 225AF F B ⋅=.(1)求椭圆Γ的方程;(2)点00(,)M x y (002,0x y ≠>)是圆2222:x y a Γ+=上的任意一点,连结AM ,交椭圆1Γ于P ,记直线2,MF PB 的斜率分别为12,k k ,求12k k 的取值范围.19.已知函数32()23(1)6()f x x a x ax a R =-++∈(1)若函数()f x 在(,)-∞+∞上单调递增,求实数a 的取值集合; (2)当[1,3]x ∈时,()f x 的最小值为4,求实数a 的值.20.已知各项均为正数的数列{}n a 的前n 项和为n S ,若11a =,且221(1)(1)()n m n m S S S a a +=++--,其中m ,n 为任意正整数.(1)求23,a a 的值;(2)求数列{}n a 的通项公式;(3)数列{}n b 满足3(1)nnnb a -=,且,,(110,,,*)x y z b b b x y z x y z N ≤<<≤∈能构成等差数列,求x y z ++的取值集合.江苏省2013届高三二模适应性考试试题(理科附加)21. (选做题)本题包括A 、B 、C 、D 四小题,请选定其中两题,并在..........答题卡...相应的答题区域内作答............若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A. 选修4-1:几何证明选讲如图,AB 是⊙O 的直径,C 是⊙O 外一点,且AC AB =,BC 交⊙O 于点D .已知BC =4,AD =6,AC 交⊙O 于点E ,求四边形ABDE 的周长.变换1T 是逆时针旋转2π的旋转变换,对应的变换矩阵是1M ;变换2T 对应用的变换矩阵是21101M ⎡⎤=⎢⎥⎣⎦。
江苏省镇江市2013届高三高考适应性测试数学卷8一、填空题:本大题共14小题,每小题5分,共70分. 1. 复数2+i i在复平面上对应的点在第 象限.2. 某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20 种,从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是 . 3. 已知集合{|5}A x x =>,集合{|}B x x a =>,若命题 “x A ∈”是命题“x B ∈”的充分不必要条件,则实 数a 的取值范围是 .4. 如图,直三棱柱ABC -A 1B 1C 1中,AB =1,BC =2,AC =5,AA 1=3,M 为线段BB 1上的一动点,则当AM +MC 1最小时,△AMC 1的面积为 .(第4题).5. 集合2{3,log },{,},A a B a b ==若{2},AB =则AB = .6. 阅读如图所示的程序框,若输入的n 是100,则输出的变量S 的值是 . 7. 向量(cos10,sin10),(cos70,sin70)==a b ,2-a b = . 8. 方程lg(2)1x x +=有 个不同的实数根.9. 设等差数列{}n a 的前n 项和为n S ,若1≤5a ≤4,2≤6a ≤3,则6S 的取值范围是 .10.过双曲线22221(0,0)x y a b a b-=>>的左焦点(,0)(0)F c c ->,作圆:2224a x y +=的切线,切点为E ,直线FE 交双曲线右支于点P ,若1()2OE OF OP =+,则双曲线的离心率为 .11.若函数()2ln 2f x mx x x =+-在定义域内是增函数,则实数m 的取值范围是 . 12.如果圆22()()4x a y a -+-=上总存在两个点到原点的距离为1,则实数a 的取值范围是 . 13.已知实数,x y满足x y ,则x y +的最大值为 .A CB 14.当n 为正整数时,函数()N n 表示n 的最大奇因数,如(3)3,(10)5,N N ==⋅⋅⋅, 设(1)(2)(3)(4)...(21)(2)n n n S N N N N N N =+++++-+,则n S = . 二、解答题:本大题共六小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本题满分14分)在锐角ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c .已知3cos 24C =-. (1)求sin C ;(2)当2c a =,且b =a . 16.(本题满分14分)如图, ABCD 是边长为3的正方形,DE ⊥平面ABCD ,DE AF //,AF DE 3=,BE 与平面ABCD 所成角为060.(1)求证:AC ⊥平面BDE ;(2)设点M 是线段BD 上一个动点,试确定点M 的 位置,使得//AM 平面BEF ,并证明你的结论.17.(本题满分14分)已知椭圆的中心为坐标原点,短轴长为2,一条准线方程为l :2x =. ⑴ 求椭圆的标准方程;⑵ 设O 为坐标原点,F 是椭圆的右焦点,点M 是直线l 上的动点,过点F 作OM 的垂线与以OM 为直径的圆交于点N ,求证:线段ON 的长为定值.18.