第5章 均匀平面波
- 格式:ppt
- 大小:1.74 MB
- 文档页数:53
第一章1.什么是矢量场的通量?通量的值为正、负或0分别表示什么意义?解答:矢量场F 穿出闭合曲面S 的通量为:dS e F dS F sn s ⎰⎰==··ψ 当⎰>s dS F 0·时,表示穿出闭合曲面S 的通量多于进入的通量,此时闭合曲面内必有发出矢量线的源,成为正通量源。
当⎰<s dS F 0·时,表示穿出闭合曲面S 的通量少于进入的通量,此时闭合曲面内必有汇集矢量线的源,成为负通量源。
当⎰=sdS F 0·时,表示穿出闭合曲面S 的通量等于进入的通量,此时闭合曲面内正通量源与负通量源的代数和为0,或者闭合面内无通量源。
2.什么是散度定理?它的意义是什么?解答:矢量分析中的一个重要定理:⎰⎰⋅=⋅∇v sdS FdV F 称为散度(高斯)定理。
意义:矢量场F 的散度F ⋅∇在体积V 上的体积分等于矢量场F 在限定该体积的闭合面S 上的面积分,是矢量的散度的体积分与该矢量的闭合曲面积分之间的一个变换关系。
3.什么是矢量场的环流?环流的值为正、负或0分别表示什么意义?解答:矢量场F 沿场中的一条闭合回路C 的曲线积分,⎰⋅=Γc dl F ,称为矢量场F 沿闭合路径C 的环流。
⎰>⋅c dl F 0或⎰<⋅cdl F 0,表示场中有产生该矢量的源,称为漩涡源。
⎰=⋅cdl F 0,表示场中没有产生该矢量场的源。
4.什么是斯托克斯定理?它的意义是什么? 斯托克斯定理能用于闭合曲面吗?解答:在矢量场F 所在的空间中,对于任一以曲线C 为周界的曲面S ,存在如下重要关系式: ⎰⎰⋅=⋅⨯∇s cdl F dS F ,称为斯托克斯定理。
意义:矢量场F 的旋度F ⨯∇在曲面S 上的面积分等于矢量场F 在限定曲面的闭合曲线C 上的线积分,是矢量旋度的曲面积分与该矢量沿闭合曲线积分之间的一个变换关系。
能用于闭合曲面。
5.无旋场和无散场的区别是什么?解答:无旋场F 的旋度处处为0,即0≡⨯∇F ,它是由散度源所产生的,它总可以表示为某一标量场的梯度,即()0=∇⨯∇u 。
第5章 平面电磁波5.1基本内容概述本章讨论均匀平面波在无界空间传播的特性,主要内容为:均匀平面波在无界的理想介质中的传播特性和导电媒质中的传播特性,电磁波的极化,均匀平面波在各向异性媒质中的传播、相速与群速。
5.1.1理想介质中的均匀平面波1.均匀平面波函数在正弦稳态的情况下,线性、各向同性的均匀媒质中的无源区域的波动方程为220k ∇+=E E对于沿z 轴方向传播的均匀平面波,E 仅是z 坐标的函数。
若取电场E 的方向为x 轴,即x x E =E e ,则波动方程简化为222d 0d x x E k E z+= 沿+z 轴方向传播的正向行波为()j jkz x m z E e e φ-=E e (5.1)与之相伴的磁场强度复矢量为()()z kz z ωμ=⨯H e E 1j jkz ym E e e φη-=e (5.2)电场强度和磁场强度的瞬时值形式分别为(,)Re[()]cos()j t x m z t z e E t kz ωωφ==-+E E e (5.3)(,)Re[()]cos()j t m y Ez t z e t kz ωωφη==-+H H e (5.4)2.均匀平面波的传播参数 (1)周期2T πω=(s),表示时间相位相差2π的时间间隔。
(2)相位常数k =(rad/m ),表示波传播单位距离的相位变化。
(3)波长kπλ2=(m ),表示空间相位相差2π的两等相位面之间的距离。
(4)相速p v kω==m/s ),表示等相位面的移动速度。
(5)波阻抗(本征阻抗)x y E H η==Ω),描述均匀平面波的电场和磁场之间的大小及相位关系。
