运筹学资料:8图与网络模型
- 格式:ppt
- 大小:732.00 KB
- 文档页数:51
《运筹学》综合练习题第一章 线性规划及单纯形法1、教材43页——44页题2、教材44页题3、教材45页题4、教材46页题5、教材46页题6、补充:判断下述说法是否正确LP 问题的可行域是凸集。
LP 问题的基本可行解对应可行域的顶点。
LP 问题的最优解一定是可行域的顶点,可行域的顶点也一定是最优解。
若LP 问题有两个最优解,则它一定有无穷多个最优解.求解LP 问题时,对取值无约束的自由变量,通常令"-'=j j j x x x ,其中∶≥"'j j x x ,在用单纯形法求得的最优解中,不可能同时出现0"'j j x x .当用两阶段法求解带有大M 的LP 模型时,若第一阶段的最优目标函数值为零,则可断言原LP 模型一定有最优解。
7、补充:建立模型(1)某采油区已建有n 个计量站B 1,B 2…B n ,各站目前尚未被利用的能力为b 1,b 2…b n (吨液量/日)。
为适应油田开发的需要,规划在该油区打m 口调整井A 1,A 2…A m ,且这些井的位置已经确定。
根据预测,调整井的产量分别为a 1,a 2…a m (吨液量/日)。
考虑到原有计量站富余的能力,决定不另建新站,而用原有老站分工管辖调整井。
按规划要求,每口井只能属于一个计量站。
假定A i 到B j 的距离d ij 已知,试确定各调整井与计量站的关系,使新建集输管线总长度最短。
(2)靠近某河流有两个化工厂(见附图),流经第一个工厂的河流流量是每天500万立方米;在两个工厂之间有一条流量为每天200万立方米的支流。
第一个工厂每天排放工业污水2万立方米;第二个工厂每天排放工业污水1.4万立方米 。
从第一个工厂排出的污水流到第二个工厂之前,有20%可自然净化。
根据环保要求,河流中工业污水的含量不应大于%,若这两个工厂都各自处理一部分污水,第一个工厂的处理成本是1000元/万立方米,第二个工厂的处理成本是800元/万立方米。