(本题满分16分)如图,直角三角形ABC 中,∠B =90,AB =1,BC M ,N 分别在边AB 和AC 上(M 点和B 点不重合),将△AMN 沿MN 翻折,△AMN 变为△A 'MN ,使顶点A '落 在边BC 上(A '点和B 点不重合).设∠AMN =θ.(1) 用θ表示线段AM 的长度,并写出θ的取值范围; (2) 求线段A N '长度的最小值.19.(本题满分16分)已知k R ∈,函数()(01,01)x x f x m k n m n =+⋅<≠<≠.(1) 如果实数,m n 满足1,1m mn >=,函数()f x 是否具有奇偶性?如果有,求出相应的kA B CD FE值,如果没有,说明为什么?(2) 如果10,m n >>>判断函数()f x 的单调性; (3) 如果2m =,12n =,且0k ≠,求函数()y f x =的对称轴或对称中心. 20.(本题满分16分)已知各项均不为零的数列{a n }的前n 项和为S n ,且满足a 1=c ,2S n =a n a n +1+r .(1)若r =-6,数列{a n }能否成为等差数列?若能,求c 满足的条件;若不能,请说明理由.(2)设32111234212n n n n a a a P a a a a a a --=+++---,2242345221n n n n a a a Q a a a a a a +=+++---, 若r >c >4,求证:对于一切n ∈N *,不等式2n n n P Q n n -<-<+恒成立.附加题部分21. (选做题)本大题包括A ,B ,C ,D 共4小题,请从这4题中选做2小题. 每小题10分,共20分.请在答题卡上准确填涂题目标记. 解答时应写出文字说明、证明过程或演算步骤.B .选修4—2 矩阵与变换 已知矩阵M 221a ⎡⎤=⎢⎥⎣⎦,其中R a ∈,若点(1,2)P -在矩阵M 的变换下得到点(4,0)P '-, (1)求实数a 的值;(2)求矩阵M 的特征值及其对应的特征向量.C .选修4—4 参数方程与极坐标在平面直角坐标系xOy 中,动圆2228cos 6sin 7cos 80x y x y θθθ+--++=(q ÎR )的 圆心为00(,)P x y ,求002x y -的取值范围.22. 必做题, 本小题10分.解答时应写出文字说明、证明过程或演算步骤.已知抛物线24y x =的焦点为F ,直线l 过点(4,0)M . (1)若点F 到直线l l 的斜率;(4分)(2)设,A B 为抛物线上两点,且AB 不与x 轴垂直,若线段AB 的垂直平分线恰过点M ,求证:线段AB 中点的横坐标为定值.(6分)23.必做题, 本小题10分.解答时应写出文字说明、证明过程或演算步骤.已知n n x x f )1()(+=, (1)若20112011012011()f x a a x a x =+++,求2011200931a a a a ++++ 的值;(3分) (2)若)(3)(2)()(876x f x f x f x g ++=,求)(x g 中含6x 项的系数;(3分) (3)证明:1121(1)1232m m mm m m m m m n m n m n n m C C C C C ++++-+++⎡⎤++++=⎢⎥+⎣⎦.(4分)参考答案必做题部分1. 四2. 63.5a <8. 2 9.[]12,42-10.212m ≥12.(⋃ 13. 4 14. 423n +一、填空题:本大题共14小题,每小题5分,共70分. 1. 复数2+i 在复平面上对应的点在第 象限.2. 某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20 种,从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是 . 3. 已知集合{|5}A x x =>,集合{|}B x x a =>,若命题“x A ∈”是命题“x B ∈”的充分不必要条件,则实数a 的取值范围是 . 4. 如图,直三棱柱ABC -A 1B 1C 1中,AB =1,BC =2,AC =5,AA 1=3, M 为线段BB 1上的一动点,则当AM +MC 1最小时,△AMC 1的面积 为 .(第4题).5. 集合2{3,log },{,},A a B a b ==若{2},A B =则A B = . 6. 阅读如图所示的程序框,若输入的n 是100,则输出的变量S 的值是 .7. 向量(cos10,sin10),(cos70,sin70)==a b ,2-a b = . 8. 方程lg(2)1x x +=有 个不同的实数根.9. 设等差数列{}n a 的前n 项和为n S ,若1≤5a ≤4,2≤6a ≤3,则6S 的取值范围是 .10.