数值分析ch7-1
- 格式:ppt
- 大小:275.00 KB
- 文档页数:6
(陆君安 尚涛 谢进 谷平编著,偏微分方程的Matlab 解法,武汉大学出版社,2001,8 第1版,20元,wdp4@ ,, ISBN 7-307-03256-2/O 237)一、主要内容:.12;22;]22,21;12,11[22,4),("pdetool ",,,, .)()(,)()( .),()())((.,,,.,.,)(),()(.,)().(.,)(.,)(22221212221211121211121211100002200矢量是矩阵是和表示矩阵可以用的张量是一个秩为如下图的工具栏最右侧选项也可选择应用模型菜单中再选此子下的图形界面中选菜单项在比如对于方程组情况方程组可以求解如下方程可以求解非线性椭圆型可以依赖于时间和系数方程中在抛物型方程和双曲型是待求的特征值上的复函数是定义在其中特征值问题和初始条件为双曲型初始条件为抛物型椭圆型⨯⨯⨯⎩⎨⎧=++∇⋅∇-∇⋅∇-=++∇⋅∇-∇⋅∇-∙Ω=+∇⋅∇-∙ΩΩ=+∇⋅∇-∙Ω∈∂∂==Ω=+∇⋅∇-∂∂∙=Ω=+∇⋅∇-∂∂∙Ω=+∇⋅∇-∙f d a c c c c c System Genericn ApplicatioOptions PDEtool f u a u a u c u c f u a u a u c u c PDE in u f u u a u u c t df a c d in du au u c x t tu ut t u u in f au u c tu d t u u in f au u c tu d in f au u c λλ也可由此选择方程类型或两个方程的偏微分方程组等在命令窗口输入“PDEtool ”,得到上面的界面,选择“PDE ”,可得对话框(如下图):由对话框知,两个方程应是同一类型的。
利用命令行可以求解高阶方程组。
对于椭圆型方程,可以用自适应网格算法,还能与非线性解结合起来使用。
第七章非线性方程求根一、重点内容提要 (一)问题简介 求单变量函数方程(7.1) 的根是指求(实数或复数),使得.称为方程(7.1)的根,也称为函数的零点.若可以分解为其中m 为正整数,满足,则是方程(7.1)的根.当m=1时,称为单根;当m>1时,称为m 重根.若充分光滑,是方程(7.1)的m 重根,则有(1)()(*)'(*)...(*)0,(*)0m m f x f x f x f x -====≠ 若在[a,b]上连续且,则方程(7.1)在(a,b)内至少有一个实根,称[a,b]为方程(7.1)的有根区间.有根区间可通过函数作图法或逐次搜索法求得. (二)方程求根的几种常用方法 1.二分法设在[a,b]上连续,,则在(a,b)内有根.再设在(a,b)内仅有一个根.令,计算和.若则,结束计算;若,则令,得新的有根区间;若,则令,得新的有根区间.,.再令计算,同上法得出新的有根区间,如此反复进行,可得一有根区间套且110011*,0,1,2,...,()...()22n n n n n n a x b n b a b a b a --<<=-=-==-.故因此,可作为的近似根,且有误差估计 (7.2) 2.迭代法将方程式(7.1)等价变形为 (7.3)若要求满足则;反之亦然.称为函数的一个不动点.求方程(7.1)的根等价于求的不动点由式(7.3)产生的不动点迭代关系式(也称简单迭代法)为 (7.4)函数称为迭代函数.如果对任意,由式(7.4)产生的序列有极限 则称不动点迭代法(7.4)收敛.定理7.1(不动点存在性定理)设满足以下两个条件: 1.对任意有2.存在正常数,使对任意,都有 (7.5) 则在上存在惟一的不动点.定理7.2(不动点迭代法的全局收敛性定理)设满足定理7.1中的两个条件,则对任意,由(7.4)式得到的迭代序列收敛.到的不动点,并有误差估计式 (7.6) 和 (7.7)定理7.3(不动点迭代法的局部收敛性定理)设为的不动点,在的某个邻域连续,且,则迭代法(7.4)局部收敛.收敛阶的概念 设迭代过程(7.4)收敛于方程的根,如果迭代误差当时成产下列渐近关系式(7.8)则称该迭代过程是p 阶收敛的.特别地,p=1时称线性收敛,p>1时称超线性收敛,p=2时称平方收敛.定理7.4(收敛阶定理)对于迭代过程(7.4),如果在所求根的邻近连续,并且 (7.9)则该迭代过程在点的邻近是收敛的,并有(7.10)斯蒂芬森(Steffensen)迭代法 当不动点迭代法(7.4)只有线性收敛阶,甚至于不收敛时,可用斯蒂芬森迭代法进行加速.