第4讲抽样误差与t分布
- 格式:pptx
- 大小:671.48 KB
- 文档页数:25
第四章抽样理论与参数估计第一节抽样理论的基本知识分层抽样,又叫分层随机抽样,这种抽样方法是按照总体已有的某些特征,承认总体中已有的差异,按差异将总体分为几个不同的部分,每一部分称为一个层,在每一个层中实行简单随机抽样。
它充分利用了总体的已知信息,因而是一种非常适用的抽样方法,其样本代表性及推论的精确性一般优于简单随机抽样。
分层的原则是层与层之间的变异越大越好,各层内的变异要小。
试述分层抽样的原则和方法?分层抽样是按照总体上已有的某些特征,将总体分成几个不同部分,在分别在每一部分中随机抽样。
分层的总的原则是:各层内的变异要小,而层与层之间的变异越大越好。
在具体操作中,没有一成不变的标准,研究人员可根据研究需要依照多个分层标准,视具体情况而定。
⑷两阶段随机抽样两阶段随机抽样首先将总体分成M个部分,每一部分叫做一个"集团"(或"群"),第一步从M个集团中随机抽取m个"集团”作为第一阶段样本,第二步是分别从所选取的m个"集团”中抽取个体(g构成第二阶段样本。
一般而言,两阶段抽样相对于简单随机抽样,标准误要大些,但是,两阶段抽样简便易行,节省经草贼,因而它是大规模调查研究中常被使用的抽样方法。
例如,如果我们要了解全国城市初中二年级学生的身高,第一步我们可以从全国几百个城市中随机抽取几十个城市作为第一阶段的样本。
第二步,在第一阶段随机抽取出来的城市中再随机抽取初中二年级的学生。
(二)非旃抽样非概率抽样不是完全按随机原则选取样本,有方便抽样、判断抽样。
方便抽样是由调查人员自由、方便地选择被调查者的非随机选样。
判断抽样是通过某些条件过滤,然后选择某些被调查者参与调查的抽样法。
当采取非概率抽样的方法选取样本时,研究者要说明采用此种方取样的原因以及对研究结果可能造成的影响。
第二节抽样分布[统计量分布、基本随机变量函数的分布]总体:又称母全体、全域,指具有某种特征的一类事物的全体。
统计推断抽样误差大小评估及控制方法一、引言统计推断是基于样本数据对总体进行推断的一种方法。
在进行统计推断时,我们常常需要评估抽样误差的大小,以确定推断的准确性和可靠性。
本文将介绍统计推断中抽样误差的概念、评估方法以及控制方法。
二、抽样误差的概念抽样误差是指样本统计量与总体参数之间的差异。
由于我们无法对整个总体进行调查,只能通过抽样得到样本数据,因此样本统计量与总体参数之间必然存在差异。
这种差异即为抽样误差,是统计推断中不可避免的一种误差。
三、抽样误差的评估方法评估抽样误差的大小对于统计推断的结果具有重要意义。
下面介绍几种常见的评估方法:1. 标准误差(Standard Error):标准误差是评估样本统计量与总体参数之间差异的一种方法。
它表示样本统计量的变异程度,标准误差越小,则样本统计量与总体参数越接近。
2. 置信区间(Confidence Interval):置信区间是估计总体参数的一种方法,它能够提供总体参数的一个范围。
置信区间的宽度反映了抽样误差的大小,置信区间越窄,则抽样误差越小。
3. 抽样分布(Sampling Distribution):抽样分布是样本统计量的分布情况。
通过研究抽样分布的形态和性质,可以评估抽样误差的大小。
常用的抽样分布包括正态分布、t分布等。
四、控制抽样误差的方法为了控制抽样误差,提高统计推断的准确性和可靠性,可以采取以下方法:1. 增加样本容量:样本容量是评估抽样误差的重要因素。
当样本容量增大时,抽样误差会减小,从而提高推断的准确性。
因此,在设计样本调查时,应该尽量增加样本容量。
2. 优化抽样方法:合理选择抽样方法可以减小抽样误差。
常见的抽样方法包括简单随机抽样、分层抽样、整群抽样等,根据具体情况选择最适合的抽样方法。
3. 控制实验条件:在实验和调查中,控制好实验条件可以减小误差的来源,从而控制抽样误差。
例如,在实验设计上做好随机分组、随机化处理等措施,可以减小实验结果的误差。