过双曲线22221(0,0)x y a b a b-=>>的左焦点(,0)(0)F c c ->,作圆:2224a x y +=的切线,切点为E ,直线FE 交双曲线右支于点P ,若1()2OE OF OP =+,则双曲线的离心率为 . 11.若函数()2l n 2f x m x x x =+-在定义域内是增函数,则实数m 的取值范围是 .12.如果圆22()()4x a y a -+-=上总存在两个点到原点的距离为1,则实数a 的取值范围是 .13.已知实数,x y满足x y ,则x y +的最大值为 . 14.当n 为正整数时,函数()N n 表示n 的最大奇因数,如(3)3,(10)5,N N ==⋅⋅⋅,设(1)(2)(3)(4)...(21)(2)n n n S N N N N N N =+++++-+,则n S = .二、解答题:本大题共六小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本题满分14分)在锐角ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c .已知3cos 24C =-. (1)求sin C ;(2)当2c a =,且b =a . 解:(1)由已知可得2312sin 4C -=-.所以27sin 8C =. ……………… 2分因为在ABC ∆中,sin 0C >,所以sin 4C =. ………………………………4分(2)因为2c a =,所以1sin sin 2A C ==. ………………………………6分 因为ABC ∆是锐角三角形,所以cos C =,cos A =. ………………8分所以s B A=+sA=+8=8=分 由正弦定理可得:sin aA=,所以a =. …………………………………………14分说明:用余弦定理也同样给分. 16.(本题满分14分)如图, ABCD 是边长为3的正方形,DE ⊥平面ABCD ,DE AF //,AF DE 3=.(1)求证:AC ⊥平面BDE ;A BCDFE(2)设点M 是线段BD 上一个动点,试确定点M 的位置,使得//AM 平面BEF ,并证明你的结论.16.(1)证明:因为DE ⊥平面ABCD ,所以AC DE ⊥. ……………………2分 因为ABCD 是正方形,所以BD AC ⊥,因为D E BD D ⋂=………………4分 从而AC ⊥平面BDE . ……………………6分(2)当M 是BD 的一个三等分点,即3BM =BD 时,AM ∥平面BEF . …………7分 取BE 上的三等分点N ,使3BN =BE ,连结MN ,NF ,则DE ∥MN ,且DE =3MN , 因为AF ∥DE ,且DE =3AF ,所以AF ∥MN ,且AF =MN ,故四边形AMNF 是平行四边形. ……………………………………10分 所以AM ∥FN ,因为AM ⊄平面BEF ,FN ⊂平面BEF , …………………………………………12分 所以AM ∥平面BEF . …………………………………………14分 17.(本题满分14分)已知椭圆的中心为坐标原点,短轴长为2,一条准线方程为l :2x =. ⑴ 求椭圆的标准方程;⑵ 设O 为坐标原点,F 是椭圆的右焦点,点M 是直线l 上的动点,过点F 作OM 的垂线与以OM 为直径的圆交于点N ,求证:线段ON 的长为定值.解:⑴∵椭圆C 的短轴长为2,椭圆C 的一条准线为l :2x =,∴不妨设椭圆C 的方程为2221x y a+=.(2分)∴2212a c c c +==,( 4分)即1c =.(5分)∴椭圆C 的方程为2212x y +=.(6分) ⑵ F (1,0),右准线为l :2x =, 设00(,)N x y ,则直线FN 的斜率为001FN y k x =-,直线ON 的斜率为00ON yk x =,(8分)∵FN ⊥OM ,∴直线OM 的斜率为001OM x k y -=-,(9分)∴直线OM 的方程为:001x y x y -=-,点M 的坐标为002(1)(2,)x M y --.(11分) ∴直线MN 的斜率为00002(1)2MN x y y k x -+=-.(12分)∵MN ⊥ON ,∴1MN ON k k ⋅=-, ∴0000002(1)12x y y yx x -+⋅=--, ∴200002(1)(2)0y x x x +-+-=,即22002x y +=.(13分)∴ON =(14分)说明:若学生用平面几何知识(圆幂定理或相似形均可)也得分,设垂足为P ,准线l 与x 轴交于Q ,则有2ON OP OM =g ,又2OP OM OF OQ ==g g,所以ON = 18.(本题满分16分)如图,直角三角形ABC 中,∠B =90,AB =1,BCM ,N 分别在边AB 和AC 上(M 点和B 点不重合),将△AMN 沿MN 翻折,△AMN 变为△A 'MN ,使顶点A '落在边BCC上(A '点和B 点不重合).设∠AMN =θ.(1)用θ表示线段AM 的长度,并写出θ的取值范围;(2) 求线段A N '长度的最小值. 解:(1)设MA MA x '==,则1MB x =-.