医学统计学抽样误差和t分布
- 格式:pptx
- 大小:369.58 KB
- 文档页数:17
医学统计学总结医学统计学总结1、随机现象:在同一条件下进行试验,一次试验结果不能确定,而在一定数量的重复试验之后呈现统计规律的现象。
2、同质:统计学中对研究指标影响较大的,可以控制的主要因素。
3、变异:同质基础上各观察单位某变量值的差异。
数值变量:变量值是定量的,由此而构成的资料称为数值变量资料或计量资料,其数值是连续性的,称之为连续型变量。
变量无序分类变量:所分类别或属性之间无顺序和程度上的差异分类变量:定性变量有序分类变量:有顺序和程度上的差异4总体和无限总体。
5、样本:是按随机化原则从同质总体中随机抽取的部分观察单位某变量值的集合。
样本代表性的前提:同质总体,足够的观察单位数,随机抽样。
统计学中,描述样本特征的指标称为统计量,描述总体特征的指标称为参数。
6、概率:描述随机事件发生的可能性大小的一个度量。
若P(A)=1,则称A为必然事件;若P(A)=0,则称A为不可能事件;随机事件A的概率为0<P<1.小概率事件:若随机事件A的概率P≤α,则称随机事件A为小概率事件,其统计学意义为:小概率事件在一次随机试验中认为是不可能发生的。
统计描述1、频数分布有两个重要的特征:集中趋势和离散程度。
频数分布有对称分布和偏态分布之分。
后者是指频数分布不对称,集中趋势偏向一侧,如偏向数值小的一侧为正偏态分布,如偏向数值大的一侧为负偏态分布。
2、常用的集中趋势的描述指标有:均数,几何均数,中位数等。
均数:适用于正态或近似正态的分布的数值变量资料。
样本均数用_表示,总体均数用μ几何均数:适用于等比级数资料和对数呈正态分布的资料。
注意观察值中不能有零,一组观察值中不能同时有正值和负值。
中位数:适用于偏态分布资料以及频数分布的一端或两端无确切数据的资料。
3、常用的离散程度的描述指标有:全距,四分位数间距,方差,标准差,变异系数。
全距:任何资料,一组中最大值与最小值的差。
四分位数间距:适用于偏态分布以及分布的一端或两端无确切数据资料。
1. 统计工作的步骤:统计设计、搜集资料、整理资料、分析资料。
2. 统计资料类型:定量资料、定性资料、等级资料。
3. 定量资料:也称计量资料,是对每个观察单位用定量的方法测定某项指标所获得的资料。
4. 分类资料:也称定性资料,是将观察单位按属性或类别分组后,清点各组的观察单位个数所获得的资料。
分无序分类资料和有序分类资料。
5. 变异:指示同质的个体间各种指标存在的差异。
6. 总体:是根据研究目的所确定的同质观察单位某项变量值的集合。
7. 样本:是从总体中随机抽取的部分观察单位变量值的集合。
8. 抽样误差:由于随机抽样所引起的样本统计量与总体参数之间的差异以及各样本统计量之间的差异,抽样误差不可避免。
9. 概率:是指某时间发生可能性的大小。
一般用P 表示,P 的变化在0—1之间。
10. 小概率事件:是指发生概率很小的事件。
一般将概率值定为P ≤0.05或P ≤0.01。
11. 小概率原理:是指小概率事件在一次试验中几乎不可能发生。
据此原理,在假设检验中可根据计算出的概率P 值的大小作出拒绝活不拒绝某项假设的判断。
12. 频数表的编制步骤:计算全距、确定组距、划分组段、统计频数、频率与累积频率。
13. 集中趋势(用平均数描述)常用指标:算术均数、几何均数、中位数、百分位数。
14. 平均数:用于反映一组观察值的平均水平,是描述计量资料集中趋势的指标。
15. 常用离散指标(离散趋势):极差、四分位数间距、方差、标准差(最常用)、变异系数。
16. 方差:反映一组数据中每个变量值与其均数之间的变异。
标准差:是方差的开平方,意义与方差相同。
17. 标准误:样本均数的标准差称为均数的标准误,简称标准误,用来反映均数抽样误差大小的指标。
18. 标准差和标准误的区别标准差S标准误X S 表示个体变量值的变异度大小,即原始变量值的离散程度,公式为)(12--=∑n X X S表示样本均数抽样误差的大小,即样本均数的离散程度,公式为n S S x = 计算变量值的频数分布范围,如(s x 96.1±)计算总体均数的可信区间,如(x S x 96.1±) 可对某一个变量值是否在正常值范围内作出初步判断可对总体均数的大小作出初步的判断 用于计算标准误 用于进行假设检验19. t 分布曲线的特征①t 分布曲线是单峰分布,以0为中心,左右两侧对称②曲线的中间比标准正太曲线低,两侧翘得比标准正态曲线略高③当样本含量越小即自由度v 越小,t 分布于u 分布差别越大;当v 逐渐增大时,t 分布逐渐逼近于u 分布④t 分布曲线的形状随v 的变动而变动。
第一章 绪论总体:根据研究目的确定的同质的所有观察单位某种变量值的集合。
总体包括有限总体和无限总体。
样本:从总体中随机抽取的部分观察单位,其实测值的集合。
获取样本仅仅是手段,通过样本信息来推断总体特性才是研究的目的。
资料的类型计量资料、计数资料和等级资料。
误差包括随机误差、系统误差和非系统误差。
抽样误差:由抽样造成的样本统计量和总体参数之间的差异或者是各个样本统计量之间的差异称为抽样误差。
概率:是描述随机事件发生可能性大小的一个度量。
取值范围0≤P ≤1。
小概率事件:表示在一次实验或观察中该事件发生的可能性很小,可以认为很可能不发生。
