随机过程及应用陈良均
- 格式:doc
- 大小:11.21 KB
- 文档页数:2
4.1(等待时间的和)设诚恳按照参数λ的Poisson 过程来到公交站,公交车于时刻t 发出,那么在],0[t 时间段内到达的乘客等待时间总和的期望应该如何计算那?对于某一个乘客而言,假设其到达时间为k t ,那么他等待时间就是k t t -所以乘客总的等待时间为∑=-=)(0)()(t N k k t t t S使用条件期望来处理平均等待))(|)(())((n t N t E E t S E ==对于某已成了而言,其到达时刻k t 随机],0[t 内均匀分布的随机变量。
但在车站上,乘客是先后到达次序排队,所以在n t N =)(的条件下,n t t t ,...,,21形成了独立均匀分布的顺序统计量。
不过就他们的和nt t ++...1而言,可以那他们看着顺序统计量,也可以把他们看着不排顺序的n 各独立的],0[t 内均匀分布的随机变量,所以2))((2)2)(())((22)())(|)((20t t N E t t t N E t E E nt nt nt t E nt n t N t E E nk k λ====-=-==∑=从而有4.2(数值记录)设},{N n X n ∈是一独立同分布的非负期望随机变量序列。
定义风险率)(t λ如下)(1)()(t F t f t -=λ 这里)()(t F t f 和分别是k X 的概率密度分布和分布函数。
定义随机过程)(t N 如下}),,..,m ax (:{#)(01t X X X X n t N n n n ≤>=-这里A #表示集合A 中的元素个数。
如果把)(t N 中的时间t 看做时间,那么)(t N 是一个非齐次Poisson 过程。
事实上,由于k X 彼此独立,所以)(t N 具有独立增量性。
很明显0)0(=N ,于是只需要检查一个时间微元内)(t N 的状态。
假定t ∆充分小,在0,...,X X n 中只有n X 在],(t t t ∆+上,因此111-11-11111))())(()((),...,(]),((),...,],,(()),...,max(],,(()),...,max(],,(()1)()((--∞=-∆+∆=≤≤∆+∈=≤≤∆+∈=>∆+∈>∆+∈==-∆+∑n n n n n n n n n n n n t F t o t t f t X t X P t t X P t X t X t t X P X X X t t X P X X X t t X P t N t t N P所以)()()(1)()())(())()(()1)()((21t o t t t F t o t t f x F t o t t f t N t t N P n n ∆+∆=-∆+∆=∆+∆==-∆+∑∞=-λ另一方面,可以证明)()2)()((t o t N t t N P ∆=≥-∆+ 所以)(t N 是非齐次的Poisson 过程,强度)(t λ。
《随机过程》教学大纲课程名称:CMP226《随机过程》 Stochastic Process课程性质:经济、管理、金融专业选修课学习课时:学时36 ,学分2教材与主要参考书:《应用随机过程》张波编著,中国人民大学出版社 2001年。
《随机过程》 [美]S。
M.劳斯著,何声武、谢盛荣、程依明译,中国统计出版社 1997年。
《应用随机过程》钱敏平、龚光鲁著,北京大学出版社1998年。
《随机过程》方兆本、缪柏其著,中国科技大学出版社 1993年。
《概率论基础和随机过程》王寿仁编著,北京科学出版社 1997年。
《经济学和金融学中的随机方法》[美]A.G。
马利亚里斯、W.A。
布罗克著,陈守东、李小军、李元译,上海人民出版社 2004年.授课方式:课堂讲授为主所属院系:信息学院应用数学系教学对象:经济、管理、金融专业本科二年级及以上先修课程及知识基础:《微积分》函数极限、函数积分与微分、函数的性质、级数理论《概率论》全部内容考核方式:期中、期末各一次闭卷考试。
平时作业成绩占20%,期中考试成绩占10%,期末考试成绩占70%.一、课程简介随机过程的研究对象为随时间变化的随机现象,即随时间不断变化的随机变量,通常被视为概率论的动态部分.概率论和随机过程在经济规律的定量分析中,得到广泛应用,是现代金融理论的理论工具,也是金融分析中经常使用的数学工具,在现代金融及其衍生市场起着重要的作用,尤其是期权定价模型的出现使得期权这一衍生工具有章可循。
该课程主要讲述随机过程的基本理论,介绍金融学中常用的随机过程:泊松过程、马尔可夫过程、鞅、布朗运动以及随机积分.并介绍一些金融模型,以突出随机过程的基本概念在金融学中的应用和对金融现象的描述。
二、教学内容第一章准备知识[内容提要]§1.1 概率空间§1。
