运筹学——图与网络模型3
- 格式:ppt
- 大小:1.17 MB
- 文档页数:49
运筹学:应用分析、试验、量化的方法,对经济管理系统中人力、物力、财力等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。
第一章、线性规划的图解法1.基本概念线性规划:是一种解决在线性约束条件下追求最大或最小的线性目标函数的方法。
线性规划的三要素:变量或决策变量、目标函数、约束条件。
目标函数:是变量的线性函数。
约束条件:变量的线性等式或不等式。
可行解:满足所有约束条件的解称为该线性规划的可行解。
可行域:可行解的集合称为可行域。
最优解:使得目标函数值最大的可行解称为该线性规划的最优解。
唯一最优解、无穷最优解、无界解(可行域无界)或无可行解(可行域为空域)。
凸集:要求集合中任意两点的连线段落在这个集合中。
等值线:目标函数z,对于z的某一取值所得的直线上的每一点都具有相同的目标函数值,故称之为等值线。
松弛变量:对于“≤”约束条件,可增加一些代表没使用的资源或能力的变量,称之为松弛变量。
剩余变量:对于“≥”约束条件,可增加一些代表最低限约束的超过量的变量,称之为剩余变量。
2.线性规划的标准形式约束条件为等式(=)约束条件的常数项非负(b j≥0)决策变量非负(x j≥0)3.灵敏度分析:是在建立数学模型和求得最优解之后,研究线性规划的一些系数的变化对最优解产生什么影响。
4.目标函数中的系数c i的灵敏度分析目标函数的斜率在形成最优解顶点的两条直线的斜率之间变化时,最优解不变。
5.约束条件中常数项b i的灵敏度分析对偶价格:约束条件常数项中增加一个单位而使最优目标函数值得到改进的数量。
当某约束条件中的松弛变量(或剩余变量)不为零时,这个约束条件的对偶价格为零。
第二章、线性规划问题在工商管理中的应用1.人力资源分配问题(P41)设x i为第i班次开始上班的人数。
2.生产计划问题(P44)3.套材下料问题(P48)下料方案表(P48)设x i为按各下料方式下料的原材料数量。
4.配料问题(P49)设x ij为第i种产品需要第j种原料的量。
运筹学概念整理名解5、简答4、建模与模型转换2、计算5~6第1章线性规划与单纯形法(计算、建模:图解法)线性规划涉及的两个方面:使利润最大化或成本最小化线性规划问题的数学模型包含的三要素:一组决策变量:是模型中需要首确定的未知量。
一个目标函数:是关于决策变量的最优函数,max或min。
一组约束条件:是模型中决策变量受到的约束限制,包括两个部分:不等式或等式;非负取值(实际问题)。
线性规划问题(数学模型)的特点:目标函数和约束条件都是线性的。
1.解决的问题是规划问题;2解决问题的目标函数是多个决策变量的线性函数,通常是求最大值或最小值;3解决问题的约束条件是多个决策变量的线性不等式或等式。
图解法利用几何图形求解两个变量线性规划问题的方法。
求解步骤:第一步:建立平面直角坐标系;第二步:根据约束条件画出可行域;第三步:在可行域内平移目标函数等值线,确定最优解及最优目标函数值。
LP问题的解:(原因)唯一最优解、无穷多最优解(有2个最优解,则一定是有无穷多最优解)无界解(缺少必要的约束条件)、无可行解(约束条件互相矛盾,可行域为空集)标准形式的LP模型特点:目标函数为求最大值、约束条件全部为等式、约束条件右端常数项bi全部为非负值,决策变量xj的取值为非负●线性规划模型标准化(模型转化)(1) “决策变量非负”。
若某决策变量x k为“取值无约束”(无符号限制),令:x k= x’k–x”k,(x’k≥0, x”k≥0) 。
(2) “目标函数求最大值”。
如果极小化原问题minZ = CX,则令Z’ = – Z,转为求maxZ’ = –CX 。
注意:求解后还原。
(3) “约束条件为等式”。
对于“≤”型约束,则在“≤”左端加上一个非负松弛变量,使其为等式。
对于“≥”型约束,则在“≥”左端减去一个非负剩余变量,使其为等式。
(4) “资源限量非负”。
若某个bi < 0,则将该约束两端同乘“–1” ,以满足非负性的要求。
试题结构:1、判断题(10×2`)2、单选题(10×2`)3、多选题(5 ×2`)4、计算题(5×10`)(第三、五、七、十一、十三章有计算题)第一张:绪论1.定义:运筹学是应用分析、试验、量化的方法,对经济管理系统中人力、物力、财力等资源进行统筹安排,为管理者提供有依据的最优方案,以实现最有效的管理。