具体公式为 (7.11) 此法也可写成如下不动点迭代式(7.12)定理7.5(斯蒂芬森迭代收敛定理) 设为式(7.12)中的不动点,则是的不动点;设存在,,则是的不动点,则斯蒂芬森迭代法(7.11)是2阶收敛的. 3.牛顿迭代法牛顿迭代法是一种特殊的不动点迭代法,其计算公式为 其迭代函数为 (7.13)牛顿迭代法的收敛速度 当时,容易证明,,,由定理7.4知,牛顿迭代法是平方收敛的,且(7.14)重根情形的牛顿迭代法 当是的m 重根时,迭代函数在处的导数,且.所以牛顿迭代法求重根只是线性收敛.若的重数m 知道,则迭代式 (7.15)求重根二阶收敛.当m 未知时,一定是函数的单重零点,此时迭代式1()()'()'()['()]()''()0,1,2,...k k k k k k k k k k x f x f x x x x x f x f x f x k μμ+=-=--= (7.16)也是二阶收敛的.简化牛顿法 如下迭代法 称为简化牛顿法或平行弦法.牛顿下山法 为防止迭代不收敛,可采用牛顿下山法.具体方法见教材. 4.弦截法将牛顿迭代法(7.13)中的用在,处的一阶差商来代替,即可得弦截法 (7.17)定理7.6假设在其零点的邻域内具有二阶连续导数,且对任意有,又初值,,则当邻域充分小时,弦截法(7.17)将按阶收敛到.这里p 是方程的正根. 5.抛物线法弦截法可以理解为用过两点的直线方程的根近似替的根.若已知的三个近似根,,用过的抛物线方程的根近似代替的根,所得的迭代法称为抛物线法,也称密勒(Muller)法.当在的邻近有三阶连续导数,,则抛物线法局部收敛,且收敛阶为.二、知识结构图10[1,2]1x x --=≤≤--∈3-3-6k k 32三、常考题型及典型题精解例7-1 证明方程x 在上有一个实根x*,并用二分法求这个根,要求|x -x*|10.若要求|x -x*|10,需二分区间[1,2]多少次?解 设f(x)=x ,则f(1)=-1<0,f(2)=5>0,故方程f(x)=0在[1,2]上有根x*.又因f'(x)=3x -1,所以当x [1,2]时,f'(x)>0,即f (x)=0在[1,2]上有惟一实根x*.用二分法计算结果如表7-1所示.k 0 1 2 3 4 5 6 7 8 9 1 1 1.25 1.25 1.3125 1.3125 1.3125 1.3204 1.3243 1.3243 2 1.5 1.5 1.375 1.375 1.13438 1.3282 1.3282 1.3282 1.32631.5 1.25 1.375 1.3125 1.3438 1.3282 1.3204 1.3243 1.3263 1.3253+ - + - + + - - + +610x e -≤≤⨯≤≤≤≤≥∈-3-39910-6k k k+101此时x =1.3253满足|x -x*|0.9771010,可以作为x*的近2似值.1若要求|x -x*|,只需|x -x*|10即可,解得k+119.932,2即只需把[1,2]二分20次就能满足精度要求.例7-2 已知函数方程(x-2)=1,(1)确定有根区间[a,b];(2)构造不动点迭代公式使之对任意初始近似x [a,b],31|10.k x ---<k 迭代方法均收敛;(3)用所构造的公式计算根的近似值,要求|x1lim lim x x x x x e e e e →+∞→-∞∞∞∞∈解 (1)令f(x)=(x-2)-1,由于f(2)=-1<0,f(3)=-1>0,因此区间[2,3]是方程f(x)=0的一个有根区间.又因f'(x)=(x-1),f(x)=+,f(x)=-1,f'(1)=--1<0,当x>1时f(x)单增,x<1时f(x)单减,故f(x)=0在(-,+)内有且仅有一根x*,即x*[2,3].2'k k x x x x x x e e e e e e e ϕϕϕ-----∈∈≤≤≤∀∈k+100k+1(2)将(x-2)=1等价变形为x=2+,x [2,3].则(x)=2+.由于当x [2,3]时2(x)3,|(x)|=|-|<1故不动点迭代法x =2+,k=0,1,2,...,对x [2,3]均收敛.(3)取x =2.5,利用x =2+进行迭代计算,结果如表7-2所示.473cos 3120cos c k x x x ϕ--+=∈≤4k+10-30k+1k+1k 例 考虑求解方程2的迭代公式2x =4+,k=0,1,2,...3(1)试证:对任意初始近似x R,该方法收敛;(2)取x =4,求根的近似值x ,要求|x -x |10;(3)所给方法的收敛阶是多少?2解 (1)由迭代公式知,迭代函数(x)=4+3{}os ,(,).|'sin |1(,)x x x ϕϕϕ∈-∞+∞≤<-∞+∞∀∈0k 022由于(x)的值域介于(4-)与(4+)之间,且3322(x)|=|-33故根据定理7.1,7.2知,(x)在内存在惟一的不动点x*,且对x R,迭代公式得到的序列x 收敛于x*.(2) 取x =4,迭代计算结果如表7-3所示.此时已满足误差要求,即(3)由于,故根据定理7 .4知方法是线性收敛的,并且有。