(2分)在Rt △MB A '中,1cos(1802)xx--θ=, (4分) ∴2111cos22sin MA x ===-θθ. (5分) ∵点M 在线段AB 上,M 点和B 点不重合,A '点和B 点不重合,∴4590<θ<.(7分)(2)在△AMN 中,∠ANM =120θ︒-,(8分) sin sin(120)AN MA=θ-θ,(9分) 21sin 2sin sin(120)AN θ⋅θ=-θ=12sin sin(120)θ-θ.(10分) 令12sin sin(120)2sin (sin )2t =θ-θ=θθ+θ=2sin cos θθθ =1112cos 2sin(230)222θ-θ=+θ-.(13分)∵4590<θ<, ∴60230150<θ-<. (14分)当且仅当23090θ-=,60θ=时,t 有最大值32,(15分) ∴60θ=时,A N '有最小值23.(16分) 19.(本题满分16分)已知k R ∈,函数()(01,01)x x f x m k n m n =+⋅<≠<≠.(1) 如果实数,m n 满足1,1m mn >=,函数()f x 是否具有奇偶性?如果有,求出相应的k 值;如果没有,说明为什么?(2) 如果10,m n >>>判断函数()f x 的单调性;(3) 如果2m =,12n =,且0k ≠,求函数()y f x =的对称轴或对称中心.解:(1)如果()f x 为偶函数,则()(),f x f x -=x x x x m k n m k n --+⋅=+⋅恒成立,(1分)即:,x x x x n k m m k n +⋅=+⋅()()0,x x x x n m k m n -+-= ()(1)0x x n m k --=(2分) 由0x x n m -=不恒成立,得 1.k =(3分)如果()f x 为奇函数,则()(),f x f x -=-x x x x m k n m k n --+⋅=--⋅恒成立,(4分) 即:,x x x x n k m m k n +⋅=--⋅()()0,x x x x n m k m n +++=(5分)()(1)0,x x n m k ++=由0x x n m +≠恒成立,得 1.k =-(6分)(2)10,m n >>>1mn>, ∴ 当0k ≤时,显然()x x f x m k n =+⋅在R 上为增函数;(8分)当0k >时,()ln ln [()ln ln )]0x x x x mf x m m kn n m k n n n'=+=+=,由0,x n >得()ln ln 0,x m m k n n +=得ln (log ,ln x m m nk k n n m =-=-得log (log )m m nx k n =-.(9分)∴当(,log (log )]m m nx k n ∈-∞-时, ()0f x '<,()f x 为减函数; (10分)当[log (log ),)m m nx k n ∈-+∞时, ()0f x '>,()f x 为增函数. (11分)(3) 当12,2m n ==时,()22,x x f x k -=+⋅ 如果0,k <22log ()log ()()222()222222k k x x x x x x x x f x k k ------=+⋅=--⋅=-⋅=-,(13分)则2(log ())(),f k x f x --=-∴函数()y f x =有对称中心21(log (),0).2k -(14分)如果0,k >22log log ()2222222,k k x x x x x x f x k ---=+⋅=+⋅=+(15分)则2(log )(),f k x f x -= ∴函数()y f x =有对称轴21log 2x k =.(16分)20.(本题满分16分)已知各项均不为零的数列{a n }的前n 项和为S n ,且满足a 1=c ,2S n =a n a n +1+r .(1)若r =-6,数列{a n }能否成为等差数列?若能,求c 满足的条件;若不能,请说明理由.(2)设32111234212n n n n a a a P a a a a a a --=+++---,2242345221n n n n a a a Q a a a a a a +=+++---, 若r >c >4,求证:对于一切n ∈N *,不等式2n n n P Q n n -<-<+恒成立.解:(1)n =1时,2a 1=a 1a 2+r ,∵a 1=c ≠0,∴2c =ca 2+r ,22ra c=-. (1分)n ≥2时,2S n =a n a n +1+r ,① 2S n -1=a n -1a n +r ,②①-②,得2a n =a n (a n +1-a n -1).∵a n ≠0,∴a n +1-a n -1=2. ( 3分) 则a 1,a 3,a 5,…,a 2n -1,… 成公差为2的等差数列,a 2n -1=a 1+2(n -1).a 2,a 4,a 6,…,a 2n ,… 成公差为2的等差数列, a 2n =a 2+2(n -1).