2.研究内容:线性规划、整数线性规划、目标规划、图与网络模型、存储论、排队论、对策论、排序与统筹方法、决策分析、动态规划、预测3.运用运筹学解决问题的一般过程(课件答案)(课本答案)规定目标和明确问题认清问题收集数据和建立模型找出一些可供选择的方案求解模型和优化方案确定目标或评估方案的标准检验模型和评价方案评估各个方案方案实施和不断改进选出一个最优的方案执行此方案进行最后评估:问题是否得到圆满解决第二章:线性规划的图解方法1.怎样辨别一个模型是线性模型?其特征是:(1)问题的目标函数是多个决策变量的线性函数,通常是求最大值或最小值;(2)问题的约束条件是一组多个决策变量的线性不等式或等式。
2.线性规划三个要素建模步骤决策变量、目标函数、约束条件3.LP 问题的标准型11max .1,2,,0,1,2,,nj jj nij ji j j Z c x a x b s t i m x j n ===⎧=⎪=⎨⎪≥=⎩∑∑ 特点:(1)目标函数求最大值(2)约束条件都为等式方程,且右端常数项b i 都大于或等于零 (3)决策变量x j 为非负。
一般形式目标函数: max (min ) z = c 1 x 1 + c 2 x 2 + … + c n x n约束条件: s.t. a 11 x 1 + a 12 x 2 + … + a 1n x n ≤ ( =, ≥ )b 1 a 21 x 1 + a 22 x 2 + … + a 2n x n ≤ ( =, ≥ )b 2…… …… a m1 x 1 + a m2 x 2 + … + a mn x n ≤ ( =, ≥ )b mx 1 ,x 2 ,… ,x n ≥ 0 标准形式目标函数: max z = c 1 x 1 + c 2 x 2 + … + c n x n 约束条件: s.t. a 11 x 1 + a 12 x 2 + … + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + … + a 2n x n = b 2 …… …… a m1 x 1 + a m2 x 2 + … + a mn x n = b mx 1 ,x 2 ,… ,x n ≥ 0,b i ≥04.线性问题的性质与判断 (1 )线性规划可行域为凸集(2)最优解在凸集上某一顶点达到(特殊情况下为凸集的某条边)(3 )可行域有界,则一定有最优解5.图解法与解的状况(1)图解法使用范围:仅有两个决策变量的LP(2)基本步骤:a.建立平面直角坐标系;b.将约束条件图解,求得满足约束条件的解的集合;c.作出目标函数的等值线,并根据优化要求,平移目标函数等值线,求出最优解。
运筹学模型的分类和类型运筹学是一门应用于决策制定和问题解决的学科,它通过数学模型和分析方法来优化资源的利用。
运筹学模型是在特定情境中描述问题和优化目标的数学表示。
根据问题的性质和优化目标的类型,运筹学模型可以被分类为多种类型。
在本文中,我将介绍一些常见的运筹学模型分类。
一、线性规划模型:线性规划模型是最基本的运筹学模型之一。
它的特点是目标函数和约束条件均为线性的。
线性规划模型常用于求解资源分配、生产计划、物流运输等问题。
通过线性规划模型,我们可以找到使资源利用最优化的决策方案。
某公司需要确定每种产品的生产数量,以最大化总利润,且需满足各种资源约束条件,这时可以使用线性规划模型进行求解。
二、整数规划模型:整数规划模型是在线性规划模型的基础上引入整数变量的扩展。
在某些情况下,问题的决策变量只能取整数值,这时就需要使用整数规划模型进行求解。
某物流公司需要确定车辆的调度方案,每辆车的装载量可以是整数,这时可以使用整数规划模型来求解最佳调度方案。
三、动态规划模型:动态规划模型是一种考虑时间因素的决策模型。
它通常用于求解多阶段决策问题。
动态规划模型通过将问题划分为多个阶段,并建立各阶段之间的转移方程,来寻找最优决策序列。
在项目管理中,我们需要确定每个阶段的最佳决策,以最小化总工期和成本,这时可以使用动态规划模型进行求解。
四、网络流模型:网络流模型是一种描述网络中资源分配和流量传输的模型。
它通常用于求解网络优化问题,如最小费用流问题、最大流问题等。
网络流模型中,节点表示资源或流量的源点、汇点和中间节点,边表示资源或流量的传输通道。
通过建立网络流模型,我们可以确定资源的最优分配方案,以及网络中的最大流量或最小成本。
在供应链管理中,我们需要确定货物从生产商到消费者的最佳流向,以最小化总运输成本,这时可以使用网络流模型进行求解。
五、排队论模型:排队论模型是一种描述排队系统的模型。
它通常用于评估系统性能指标,如平均等待时间、平均逗留时间等。