2 随机变量和分布函数§1.3 数字特征,矩母函数与特征函数§1.4 条件概率、条件期望和独立性§1.5 收敛性[要求与说明]1、复习随机变量、分布函数、分布律和概率密度函数的概念,条件分布,函数的分布求法,常见的离散型与连续型分布,及多维随机变量的知识。
《随机过程》教学大纲随机过程是概率论的一个重要分支,研究随机事件随时间的变化规律。
随机过程广泛应用于物理学、统计学、金融学、电子工程等领域。
本教学大纲旨在介绍随机过程的基本概念和理论,并引导学生熟练掌握随机过程的性质、分类以及常用的数学模型与分析方法。
一、课程背景与目的1.1课程背景随机过程是概率论的重要分支,应用广泛,对提高学生数理统计及相关领域的分析能力具有重要意义。
1.2课程目的本课程旨在使学生:(1)理解随机过程的基本概念和性质;(2)了解常见的随机过程模型及其应用;(3)掌握随机过程的数学分析方法;(4)培养学生的数理统计思维和问题解决能力。
二、教学内容与时长2.1教学内容(1)随机过程的基本概念与定义(2)随机过程的分类与性质(3)马尔可夫链与马尔可夫过程(4)泊松过程与排队论(5)连续时间马尔可夫链与布朗运动(6)随机过程的数学分析方法2.2课程时长本课程共设为36学时,每学时45分钟。
三、教学方法3.1教学方法3.2教学手段(1)理论讲解:通过讲解相关概念、定义和定理,介绍随机过程的基本原理和性质;(2)实例分析:通过分析实际应用场景中的问题,引导学生了解随机过程的模型构建和分析方法。
(3)案例研讨:选择一些典型的随机过程案例,进行深入分析和讨论。
四、教学内容与进度安排4.1教学内容安排1-2周随机过程的基本概念与定义(1)随机过程的基本概念(2)随机过程的定义与表示方式3-4周随机过程的分类与性质(1)齐次与非齐次性(2)平稳与非平稳性(3)独立增量性与相关性(4)过程与样本函数5-6周马尔可夫链与马尔可夫过程(1)马尔可夫链的概念及性质(2)马尔可夫过程的定义与表示(3)平稳马尔可夫过程与细致平衡原理7-8周泊松过程与排队论(1)泊松过程的基本性质与定义(2)排队论的基本概念与模型(3)排队理论中的常见问题和分析方法9-10周连续时间马尔可夫链与布朗运动(1)连续时间马尔可夫链的概念与性质(2)布朗运动的定义与性质(3)连续时间马尔可夫链与布朗运动的应用11-12周随机过程的数学分析方法(1)离散时间随机过程的数学分析(2)连续时间随机过程的数学分析(3)随机过程的数值模拟和仿真4.2进度安排第一周:随机过程的基本概念与定义第二周:随机过程的分类与性质第三周:马尔可夫链与马尔可夫过程第四周:泊松过程与排队论第五周:连续时间马尔可夫链与布朗运动第六周:随机过程的数学分析方法五、考核与评价5.1考核方式本课程的考核方式为闭卷考试和课程设计报告。
随机过程及应用陈良均
随机过程是一个时间上的随机现象模型,可以用来描述一系列随机事件的演化规律。
它在各个领域中都有广泛的应用,如金融、通信、工程、物理等。
随机过程可以分为离散时间和连续时间两类。
离散时间随机过程是在离散的时间点上取值的,连续时间随机过程则是在连续的时间段上取值的。
其中,最常见的连续时间随机过程是布朗运动,它在金融学中有很重要的应用。
随机过程的定义包括了状态空间、时间集合和概率分布等要素。
其中,状态空间是随机过程可能取值的集合,时间集合是随机过程的定义域,概率分布则是描述随机过程各个取值发生的概率。
随机过程中的一个重要概念是马尔科夫性质,即当前状态的概率只与前一时刻的状态有关。
这一概念在很多实际问题中是很有用的,如天气预报、股票价格等。
在金融学中,随机过程在期权定价、风险管理等方面有非常重要的应用。
其中,布朗运动被用来描述资产价格的变动,在期权定价模型中起到了很关键的作用。
此外,随机过程还可以用来模拟金融市场中的价格走势,从而帮助投资者进行判断和决策。
在通信领域,随机过程被用来描述信号的传输和噪声的影响。
其中,高斯随机过程是最常用的一种随机过程,它经常被用来描述噪声信号的统计特性。
通过对随
机过程的建模和分析,我们可以更好地了解和优化通信系统的性能。
在工程领域,随机过程被应用于可靠性分析和系统优化。
通过建立系统的随机模型,我们可以评估系统的可靠性,并采取一些措施来提高系统的性能。
此外,随机过程还可以用于信号处理、图像识别等方面。
在物理学中,随机过程广泛应用于粒子运动、热力学过程等方面。
例如,在布朗运动中,通过对粒子的随机偏移和漂移的建模,我们可以更好地理解物质的扩散和运动规律。
总之,随机过程在现代科学和工程中是一个非常重要的工具和方法。
通过对随机过程的建模和分析,我们可以更好地理解随机现象的演化规律,从而为实际问题提供解决方案。
无论是金融、通信、工程还是物理学,随机过程都发挥着重要的作用。