要使{a n }为等差数列,当且仅当a 2-a 1=1.即21r c c--=.r =c -c 2. ( 4分)∵r =-6,∴c 2-c -6=0,c =-2或3. ∵当c =-2,30a =,不合题意,舍去.∴当且仅当3c =时,数列{}n a 为等差数列 (5分)(2)212n n a a --=[a 1+2(n -1)]-[a 2+2(n -1)]=a 1-a 2=rc c +-2.221n n a a +-=[a 2+2(n -1)]-(a 1+2n )=a 2-a 1-2=-(rc c+). (8分)∴n P 11(1)1[2](1)222n n na n n c r r c c c c -=+⨯=+-+-+- (9分) 21(1)1[2](1)2n n n rQ na n n r r c c c c c -=-+⨯=-+-++. (10分)11(1)(1)2n n rP Q n n c n n r r c c c c c-=+-++-+-+=2111122r c c n n r r r r c c c c c c c c ⎛⎫⎛⎫- ⎪ ⎪-+++ ⎪ ⎪ ⎪⎪+-++-+ ⎪ ⎪⎝⎭⎝⎭.(11分)∵r >c >4,∴r c c +≥4,∴2rc c +->2.∴0<111132442r r c c c c+<+=+-+<1. (13分)且1111122rc c c c r r r r c c c c c c c c---++=+-+-++-+>-1. (14分) 又∵r >c >4,∴1r c>,则0<12r c c c -<+-.01rc c c <+<+.∴12c rc c-+-<1.11c r c c +<+.∴1112c c r r c c c c -++-+-+<1.(15分) ∴对于一切n ∈N *,不等式2n n n P Q n n -<-<+恒成立.(16分) 附加题部分21. (选做题)本大题包括A ,B ,C ,D 共4小题,请从这4题中选做2小题. 每小题10分,共20分.请在答题卡上准确填涂题目标记. 解答时应写出文字说明、证明过程或演算步骤.B .选修4—2 矩阵与变换已知矩阵M 221a ⎡⎤=⎢⎥⎣⎦,其中R a ∈,若点(1,2)P -在矩阵M 的变换下得到点(4,0)P '-, (1)求实数a 的值;(2)求矩阵M 的特征值及其对应的特征向量.解:(1)由221a ⎡⎤⎢⎥⎣⎦12⎡⎤⎢⎥-⎣⎦=40-⎡⎤⎢⎥⎣⎦,(2分) ∴2243a a -=-⇒=. (3分) (2)由(1)知M 2321⎡⎤=⎢⎥⎣⎦,则矩阵M 的特征多项式为 223()(2)(1)63421f λλλλλλλ--==---=---- (5分)令0)(=λf ,得矩阵M 的特征值为1-与4. (6分)当1-=λ时, (2)3002(1)0x y x y x y λλ--=⎧⇒+=⎨-+-=⎩∴矩阵M 的属于特征值1-的一个特征向量为11⎡⎤⎢⎥-⎣⎦; (8分)当4λ=时, (2)302302(1)0x y x y x y λλ--=⎧⇒-=⎨-+-=⎩∴矩阵M 的属于特征值4的一个特征向量为32⎡⎤⎢⎥⎣⎦. (10分)C .选修4—4 参数方程与极坐标在平面直角坐标系xOy 中,动圆2228cos 6sin 7cos 80x y x y θθθ+--++=(q ÎR )的 圆心为00(,)P x y ,求002x y -的取值范围.【解】由题设得004cos , 3sin x y ì=ïïíï=ïîq q (q 为参数,Îq R ).…………………………5分于是0028cos 3sin )x y θθθϕ-=-+, 所以002x y -. ………………………10分 22. 必做题, 本小题10分.解答时应写出文字说明、证明过程或演算步骤.已知抛物线24y x =的焦点为F ,直线l 过点(4,0)M .(1)若点F 到直线ll 的斜率;(4分)(2)设,A B 为抛物线上两点,且AB 不与x 轴垂直,若线段AB 的垂直平分线恰过点M ,求证:线段AB 中点的横坐标为定值.(6分) 解:(1)由已知,4x =不合题意.设直线l 的方程为(4)y k x =-,由已知,抛物线C 的焦点坐标为(1,0), …………………1分因为点F 到直线l=, (2)分解得2k =±,所以直线l的斜率为2±…………………4分(2)设线段AB 中点的坐标为00(,)N x y ,),(),,(2211y x B y x A ,因为AB 不垂直于x 轴,则直线MN 的斜率为004y x -,直线AB 的斜率为04x y -, 直线AB 的方程为00004()x y y x x y --=-,…………………5分联立方程000024(),4,x y y x x y y x -⎧-=-⎪⎨⎪=⎩消去x 得2200000(1)(4)04x y y y y x x --++-=, …………………7分所以012044y y y x +=-, …………………8分因为N 为AB 中点,所以1202y y y +=,即00024y y x =-, …………………9分所以02x =.