第7章 常微分方程初值问题的数值解法--------学习小结一、 本章学习体会本章的主要内容是要掌握如何用数值解代替其精确解,这对于一些特殊的微分方程,特别是一些不好解其通解方程是非常有用的。
对于本章我总结如下几点:1、本章计算量相对较小,重要是其思想。
在做题过程中,要理解各种方法的原理及推导过程。
2、本章对泰勒展开法有一定要求。
无论是求方法的阶数还是推导数值解法的公式经常用到泰勒展开。
因此,我们对于泰勒级数要有很清楚的认识。
3、在求数值解法的公式推导时,经常用到第六章的插值型求积公式。
可见,在整本书中,知识往往是贯通的。
二、 本章知识梳理将初值问题离散化 数值微分法(离散变量法)数值积分法 局部截断误差Taylor 级数法 ]),(,[)()(11h t y t h t y t y R n n n n n ϕ--=++整体截断误差n n n y t y -=)(ε初值问题数值解法的一般形式:k M n k y y y t F k n n n n -==++,,1,0,0),,,,,(1 常微分方程初值问题的数值解法的分类 显式方法隐式方法一般形式 ,2,1,0),,,(1=+=+n h y t h y y n n n n ϕ局部截断误差 ),,(11h y t h y y R n n n n n ϕ--=++整体截断误差 n n n y t y -=)(ε显示单步法 局部截断误差与整体截断误差的关系若)(11++=p n h O R ,则)(1p n h O =+ε若数值方法的局部截断误差为)(1+p h O ,则称这种数值方法的阶数是p显式欧拉公式),,(1n n n n y t h y y ϕ+=+欧拉法隐式欧拉公式),(111++++=n n n n y t h y y ϕ基本思想⎩⎨⎧=≤≤='000)(),,(y t y T t t y t f y等价于10)],(,[)())(,()()(11<<+++=+=⎰++θθθh t y h t hf t y dt t y t f t y t y n n n t t n n n n ),(y x f龙格-库塔法不同点的数值解加权平均代替)](,[h t y h t f n n θθ++而使得截断误差的阶数尽可能高N 级R-K 方法的形式,2,1,0),,,(1=+=+n h y t h y y n n n n ϕ,∑==Ni i i n n k c h y t 1),,(ϕ相容性,收敛性和绝对稳定性1、相容性:设增量函数),,(h y t ϕ在区域}0,,|),,{(00h h y T t t h y t D ≤≤<∞≤≤=上连续,且对h 满足Lipschitz 条件,则单步法与微分方程相容的充要条件是单步法至少是一阶的方法2、收敛性;(1)定义:若对任意的0y 及任意的),(0T t t ∈,极限)(lim )0(t y y n tt n h n ==∞→→则称单步法是收敛的(2)单步法的收敛的充要条件:)(0∞→→n n ε(3)收敛与相容的关系:设增量函数),,(h y t ϕ在区域}0,,|),,{(00h h y T t t h y t D ≤≤<∞≤≤=上连续,且对y 满足Lipschitz 条件,则单步法与微分方程相容的充要条件是单步法是收敛的3、稳定性(描述初始值的误差对计算结果的影响)4、绝对稳定性:线性多步法的基本思想线性多步法的一般形式∑∑==--++=r i ri i n i i n i n f h y y 011βα线性多步法 Simpson 公式Admas 公式 基于数值积分方法Milne 公式线性多步法的构造基于泰勒展开的待定系数法∑∑=-=--++'--=r i ri i n i i n i n n x y h x y x y R 0111)()()(βα三、 本章思考题试用数值积分法建立常微分方程的初值问题:),()(00y x f dxdy y x y =⎪⎩⎪⎨⎧=的数值求解公式:)(211n n n n f f h y y ++=++ 解:由),(y x f dxdy =得:dx y x f dy ),(= (1) 对于(1)式。
