研-统计3抽样误差t分布
- 格式:pptx
- 大小:3.05 MB
- 文档页数:60
统计学中的抽样误差分布在统计学中,抽样误差是指样本统计量与总体参数之间的差异。
当我们从总体中抽取一个样本,并用样本统计量来估计总体参数时,由于抽取的样本并不是总体的全部,因此存在抽样误差。
抽样误差的分布是统计学中一个重要的概念,它描述了抽样误差的概率分布情况。
本文将介绍统计学中的抽样误差分布。
一、抽样误差的产生原因抽样误差的产生主要有以下几个原因:1. 随机抽样:在统计学中,我们通常采用随机抽样的方法来获取样本。
由于样本是从总体中随机选择的,因此样本与总体之间的差异是不可避免的。
2. 样本大小:样本大小对抽样误差有影响。
样本越大,抽样误差越小;样本越小,抽样误差越大。
3. 总体分布的形状:总体分布的形状也会对抽样误差的分布产生影响。
当总体呈正态分布时,抽样误差往往服从正态分布。
二、抽样误差的分布在统计学中,常见的抽样误差分布有以下几种:1. 正态分布:当总体分布是正态分布,并且样本大小足够大时,根据中心极限定理,样本均值的抽样误差大致服从正态分布。
这也是许多统计推断方法的基础。
2. t分布:在实际应用中,当总体分布未知且样本大小较小的情况下,我们通常使用t分布来描述样本均值的抽样误差。
3. 二项分布:在二项分布中,我们关注的是成功与失败的次数。
当样本来自二项分布总体时,样本比例的抽样误差可以用二项分布来描述。
4. 指数分布:在某些情况下,我们关注的是事件发生的时间间隔。
当事件按照指数分布发生时,我们可以使用指数分布来描述事件发生时间的抽样误差。
三、抽样误差的影响抽样误差的分布对统计推断和决策具有重要影响:1. 置信区间:在统计推断中,我们常常需要给出一个参数的置信区间。
抽样误差的分布决定了置信区间的宽度,即置信水平的精度。
2. 假设检验:在假设检验中,我们常常需要计算p值来判断统计显著性。
抽样误差的分布决定了p值的计算方式。
3. 决策风险:在决策分析中,我们常常需要权衡风险和效益。
抽样误差的分布决定了决策的可靠性和风险程度。
t分布介绍在概率论和统计学中,学生t-分布(t-distribution),可简称为t分布,用于根据小样本来估计呈正态分布且方差未知的总体的均值。
如果总体方差已知(例如在样本数量足够多时),则应该用正态分布来估计总体均值。
t分布曲线形态与n(确切地说与自由度df)大小有关。
与标准正态分布曲线相比,自由度df越小,t分布曲线愈平坦,曲线中间愈低,曲线双侧尾部翘得愈高;自由度df愈大,t分布曲线愈接近正态分布曲线,当自由度df=∞时,t分布曲线为标准正态分布曲线。
目录1历史2定义3扩展4特征5置信区间6计算历史在概率论和统计学中,学生t-分布(Student's t-distribution)经常应用在对呈正态分布的总体的均值进行估计。
它是对两个样本均值差异进行显著性测试的学生t测定的基础。
t检定改进了Z检定(en:Z-test),不论样本数量大或小皆可应用。
在样本数量大(超过120等)时,可以应用Z检定,但Z检定用在小的样本会产生很大的误差,因此样本很小的情况下得改用学生t检定。
在数据有三组以上时,因为误差无法压低,此时可以用变异数分析代替学生t检定。
当母群体的标准差是未知的但却又需要估计时,我们可以运用学生t-分布。
学生t-分布可简称为t分布。
其推导由威廉·戈塞于1908年首先发表,当时他还在都柏林的健力士酿酒厂工作。
因为不能以他本人的名义发表,所以论文使用了学生(Student)这一笔名。
之后t检验以及相关理论经由罗纳德·费雪的工作发扬光大,而正是他将此分布称为学生分布。
定义由于在实际工作中,往往σ是未知的,常用s作为σ的估计值,为了与u变换区别,称为t变换,统计量t 值的分布称为t分布。
假设X服从标准正态分布N(0,1),Y服从分布,那么的分布称为自由度为n 的t分布,记为。
分布密度函数,其中,Gam(x)为伽马函数。
扩展正态分布(normal distribution)是数理统计中的一种重要的理论分布,是许多统计方法的理论基础。