P ≤0.05或P ≤0.01。
医学统计学的步骤:设计、收集资料、整理资料和分析资料。
统计分析包括:统计描述和统计推断。
统计推断包括:参数估计和假设检验。
第二章计量资料的统计描述频数表和频数分布图的用途:(1)描述频数分布的类型,以便选择相应的统计指标和分析方法。
对称分布:集中位置在中间,左右两侧頻数基本对称。
偏态分布:正、负偏态分布正偏态集中位置偏向值小一侧,负偏态反之。
(2)描述頻数分布的特征;(3)便于发现资料中的可疑值;(4)便于进一步计算统计指标和进行统计分析。
计量资料集中趋势包括算术均数、几何均数和中位数。
算术均数:直接法(样本小):n x x ∑=;頻数表法(样本大)x =nfx ∑ 几何均数:直接法:)lg (lg 1n x G ∑-=;頻数表法)lg (lg )lg (lg 11n x f fx f G ∑∑∑--==(常用于等比资料或对数正态分布资料)中位数:直接法:n 为奇数2/)1(+=n x M ,n 为偶数2/)(12/2/++=n n x x M ;頻数表法:∑-⨯+=)%50(L M M f n f iL M 。
中位数的应用注意事项:可用于各种分布资料,不受极端值的影响,主要用于(1)偏态分布资料(2)端点无确切值的资料(3)分布不明确的资料。
统计学(Statistics):运用概率论、数理统计的原理与方法,研究数据的搜集;分析;解释;表达的科学。
总体(population):大同小异的研究对象全体。
更确切的说,总体是指根据研究目的确定的、同质的全部研究单位的观测值。
样本(sample):来自总体的部分个体,更确切的说,应该是部分个体的观察值。
样本应该具有代表性,能反映总体的特征。
利用样本信息可以对总体特征进行推断。
抽样误差(sampling error)在抽样过程中由于抽样的偶然性而出现的误差。
表现为总体参数与样本统计量的差异,以及多个样本统计量之间的差异。
可用标准误描述其大小。
标准误(Standard Error) 样本统计量的标准差,反映样本统计量的离散程度,也间接反映了抽样误差的大小。
样本均数的标准差称为均数的标准误。
均数标准误大小与标准差呈正比,与样本例数的平方根呈反比,故欲降低抽样误差,可增加样本例数区间估计(interval estimation):将样本统计量与标准误结合起来,确定一个具有较大置信度的包含总体参数的范围,该范围称为置信区间(confidence interval,CI),又称可信区间。
参考值范围描述绝大多数正常人的某项指标所在范围;正态分布法(标准差)、百分位数法,参考值范围用于判断某项指标是否正常置信区间揭示的是按一定置信度估计总体参数所在的范围。
t分布法、正态分布法(标准误)、二项分布法。
置信区间估计总体参数所在范围参数统计(parametric statistics)非参数统计(nonparametric statistics)是指在统计检验中不需要假定总体分布形式和计算参数估计量,直接对比较数据(x)的分布进行统计检验的方法。
变异(variation):对于同质的各观察单位,其某变量值之间的差异同质(homogeneity):研究对象具有的相同的状况或属性等共性。
回归系数有单位,而相关系数无单位β为回归直线的斜率(slope)参数,又称回归系数(regression coefficient)。
医学统计学知识点整理第一节统计学中基本概念一、同质与变异同质:统计研究中,给观察单位规定一些相同的因素情况。
如儿童的生长发育,规定同性别、同年龄、健康的儿童即为同质的儿童。
变异:同质的基础上个体间的差异。
“同质”是相对的,是客观事物在特定条件下的相对一致性,而“变异”则是绝对的μ.δ.πX.S.p1.2.变量:确定总体之后,研究者应对每个观察单位的某项特征进行观察或测量,这种特征能表现观察单位的变异性,称为变量。
一、数值变量资料又称为计量资料、定量资料:观测每个观察单位某项指标的大小而获得的资料。
表现为数值大小,带有度、量、衡单位。
如身高(cm)、体重(kg)、血红蛋白(g)等。
二、无序分类变量资料又称为定性资料或计数资料:将观察对象按观察对象的某种类别或属性进行分组计数,分组汇总各组观察单位后得到的资料。
分类:二分类:+ -;有效,无效;多分类:ABO血型系统特点:没有度量衡单位,多为间断性资料【例题单选】某地A、B、O、AB血型人数分布的数据资料是( )A.定量资料B.计量资料C.计数资料D.等级资料分组统计描述:是利用统计指标、统计表和统计图相结合来描述样本资料的数量特征及分布规律。
统计推断:是使用样本信息来推断总体特征。
统计推断包括区间估计和假设检验。
第四节统计表与统计图★一、统计表统计表的基本结构与要求标题:高度概括表的主要内容,时间、地点、研究内容,位于表的上方,居中摆放,左侧加表的序号。
标目:横标目和纵标目。
线条:通常采用三线表和四线表的形式。
没有竖线或斜线。
数字:表内数字一律用阿拉伯数字。
同一指标,小数位数应一致,位次对齐。
无数字用“—”表示。
暂缺用“…”表示。
“0”为确切值。
备注:位于表的下面,通常是对表内数字的注解和说明,必要时可以用“*”等标出。
一张统计表的备注不宜太多。
二、制表原则1.(7理分布。
【例题填空】描述某地十年间结核病死亡率的变化趋势宜绘制_________图。