第4讲抽样误差与t分布
- 格式:ppt
- 大小:2.67 MB
- 文档页数:44
第四章抽样理论与参数估计第一节抽样理论的基本知识分层抽样,又叫分层随机抽样,这种抽样方法是按照总体已有的某些特征,承认总体中已有的差异,按差异将总体分为几个不同的部分,每一部分称为一个层,在每一个层中实行简单随机抽样。
它充分利用了总体的已知信息,因而是一种非常适用的抽样方法,其样本代表性及推论的精确性一般优于简单随机抽样。
分层的原则是层与层之间的变异越大越好,各层内的变异要小。
试述分层抽样的原则和方法?分层抽样是按照总体上已有的某些特征,将总体分成几个不同部分,在分别在每一部分中随机抽样。
分层的总的原则是:各层内的变异要小,而层与层之间的变异越大越好。
在具体操作中,没有一成不变的标准,研究人员可根据研究需要依照多个分层标准,视具体情况而定。
⑷两阶段随机抽样两阶段随机抽样首先将总体分成M个部分,每一部分叫做一个"集团"(或"群"),第一步从M个集团中随机抽取m个"集团”作为第一阶段样本,第二步是分别从所选取的m个"集团”中抽取个体(g构成第二阶段样本。
一般而言,两阶段抽样相对于简单随机抽样,标准误要大些,但是,两阶段抽样简便易行,节省经草贼,因而它是大规模调查研究中常被使用的抽样方法。
例如,如果我们要了解全国城市初中二年级学生的身高,第一步我们可以从全国几百个城市中随机抽取几十个城市作为第一阶段的样本。
第二步,在第一阶段随机抽取出来的城市中再随机抽取初中二年级的学生。
(二)非旃抽样非概率抽样不是完全按随机原则选取样本,有方便抽样、判断抽样。
方便抽样是由调查人员自由、方便地选择被调查者的非随机选样。
判断抽样是通过某些条件过滤,然后选择某些被调查者参与调查的抽样法。
当采取非概率抽样的方法选取样本时,研究者要说明采用此种方取样的原因以及对研究结果可能造成的影响。
第二节抽样分布[统计量分布、基本随机变量函数的分布]总体:又称母全体、全域,指具有某种特征的一类事物的全体。
数理统计中的随机抽样和抽样分布——概率论知识要点概率论作为数理统计的基础,是研究随机现象及其规律的数学分支。
在数理统计中,随机抽样和抽样分布是非常重要的概念,本文将对这两个概念进行详细介绍和解释。
一、随机抽样随机抽样是指从总体中以随机的方式选择样本的过程。
在进行随机抽样时,每个个体被选中的概率应该是相等的,这样才能保证样本的代表性和可靠性。
随机抽样的方法有很多种,常用的包括简单随机抽样、分层抽样和系统抽样等。
1. 简单随机抽样简单随机抽样是最基本的抽样方法,它的特点是每个个体被选中的概率相等且相互独立。
简单随机抽样可以通过随机数表、随机数发生器等工具来实现。
在实际应用中,简单随机抽样常用于总体规模较小的情况。
2. 分层抽样分层抽样是将总体划分为若干个层次,然后从每个层次中随机选择样本。
这种抽样方法可以保证不同层次的个体在样本中的比例与总体中的比例相同,从而提高样本的代表性。
3. 系统抽样系统抽样是按照一定的规则从总体中选取样本的方法。
例如,可以按照一定的间隔从总体中选择样本,这个间隔称为抽样间隔。
系统抽样的优点是操作简便,但也存在可能引入系统误差的风险。
二、抽样分布抽样分布是指在随机抽样的基础上,通过大量重复抽样得到的统计量的分布情况。
在数理统计中,常用的抽样分布包括正态分布、t分布和F分布等。
1. 正态分布正态分布是一种重要的抽样分布,它具有对称、单峰和钟形曲线的特点。
在大样本情况下,根据中心极限定理,样本均值的分布接近于正态分布。
正态分布在数理统计中的应用非常广泛,例如用于估计总体均值和总体方差等。
2. t分布t分布是用于小样本情况下的抽样分布。
它相比于正态分布来说,具有更宽的尾部和更矮的峰值。
t分布的形状取决于自由度,自由度越大,t分布越接近于正态分布。
t分布在小样本情况下的参数估计和假设检验中经常被使用。
3. F分布F分布是用于比较两个样本方差是否显著不同的抽样分布。
F分布的形状取决于两个样本的自由度,它具有右偏和非对称的特点。