韩伯棠管理运筹学(第三版)_第十一章_图与网络模型
- 格式:ppt
- 大小:1.31 MB
- 文档页数:90
韩棠伯管理运筹学习题答案韩棠伯管理运筹学习题答案韩棠伯是一位热爱学习的年轻人,对于管理运筹学这门课程也充满了兴趣。
每天晚上,他都会认真完成老师布置的学习题,以便更好地掌握这门学科的知识。
在这里,我们将为大家分享韩棠伯管理运筹学习题的答案。
第一题:线性规划韩棠伯在学习线性规划时,遇到了以下一道题目:某公司生产两种产品A和B,每个单位产品A的利润为10元,产品B的利润为15元。
产品A每个单位需要2个工时,产品B每个单位需要3个工时。
公司每天可用的总工时为60个。
问应该如何安排生产,才能获得最大利润?答案:设产品A的产量为x,产品B的产量为y。
根据题目中的条件,我们可以列出以下线性规划模型:目标函数:Maximize 10x + 15y约束条件:2x + 3y ≤ 60非负约束:x ≥ 0, y ≥ 0通过求解这个线性规划模型,我们可以得到最大利润的产量分配方案。
第二题:排队论在学习排队论时,韩棠伯碰到了以下一道题目:某家餐厅有一个服务台,平均每小时有30名顾客到达,服务员平均每小时能为25名顾客提供服务。
问在稳定状态下,平均顾客等待时间是多少?答案:根据排队论的基本原理,我们可以使用排队模型来解决这个问题。
根据题目中的条件,我们可以得到以下参数:顾客到达率(λ)= 30人/小时服务率(μ)= 25人/小时利用排队模型中的公式,我们可以计算出平均顾客等待时间(Wq):Wq = λ / (μ - λ)将具体数值代入公式,我们可以计算出平均顾客等待时间。
第三题:决策树在学习决策树时,韩棠伯遇到了以下一道题目:某公司要决定是否投资于一个新的项目。
如果投资成功,公司将获得300万元的利润;如果投资失败,公司将损失200万元。
根据市场分析,投资成功的概率为0.6,失败的概率为0.4。
问公司应该如何决策?答案:我们可以使用决策树来解决这个问题。
根据题目中的条件,我们可以绘制出以下的决策树:投资成功(0.6)/ \获得300万元损失200万元投资失败(0.4)/ \获得0万元损失200万元根据决策树,我们可以计算出投资的期望值,即投资成功的利润乘以成功的概率加上投资失败的利润乘以失败的概率。
第 2 章 线性规划的图解法11a.可行域为 OABC 。
b.等值线为图中虚线所示。
12c.由图可知,最优解为 B 点,最优解: x 1 = 769 。
7 2、解:15 x 2 =7, 最优目标函数值:a x 210.60.1O1有唯一解x 1 = 0.2函数值为 3.6x 2 = 0.6b 无可行解c 无界解d 无可行解e 无穷多解1 2 2 1 2f 有唯一解20 x 1 =3 8函数值为 92 33、解:a 标准形式:b 标准形式:c 标准形式:x 2 = 3max fmax f= 3x 1 + 2 x 2 + 0s 1 + 0s 2 + 0s 3 9 x 1 + 2x 2 + s 1 = 303x 1 + 2 x 2 + s 2 = 13 2 x 1 + 2x 2 + s 3 = 9 x 1 , x 2 , s 1 , s 2 , s 3 ≥= −4 x 1 − 6x 3 − 0s 1 − 0s 23x 1 − x 2 − s 1 =6x 1 + 2x 2 + s 2 = 10 7 x 1 − 6 x 2 = 4x 1 , x 2 , s 1 , s 2 ≥max f = −x ' + 2x ' − 2 x ''− 0s − 0s'''− 3x 1 + 5x 2 − 5x 2 + s 1 = 70 2 x ' − 5x ' + 5x '' = 50122' ' ''3x 1 + 2 x 2 − 2x 2 − s 2 = 30'' ''4 、解:x 1 , x 2, x 2, s 1 , s 2 ≥ 0标准形式: max z = 10 x 1 + 5x 2 + 0s 1 + 0s 23x 1 + 4 x 2 + s 1 = 9 5x 1 + 2 x 2 + s 2 = 8 x 1 , x 2 , s 1 , s 2 ≥ 0s 1 = 2, s 2 = 0标准形式: min f = 11x 1 + 8x 2 + 0s 1 + 0s 2 + 0s 310 x 1 + 2x 2 − s 1 = 203x 1 + 3x 2 − s 2 = 18 4 x 1 + 9x 2 − s 3 = 36 x 1 , x 2 , s 1 , s 2 , s 3 ≥ 0s 1 = 0, s 2 = 0, s 3 = 136 、解:b 1 ≤c 1 ≤ 3c 2 ≤ c 2 ≤ 6d x 1 = 6 x 2 = 4e x 1 ∈ [4,8]x 2 = 16 − 2x 1f 变化。
运筹学(Operational Research)复习资料第一章绪论一、名词解释1.运筹学:运筹学是应用分析、试验、量化的方法,对经济管理系统中的人力、物力、财力等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。
二、选择题1.运筹学的主要分支包括(ABDE )A图论B线性规划C非线性规划D整数规划E目标规划2. 最早运用运筹学理论的是( A )A . 二次世界大战期间,英国军事部门将运筹学运用到军事战略部署B . 美国最早将运筹学运用到农业和人口规划问题上C . 二次世界大战期间,英国政府将运筹学运用到政府制定计划D . 50年代,运筹学运用到研究人口,能源,粮食,第三世界经济发展等问题上第二章线性规划的图解法一、选择题/填空题1.线性规划标准式的特点:(1)目标函数最大化(2)约束条件为等式(3 决策变量为非负(4 ) 右端常数项为非负2. 在一定范围内,约束条件右边常数项增加一个单位:(1)如果对偶价格大于0,则其最优目标函数值得到改进,即求最大值时,最优目标函数值变得更大,求最小值时最优目标函数值变得更小。
(2)如果对偶价格小于0,则其最优目标函数值变坏,即求最大值时,最优目标函数值变小了;求最小值时,最优目标函数值变大了。
(3)如果对偶价格等于0,则其最优目标函数值不变。
3.LP模型(线性规划模型)三要素:(1)决策变量(2)约束条件(3)目标函数4. 数学模型中,“s·t”表示约束条件。
5. 将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左端加上松弛变量。
6. 将线性规划模型化成标准形式时,“≥”的约束条件要在不等式左端减去剩余变量。
7.下列图形中阴影部分构成的集合是凸集的是A【解析】:如何判断是凸集?凸集:两点之间连线在图内凹集:两点之间连线在图外8. 线性规划问题有可行解且凸多边形无界,这时CA没有无界解 B 没有可行解 C 有无界解 D 有有限最优解9. 对于线性规划问题,下列说法正确的是( D )A. 线性规划问题可能没有可行解B. 在图解法上,线性规划问题的可行解区域都是“凸”区域C. 线性规划问题如有最优解,则最优解可在可行解区域顶点上到达D. 上述说法都正确第三章线性规划问题的计算机求解一、名词解释1.相差值:相应的决策变量的目标系数需要改进的数量,使得决策变量为正值。