即线段AB 中点的横坐标为定值2. …………………10分 23.必做题, 本小题10分.解答时应写出文字说明、证明过程或演算步骤.已知n n x x f )1()(+=, (1)若20112011012011()f x a a x a x =+++,求2011200931a a a a ++++ 的值;(3分) (2)若)(3)(2)()(876x f x f x f x g ++=,求)(x g 中含6x 项的系数;(3分) (3)证明:1121(1)1232mmmm m m m m m n m n m n n m C C C C C ++++-+++⎡⎤++++=⎢⎥+⎣⎦.(4分) 解:(1)因为n n x x f )1()(+=,所以20112011()(1)f x x =+,又20112011012011()f x a a x a x =+++,所以20112011012011(1)2f a a a =+++= (1)20110120102011(1)0f a a a a -=-++-= (2)(1)-(2)得:201113200920112()2a a a a ++++=所以:201013200920112011(1)2a a a a f ++++== …………………3分 (2)因为)(3)(2)()(876x f x f x f x g ++=,所以678()(1)2(1)3(1)g x x x x =+++++ )(x g 中含6x 项的系数为667812399C C +⨯+= …………………6分(Ⅲ)设11()(1)2(1)(1)m m m n h x x x n x ++-=++++++ (1) 则函数()h x 中含m x 项的系数为112m m m m m m n C C nC ++-+⨯++ …………………7分 12(1)()(1)2(1)(1)m m m n x h x x x n x ++++=++++++ (2) (1)-(2)得121()(1)(1)(1)(1)(1)m m m m n m n xh x x x x x n x +++-+-=++++++++-+(1)[1(1)]()(1)1(1)m n m n x x xh x n x x ++-+-=-+-+ 2()(1)(1)(1)m m n m n x h x x x nx x ++=+-+++()h x 中含m x 项的系数,即是等式左边含2m x +项的系数,等式右边含2m x +项的系数为21()!()!(2)!(2)!(1)!(1)!m m m n m n m n n m n C nC m n m n ++++++-+=-++-+- 1(1)(2)()!(1)12(1)!(1)12m m n n n m m n m n C m m n m ++--+++++=⨯=++-+ 所以112m m m m m m n C C nC ++-+⨯++1(2m m n m n C m ++++=+ …………………10分。
江苏省镇江市2013届高三高考适应性测试数学卷10一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置上.1.已知集合{|5}A x x =>,集合{|}B x x a =>,若命题“x A ∈”是命题“x B ∈”的充分 不必要条件,则实数a 的取值范围是 ▲ . 答案: 5a <2.复数1z i =-(i 是虚数单位),则22z z -= ▲ . 答案:12i -+3.为了解某校教师使用多媒体进行教学的情况,采用简单随机抽样的方法,从该校200名授课教师中抽取20名教师,调查了他们上学期使用多媒体进行教学的次数,结果用茎叶图表示如下:据此可估计该校上学期200名教师中,使用多媒体 进行教学次数在[]15,30内的人数为 ▲ . 答案:100解析:所抽取的20人中在[]15,30内的人数10人,故可得200名教师中使用多媒体进行教学次数在[]15,30内的人数为1020020⨯=100人。
4.如图是一个算法的流程图,则最后输出的W 的值为 ▲ . 答案:14解析:本题考查算法流程图。
0,11,23,36,4s t s t s t s t ==→==→==→==10s →= 所以输出14w s t =+=。
5.已知n s 是等差数列{n a }的前n 项和,若2s ≥4,4s ≤16,则5a 的最大值是 ▲ . 答案:96.用半径为210cm ,面积为π2100cm 2的扇形铁皮制作一个无盖的圆锥形容器(衔接部分忽略不计), 则该容器盛满水时的体积是 ▲ .(第3题图)(第4题)答案:331000cm π7.若在区间[1,5]和[2,4]上分别各取一个数,记为m 和n ,则方程22221x y m n+=表示焦点在x 轴上的椭圆的概率为 ▲ .答案:2解析:本题考查线性规划和几何概型。
由题意知15,24,m n m n ≤≤⎧⎪≤≤⎨⎪>⎩画可行域如图阴影部分。