在真空中,37712000≈===πεμηη(Ω) 3.能量密度与能流密度在理想介质中,均匀平面波的电场能量密度等于磁场能量密度,即221122εμ=E H电磁能量密度可表示为22221122e m w w w εμεμ=+=+==E H E H (5.5)瞬时坡印廷矢量为21zη=⨯=S E H e E (5.6)平均坡印廷矢量为211Re 22av z η*⎡⎤=⨯=⎣⎦S E H e E (5.7) 4.沿任意方向传播的平面波对于任意方向n e 传播的均匀平面波,定义波矢量为n x x y y z z k k k k ==++k e e e e (5.8)则00()n jk j --==e r k r E r E e E e (5.9)()()1n η=⨯H r e E r (5.10)00n =e E (5.11)5.1.2电磁波的极化1.极化的概念波的极化表征在空间给定点上电场强度矢量的取向随时间变化的特性, 并用电场强度矢量的端点在空间描绘出的轨迹来描述。
在自由空间传播的均匀平面电磁波(空间中没有自由电荷,没有传导电流),电场和磁场都没有和波传播方向平行的分量,都和传播方向垂直。
此时,电矢量E,磁矢量H和传播方向k两两垂直。
只是在这种情况下,才可以说电磁波是横波。
沿一定途径(比如说波导)传播的电磁波为导行电磁波。
根据麦克斯韦方程,导行电磁波在传播方向上一般是有E和H分量的。
光的传播形态分类:根据传播方向上有无电场分量或磁场分量,可分为如下三类,任何光都可以这三种波的合成形式表示出来。
1、TEM波:在传播方向上没有电场和磁场分量,称为横电磁波。
若激光在谐振腔中的传播方向为z方向,那么激光的电场和磁场将没有z方向的分量!实际的激光模式是准TEM模,即允许Ez、Hz分量的存在,但它们必须<<横向分量,因为较大的Ez意味着波矢方向偏离光轴较大,容易溢出腔外,所以损耗大,难于形成振荡。
2、TE波(即是物光里的s波):在传播方向上有磁场分量但无电场分量,称为横电波。
在平面光波导(封闭腔结构)中,电磁场分量有Ey, Hx, Hz,传播方向为z方向。
3、TM波(即是物光里的p波):在传播方向上有电场分量而无磁场分量,称为横磁波。
在平面光波导(封闭腔结构)中,电磁场分量有Hy, Ex, Ez,传播方向为z方向。
微波工程、电磁场理论等课程中有关于TEM、TE、TM模的更为详细的描述。
电磁场与电磁波第5章 均匀平面波在无界空间中的传播1C.Y.W@SDUWH2010电磁场与电磁波第5章 均匀平面波在无界空间中的传播2均匀平面波的概念 波阵面:空间相位相同的点构成的曲面,即等相位面 平面波:等相位面为无限大平面的电磁波 均匀平面波:电磁波的场矢量只沿着它的传播方向变化,等相 位面上电场和磁场的方向、振幅都保持不变的平面波。
均匀平面波是电磁波的一种理想 情况,其特性及分析方法简单,但又 表征了电磁波的重要特性。
实际应用中的各种复杂形式的电 磁波可看成是由许多均匀平面波叠加 的结果。
另外,在距离波源足够远的 地方,呈球面的波阵面上的一小部分 也可以近似看作均匀平面波。
C.Y.W@SDUWH 2010波阵面xE波传播方向o yzH均匀平面波电磁场与电磁波第5章 均匀平面波在无界空间中的传播3本章内容5.1 理想介质中的均匀平面波 5.2 电磁波的极化 5.3 均匀平面波在导电媒质中的传播 5.4 色散与群速 5.5 均匀平面波在各向异性媒质中的传播C.Y.W@SDUWH2010电磁场与电磁波第5章 均匀平面波在无界空间中的传播45.1 理想介质中的均匀平面波5.1.1 理想介质中的均匀平面波函数 5.1.2 理想介质中的均匀平面波的传播特点 5.1.3 沿任意方向传播的均匀平面波C.Y.W@SDUWH2010电磁场与电磁波第5章 均匀平面波在无界空间中的传播55.1.1 理想介质中的均匀平面波函数 设在无限大的无源空间中,充满线性、各向同性的均匀理想 介质。