页眉内容225-232第七章 求解偏微分方程常微分方程的求解是在高等数学里面讲过的,所以大家比较熟悉,对于偏微分方程的求解可能就有点陌生了。
事实上偏微分方程在工程上有着更广泛地应用,例如描述液体在多孔介质中的扩散,声学和电磁学中谐波的传播,热在固体中的传导等过程的微分方程都是偏微分方程。
所以求解偏微分方程在工程实际上有着非常重要的价值。
手工求解常微分方程就已经非常麻烦和复杂了,那么求解偏微分方程就更加的复杂和繁冗了。
所幸的是有MA TLAB 这个计算工具来帮我们解决这一麻烦问题,MATLAB 中有一个专门用来求解片微分方程的工具箱PDE 工具箱。
这个工具箱不但提供有丰富的命令函数,使求解偏微分方程便的简单灵活,而且该提供了一个求解偏微分方程的图形用户界面系统(GUI ),使得整个求解过程更加的人性化。
特别是对于初学者来说GUIjiang 更容易被接受,操作也更方便,所以偏微分方程的求解这一部分我们将主要介绍PDE 工具箱的GUI 系统。
7-1 偏微分方程的特点对于n 阶常微分方程我们知道它的解取决于n 个任意常数,例如一阶常微分方程的解可以表示为:c x f u +=)(,c 为任意常数。
但是对于偏微分方程来说就不是由多少个常数来确定的了,例如偏微分方程),(2y x f yx u =∂∂∂的解可表示为: )()(),(),(00y v x w d d f y x u y y xx ++=⎰⎰ηξηξ其中w(x)和v(y)为两个连续的任意可微函数。
我们看到偏微分方程的解可能是非常多的,与常微分方程的解依赖于若干任意常数相比,它的自由度要大的多,对于多维偏微分方程的解更是这样。
正是由于这个原因,一般来说偏微分方程的解很难用通式表达出来。
事实上我们常用到的是偏微分方程在某种特定条件下的解,这样靠着这些特定条件的约束我们就可以把偏微分方程的解表示出来了。
我们把这些帮助确定偏微分方程特解的条件叫做定解条件,由于自变量在多维空间中的变化,其变化的区域非常复杂,所以在区域边界上给出的定解条件也更加形式多样,我们一般称给定在区域边界上的定解条件为边界条件。
高等教育数值分析教案Ch1、引 论 §1、数值分析及其特点1、数值分析及其主要内容数值分析也称计算方法,主要研究用计算机求解数学问题的数值方法及理论,内容主要包括:(1)数值逼近—插值与拟合、多项式逼近、有理逼近等(Ch2~Ch3);(2)数值积分与微分(Ch4);(3)数值代数—求解方程(组)以及特征问题的数值方法(Ch6~Ch9);(4)常微分方程的数值解法(Ch5)。
2、数值分析的特点(1)首先要有可靠的理论分析,以确保算法在理论上的收敛性和数值稳定性;(2)其次要对计算结果进行误差估计,以确定其是否满足精度;(见例3)(3)还要考虑算法的运行效率,即算法的计算量与存储量。
例如Cooley 和Tukey1965年提出FFT ,NN N 22log 2,N=32K ,1000倍。
1、分析用Cramer 法则解一个n 阶线性方程组的计算量。
解:计算机的计算量主要取决于乘除法的次数。
用Cramer 法则解一个n 阶线性方程组需计算1n +个n 阶行列式,而用定义计算n 阶行列式需()!1n n -次乘法,故总计共需()()()()1!11!1n n n n n +-=+-。
此外,还需n 次除法。
当20n =时,计算量约为()()201!19.710n n +-=⨯次乘法。
即使用每秒百亿次乘法的计算机,也需计算3000多年才能完成。
可见,Cramer 法则仅仅是理论上的,不是面向计算机的。
§2、数值分析中的误差1、误差的类型与来源(1)模型误差;(2)观测误差;(3)截断误差(方法误差) —模型的准确解与数值方法准确解之间的误差;(4)舍入误差—实数形式的原始数据与有限字长的计算机数据之间的误差。
数值分析主要研究截断误差与舍入误差。
例2、根据Taylor 展式)(!!212x R n x x x e n nx++⋅⋅⋅+++=计算1-e (误差小于0.01)。
解:)(!5)1(!4)1(!3)1(!2)1()1(1554321x R e+-+-+-+-+-+=-12012416121-+-≈(截断误差)3667.0≈ (舍入误差)。