(完整版)反应堆本体结构
- 格式:ppt
- 大小:5.37 MB
- 文档页数:112
反应堆结构反应堆结构及几种典型反应堆系统反应堆是核电站中的热源,其内部装有可以进行可控链式核反应的核燃料,源源不断地释放出能量。
核反应产生的热能通过载热剂传给汽轮机作功,汽轮机带动发电机,产生的电能被输送到电网。
反应堆由堆芯、压力容器、上部堆内构件和下部堆内构件等几部分组成。
反应堆安置在反应堆厂房(也称为安全壳)的正中,它的六条进出口接管管嘴支撑在作为一次屏蔽的混凝土坑(即堆坑)内,而堆坑位于一个大约10米深的反应堆换料水池的底部。
如下图它可分为反应堆堆芯、堆内构件、反应堆压力容器和顶盖控制棒驱动机构四部分。
下面主要介绍反应堆堆心和压力容器。
1、反应堆堆芯:核反应堆的堆芯位于压力容器中心,由157个几何形状及机械结构完全相同的燃料组件构成,核反应区高3.65m,等效直径3.04m 。
燃料核裂变释放出来的核能立即转变成热能,并由冷却剂导出。
1.1、燃料组件:燃料组件骨架由8个定位格架、24根控制棒导向管、一根中子通量测量管和上、下管座焊接而成。
其功用是确保组件的刚性,承受整个组件的重量和控制棒快速下插的冲击力,并准确引导控制棒束的升降,保证组件在堆内可靠工作和装卸料时的运输安全。
如下图定位格架由锆-4合金条带制成,这些条带装配成17×17的正方形栅格。
在格架栅元中,燃料棒由其中两边的弹簧夹顶在另两边的两个刚性凸台上,其共同作用使燃料棒保持中心位置。
弹簧夹由因科镍718薄片弯成开口环制成,然后将夹子跨在条带上夹紧定位,并在上下相接面上点焊。
这样形成的两个相背的弹簧分别顶住相邻栅元的两根燃料棒,自然抵消了作用在条带上的力。
每个燃料组件带有24个控制棒导向管,由锆-4合金制成,它们为控制棒的插入和提出导向。
其下部在第一和第二格架之间直径缩小,形成缓冲段,以便当控制棒紧急下落接近底部时起缓冲作用。
在缓冲段上部有流水孔,正常运行时冷却水流入管内,在控制棒下插时水能部分从管内排出。
缓冲段下部的管径扩至正常,使底层格架可以按上层格架的相同方式与导向管相连接。
(完整版)反应堆工整理讲解第一章反应堆简介1. 反应堆概念核反应堆是利用易裂变物质使之发生可控自持链式裂变反应的一种装置。
2. 反应堆的用途生产堆:专门用于生产易裂变或聚变物质的反应堆实验堆:主要用于实验研究动力堆:用于动力或直接发电的反应堆3. 反应堆种类按慢化剂和冷却剂可分为:轻水堆、重水堆、石墨气冷堆和钠冷快堆等其中,动力堆的类型有压水堆(PWR)、沸水堆(BWR)、重水堆(HWR)、气冷堆(HTGR)、快中子增殖堆(LMFBR、GCFR) 第二章核物理基础1. 原子与原子核92种天然元素和12种人工元素;原子核由质子和中子组成(H除外),质子和中子通称为核子,核子数即称质量数2. 原子核的组成及属性(电、质量、尺寸)原子核带正电,半径为121310~10cm--,其中质子带正电,质量为1u,中子不带电,质量为1u3. 同位素及核素的表示符号同位素是指质子数相同而中子数不同的元素,其化学性质相同,在元素周期表中占同一个位置,丰度。
例P有7种同位素,但每一种P均为一种核素。
核素的表示AZX。
4. 原子核的能级状态,激发态原子核内部的能量是量子化的,即非连续,可分为基态和激发态,激发态能级不稳定,易发生跃迁释放能量5. 原子核的稳定性,衰变与衰变规律一般而言,质子数和中子数大致相等时原子核是稳定的,而质子数与中子数差别很大时则原子核不稳定。
衰变:原子核自发地放射出α和β等粒子而发生的转变,常见的有β±衰变、α衰变、γ衰变等。
对单个原子核而言,衰变是不确定的;对大量同类原子核而言,衰变是按指数规律进行的,即0e tN Nλ-=6. Alpha 、Beta 、Gamma 衰变Alpha 衰变是指衰变过程中释放出α粒子(He 核,两个中子和两个质子组成)Beta 衰变是指衰变过程中原子核释放出电子(正/负),内部一质子变为中子Gamma 衰变是原子核从较高的激发态跃迁到较低的激发态或基态,释放出γ射线7. 衰变常数、半衰期、平均寿命一个原子核在某一小段时间间隔内发生衰变的几率即为衰变常数λ,其反应的是原子核本身特性,与外界条件无关。