均匀平面波沿 z 方向传播,则电场强度和磁场强度都不是 x 和 y 的函数,即∂E ∂E ∂H ∂H = =0, = =0 ∂x ∂y ∂x ∂yd2E d2H + k 2E = 0 , + k 2H = 0 dz 2 dz 2∂Ez =0 ∂zHz = 0∂Ex ∂E y ∂Ez + + =0 由于 ∇ ⋅ E = ∂x ∂y ∂zEz = 0∂ 2 Ez + k 2 Ez = 0 ∂z 2同理 ∇ ⋅ H =∂H x ∂H z + + =0 ∂x ∂y ∂z∂H y结论:均匀平面波的电场强度和磁场强度都垂直于波的传播 方向 —— 横电磁波(TEM波)C.Y.W@SDUWH 2010电磁场与电磁波第5章 均匀平面波在无界空间中的传播6在直角坐标系中:∇ 2 F = ex∇ 2 Fx + ey ∇ 2 Fy + ez ∇ 2 Fz 即 (∇2 F )i = ∇ 2 Fi(i = x, y, z )2 2教材第28页 式(1.7.5)2 2 如:(∇ F )φ ≠ ∇ Fφ注意:对于非直角分量, (∇2 F )i ≠ ∇2 Fi 由电场强度满足波动方程 ∇ E + k E = 0ex ∇ 2 Ex + ey ∇ 2 E y + ez ∇ 2 Ez + k 2 (ex Ex + ey E y + ez Ez ) = 0 即⎧∇ 2 Ex + k 2 Ex = 0 ⎪ 2 2 ⎨∇ E y + k E y = 0 ⎪ 2 ∇ Ez + k 2 Ez = 0 ⎩⎧ ∂ 2 Ex ∂ 2 Ex ∂ 2 Ex + + 2 + k 2 Ex = 0 ⎪ 2 2 ∂y ∂z ⎪ ∂x ⎪ ∂2 Ey ∂2 Ey ∂2 Ey ⎪ + + + k 2 Ey = 0 ⎨ 2 2 2 ∂y ∂z ⎪ ∂x ⎪ ∂2 E ∂2 E ∂2 E z + 2 z + k 2 Ez = 0 ⎪ 2z + ∂x ∂y 2 ∂z ⎪ ⎩2010C.Y.W@SDUWH电磁场与电磁波第5章 均匀平面波在无界空间中的传播7对于沿 z 方向传播的均匀平面波,电场强度 E 和磁场强度 H 的分量 Ex 、Ey 和 H x 、H y 满足标量亥姆霍兹方程,即d 2 Ex + k 2 Ex = 0 dz 2 d2Ey + k 2Ey = 0 dz 2 2 d Hx + k 2H x = 0 dz 2 d2H y + k 2H y = 0 dz 2以上四个方程都是二阶常微分方程,它们具有相同的形式,因 而它们的解的形式也相同。
5.1 在自由空间中,已知电场3(,)10sin() V/m y E z t e t z ωβ=−G G,试求磁场强度。
(,)H z t G解:以余弦为基准,重新写出已知的电场表示式3π(,)10cos( V/m 2y E z t e t z ωβ=−−G G这是一个沿方向传播的均匀平面波的电场,其初相角为z +90−D 。
与之相伴的磁场为300311π(,)(,)10cos(210πcos() 2.65sin() A/m120π2z z y x x H z t e E z t e e t z e t z e t z ωβηηωβωβ=×=×−−=−−−=−−G G G G G G G5.2 理想介质(参数为0μμ=、r 0εεε=、0σ=)中有一均匀平面波沿x 方向传播,已知其电场瞬时值表达式为9(,)377cos(105) V/m y E x t e t x =−G G试求:(1) 该理想介质的相对介电常数;(2) 与(,)E x t G相伴的磁场;(3) 该平面波的平均功率密度。
(,)H x t G 解:(1) 理想介质中的均匀平面波的电场E G应满足波动方程2220EE tμε∂∇−=∂G G据此即可求出欲使给定的E G满足方程所需的媒质参数。
方程中222929425cos(105)y y y y y E E e E e e t x x∂∇=∇==−−∂G G G G 221892237710cos(105)y y y E E e e t t x∂∂==−×−∂∂G G G x = 故得91899425cos(105)[37710cos(105)]0t x t x με−−+×−即18189425251037710με−==×× 故181882r 0025102510(310) 2.25εμε−−×==×××=其实,观察题目给定的电场表达式,可知它表征一个沿x +方向传播的均匀平面波,其相速为98p 10210 m/s 5v k ω===× 而8p 310v ====×故2r 3() 2.252ε==(2) 与电场相伴的磁场E G H G 可由0j E ωμ∇×=−H G G求得。