第3章2_流体动力学基础-伯努利方程的应用(1)
- 格式:ppt
- 大小:1.01 MB
- 文档页数:48
伯努利流体动力学-概述说明以及解释1.引言1.1 概述引言是一篇文章的开头部分,旨在为读者提供一个概述,引起读者的兴趣并引导他们进入后续内容的阅读。
本文将介绍伯努利流体动力学的相关概念和原理。
伯努利流体动力学是流体力学研究的重要领域之一。
流体动力学是研究流体运动规律和性质的学科,而伯努利原理是其中一个基本概念。
伯努利原理指出,在理想流体中,当流体在沿流线流动过程中速度增加时,压力会降低,而速度减小时,则压力增加。
这一原理可以通过数学公式来描述,即伯努利方程。
伯努利方程是伯努利原理的数学表达方式,它将流体动能、压力能和势能联系起来。
通过应用伯努利方程,可以分析流体在不同位置的速度、压力和高度等参数的关系,从而帮助解释和预测流体运动中的现象和现象背后的物理本质。
本文将探讨伯努利原理的基本概念、流体动力学的基本概念,以及阐述伯努利方程的应用。
通过深入了解伯努利流体动力学,可以对流体运动的原理和性质有更清晰的认识,并且可以为未来的研究提出新的方向和可能性。
在结论部分,我们将总结伯努利流体动力学的重要性,并展望未来的研究方向。
通过本文的研究,我们能够更好地理解和应用伯努利流体动力学的原理,为工程和科学领域的相关研究提供重要的理论基础。
总而言之,本文将以伯努利流体动力学为主题,介绍伯努利原理和伯努利方程的基本概念以及应用。
通过深入研究这一领域,我们可以更好地理解流体运动的本质和特性,为相关领域的研究和应用提供有益的借鉴和启示。
1.2文章结构1.2 文章结构本篇文章将围绕伯努利流体动力学展开讨论。
文章分为引言、正文和结论三个部分。
在引言部分,将首先对伯努利流体动力学进行概述,介绍其基本概念和重要性。
然后,阐述文章的结构和目的,以及对伯努利流体动力学的总结。
正文部分将详细介绍伯努利原理及其基本概念,以及流体动力学基本概念和伯努利方程。
通过对这些理论的深入讨论和分析,读者将能够全面了解伯努利流体动力学的原理和应用。
流体力学知识点总结流体力学知识点总结第一章绪论1液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。
2流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。
3流体力学的研究方法:理论、数值、实验。
4作用于流体上面的力(1)表面力:通过直接接触,作用于所取流体表面的力。
ΔFΔPΔTAΔAVτ法向应力pA周围流体作用的表面力切向应力作用于A上的平均压应力作用于A上的平均剪应力应力为A点压应力,即A点的压强法向应力为A点的剪应力切向应力应力的单位是帕斯卡(pa),1pa=1N/㎡,表面力具有传递性。
(2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。
(常见的质量力:重力、惯性力、非惯性力、离心力)单位为5流体的主要物理性质(1)惯性:物体保持原有运动状态的性质。
质量越大,惯性越大,运动状态越难改变。
常见的密度(在一个标准大气压下):4℃时的水20℃时的空气(2)粘性huu+duUzydyx牛顿内摩擦定律:流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。
即以应力表示τ—粘性切应力,是单位面积上的内摩擦力。
由图可知——速度梯度,剪切应变率(剪切变形速度)粘度μ是比例系数,称为动力黏度,单位“pa·s”。
动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。
运动粘度单位:m2/s同加速度的单位说明:1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。
2)液体T↑μ↓气体T↑μ↑无黏性流体无粘性流体,是指无粘性即μ=0的液体。
无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。
(3)压缩性和膨胀性压缩性:流体受压,体积缩小,密度增大,除去外力后能恢复原状的性质。
T一定,dp增大,dv减小膨胀性:流体受热,体积膨胀,密度减小,温度下降后能恢复原状的性质。
P一定,dT增大,dV增大A液体的压缩性和膨胀性液体的压缩性用压缩系数表示压缩系数:在一定的温度下,压强增加单位P,液体体积的相对减小值。
伯努利方程的原理及其应用摘要:伯努利方程是瑞士物理学家伯努利提出来的,是理想流体做稳定流动时的基本方程,是流体定常流动的动力学方程,意为流体在忽略粘性损失的流动中,流线上任意两点的压力势能、动能与位势能之和保持不变。
伯努利方程对于确定流体内部各处的压力和流速有很大意义,在水利、造船、航空等部门有着广泛的应用。
关键词:伯努利方程 发展和原理 应用1.伯努利方程的发展及其原理:伯努利方程是瑞士物理学家伯努利提出来的,是理想流体做稳定流动时的基本方程,流体定常流动的动力学方程,意为流体在忽略粘性损失的流动中,流线上任意两点的压力势能、动能与位势能之和保持不变。
对于确定流体内部各处的压力和流速有很大意义,在水利、造船、航空等部门有着广泛的应用。
伯努利方程的原理,要用到无黏性流体的运动微分方程。
无黏性流体的运动微分方程:无黏性元流的伯努利方程:实际恒定总流的伯努利方程:z 1+g p ρ1+g v 2121α=z 2+gp ρ2+g v 2222α+h w总流伯努利方程的物理意义和几何意义:Z ----总流过流断面上某点(所取计算点)单位重量流体的位能,位置高度或高度水头;gpρ----总流过流断面上某点(所取计算点)单位重量流体的压能,测压管高度或压强水头;g2v 2α----总流过流断面上单位重量流体的平均动能,平均流速高度或速度水头; hw ----总流两端面间单位重量流体平均的机械能损失。
总流伯努利方程的应用条件:(1)恒定流;(2)不可压缩流体;(3)质量力只有重力;(4)所选取的两过水断面必须是渐变流断面,但两过水断面间可以是急变流。
(5)总流的流量沿程不变。
(6)两过水断面间除了水头损失以外,总流没有能量的输入或输出。
(7)式中各项均为单位重流体的平均能(比能),对流体总重的能量方程应各项乘以ρgQ。
2.伯努利方程的应用:伯努利方程在工程中的应用极其广泛,下面介绍几个典型的例子:※文丘里管:文丘里管一般用来测量流体通过管道时的流量。