反应堆工作原理图反应堆是一种核能利用设施,它能够将核裂变反应转化为电能。
反应堆的工作原理图可以分为两个部分:核反应和能量转换。
一、核反应核反应是指发生在反应堆核心中的核裂变反应。
反应堆核心中的燃料是铀-235(U-235),它是一种放射性金属,能够通过裂变反应释放出能量。
当一个U-235核被中子轰击时,它就会发生裂变,产生两个小核和几个中子。
这些中子能够激发其它的U-235核,从而形成一个连锁反应。
为了控制核裂变反应的速率,反应堆会使用控制棒。
控制棒是一种由吸收中子能力强的材料制成的棒状物体,比如说银、铜和钴。
在反应堆中,控制棒被插入到核燃料棒的中间,能够减缓或停止核反应,从而控制能量的释放速率。
二、能量转换能量转换是将核裂变反应释放的能量转化为电能的过程。
这个过程主要分为三部分:冷却剂、蒸汽和涡轮机。
冷却剂是一种用于吸收和传递裂变反应产生的热能的流体。
常用的冷却剂有水和氦气。
在循环系统中,冷却剂被带到核反应堆中,与燃料接触并吸收热能,然后将其流向蒸汽机组。
在蒸汽机组中,冷却剂和水接触并产生蒸汽。
这个过程类似于一个传统的煮水壶,只不过这个壶里的水是由核反应堆产生的。
蒸汽通过管道流向涡轮机。
涡轮机的转动产生高速旋转的轴,其末端带着一个发电机。
发电机将旋转的动能转化为电能,并通过变压器将电能转移至电网。
当反应堆运行时,接入电网的家庭和企业能够使用这个电能。
总结反应堆的工作原理是基于核裂变反应和能量转换的。
核反应是在反应堆核心发生的一系列裂变反应,控制棒用于控制反应速率。
能量转换是将核反应释放的能量转化为电能的过程,包括冷却剂、蒸汽和涡轮机。
这些过程共同构成了反应堆的工作原理。
石墨反应堆结构石墨反应堆是一种利用石墨作为中子减速剂和热传导介质的核反应堆,具有很高的热稳定性和安全性。
石墨反应堆常用于核能发电和核燃料再处理等领域。
本文将介绍石墨反应堆的结构和工作原理。
一、石墨反应堆的基本结构石墨反应堆的基本结构包括反应堆芯、石墨堆芯外壳、燃料元件、石墨堆芯支撑结构和冷却剂系统等。
1. 反应堆芯反应堆芯是石墨反应堆的核心部分,负责储存和控制核燃料。
在反应堆芯内,放置有大量石墨砖块,用于减速中子和提供热传导。
石墨砖块之间的空隙用于放置燃料元件和控制棒。
2. 石墨堆芯外壳石墨堆芯外壳是用石墨制造的容器,用于保护反应堆芯,并防止核燃料泄漏。
石墨堆芯外壳具有良好的热传导性能,可以将芯内的热量有效地传导到外部。
3. 燃料元件燃料元件是放置在石墨堆芯内的核燃料装置,通常采用铀燃料或钚燃料。
石墨反应堆采用的是固体燃料,燃料元件通过放射性衰变释放出大量热能,用于产生蒸汽驱动涡轮发电机组。
4. 石墨堆芯支撑结构石墨堆芯支撑结构是用于支撑石墨砖块和燃料元件的结构。
常见的支撑结构有石墨柱和石墨板。
石墨柱通常垂直放置于堆芯中,起到支撑和导热的作用,而石墨板则水平放置,用于分隔石墨砖块和燃料元件。
5. 冷却剂系统石墨反应堆的冷却剂系统负责将热量从反应堆芯传出,防止反应堆过热。
常用的冷却剂有水、气体和液态金属等。
冷却剂通过循环流动,将热量带走,并将其转化为电能。
二、石墨反应堆的工作原理石墨反应堆利用核燃料的裂变产生的中子,与石墨中的碳原子发生弹性碰撞,使中子的速度降低,从而减速中子。
减速后的中子再次与核燃料发生裂变反应,释放出大量的热能。
在石墨反应堆中,通过控制棒的升降来调节裂变反应速率。
控制棒是由吸中子材料制成,如硼或银等。
当控制棒插入堆芯时,吸收中子,减少裂变反应;当控制棒抽出时,中子增加,裂变反应加速。
石墨反应堆的冷却剂循环系统起到将热量带走的作用。
冷却剂从反应堆芯中吸收热量,经过热交换器,将热能传递给工作介质,如水或气体。