随机过程2014_5
- 格式:pdf
- 大小:1.05 MB
- 文档页数:34
2014-2015随机过程参考题一.判断题1.若随机变量的特征函数存在,则可以用它来刻画随机变量的概率分布. ( ) 2.对于独立的随机变量1,,n X X ,都有[]11n nk k k k E X E X ==⎡⎤=⎢⎥⎣⎦∏∏. ( )3.若12(,,)n F x x x 是随机向量1=,,)n X X X (的联合分布函数,则它对每个变量都是单调不减的. ( ) 4.一个随机过程的有限维分布具有对称性和相容性. ( ) 5.非齐次泊松过程一定具有独立增量性和平稳增量性. ( ) 6.参数为λ的泊松过程第n 次与第1n -次事件发生的时间间隔n X 服从参数为n 和n λ的Γ分布. ( )7.复合P o i s s o n 过程一定是计数过程. ( ) 8.若随机变量X 服从周期为d 的格点分布,则对自然数n 总有{}0P X nd =>.( ) 9.设,i j 是离散时间马氏链的两个互通的状态,则它们的周期相等. ( ) 10.离散时间马尔科夫链的转移矩阵的行和列的和均为1 . ( ) 11.一个随机变量的分布函数和特征函数相互唯一确定. ( ) 12.对独立的随机变量1,,n X X ,都有[]11n nk k k k Var X Var X ==⎡⎤=⎢⎥⎣⎦∑∏. ( )13.一个随机过程的有限维分布族一定是具有对称性和相容性的分布族。
( )14.若一个随机过程的协方差函数,s t γ()只与时间差t s -有关,则它一定是宽平稳过程. ( ) 15.参数为λ的泊松过程中,第n 次事件发生的时刻n T 服从参数为λ的指数分布.( ) 16.非齐次泊松过程不具有独立增量性,但具有平稳增量性. ( ) 17.更新过程在有限时间内最多只能发生有限次更新. ( ) 18.更新过程的更新函数()M t 是t 的单调不增函数. ( ) 19.马尔科夫链具有无后效性. ( ) 20.Poisson 过程是更新过程. ( ) 具有对称性和相容性的分布族一定是某个随机过程的有限维分布族。
随机过程的基本概念和分类随机过程是一种随时间和其他随机变量而变化的数学对象,是概率论和统计学中的重要概念。
它被广泛应用于自然科学、工程学、经济学、金融学和社会科学等领域。
本文将介绍随机过程的基本概念和分类,帮助读者更好地理解随机过程的本质和应用。
1. 随机过程的基本概念随机过程是由一组随机变量组成的序列或函数,它表示在一定随机环境下某个系统或现象的发展过程。
在随机过程中,时间通常是一个自变量,而随机变量则是随时间变化的函数或序列。
根据定义域的不同,随机过程可以分为离散时间和连续时间两种类型。
离散时间的随机过程是在离散时间点上的序列,例如投骰子的过程。
连续时间的随机过程是在连续时间上的函数,例如天气的变化。
在通常情况下,连续时间的随机过程被认为是一个时间的连续函数,而离散时间的随机过程则表示为时间的离散序列。
随机过程可以用概率分布函数来表达。
对于连续时间的随机过程,它的概率分布函数是一个满足概率公理的函数。
对于离散时间的随机过程,概率分布可以用概率质量函数来描述。
概率分布函数可以通过研究随机过程的瞬时状态来推导。
随机过程的瞬时状态指位置和方向的一切资料,包括当前位置、速度和加速度等。
2. 随机过程的分类随机过程可以按照多种方式进行分类。
以下是一些常见的分类方式。
2.1 马尔可夫过程马尔可夫过程是一种随机过程,它的状态转移只与它的当前状态有关,而与过去状态和未来状态无关。
马尔可夫过程被广泛应用于物理、经济、金融和信号处理等领域。
根据定义域的不同,马尔可夫过程可以分为离散时间和连续时间两种类型。
离散时间的马尔可夫过程可以用转移矩阵来描述,而连续时间的马尔可夫过程则可以用转移概率密度函数来描述。
2.2 平稳过程平稳过程是指在不同时间段内,随机过程的统计分布不随时间而改变的随机过程。
这意味着它的瞬时状态空间必须一致,并且在不同的时间点上具有相同的概率分布。
平稳过程的例子包括白噪声、布朗运动和马尔可夫过程等。
河南理工大学研究生处研培养[2014]5号关于做好研究生培养方案修制订工作的通知各相关院(所):为积极主动适应研究生教育改革,分类推进研究生培养模式改革,进一步提高研究生培养质量,学校决定开展各类各层次研究生培养方案的修制订工作。
现就有关工作做出以下安排,请遵照执行。
一、修制订政策依据1.教育部、国家发展改革委、财政部《关于深化研究生教育改革的意见》(教研〔2013〕1号),教育部、人力资源社会保障部《关于深入推进专业学位研究生培养模式改革的意见》(教研[2013]3),国务院学位委员会、教育部《关于加强学位与研究生教育质量保证和监督体系建设的意见》(学位[2014]3号)。
2. 博士、学术学位硕士研究生培养方案的修制订参照《一级学科博士、硕士学位基本要求》(2014版),专业学位硕士研究生培养方案的修制订参照各专业领域教育指导委员会的相关要求和标准。
二、修制订范围1. 新增博士、专业学位硕士培养方案。
2. 既有博士、学术学位硕士、全日制专业学位硕士、非全日制专业学位硕士培养方案。
三、工作要求1. 各相关院(所)要组织培养方案修制订负责人,系统学习和研讨国家关于深化研究生教育改革方面的文件,深入领会文件精神,了解国家在培养目标、课程体系及培养环节等方面的相关要求。
2.要正确把握《一级学科博士、硕士学位基本要求》(2014版)和各专业学位教育指导委员会制定的专业学位研究生培养标准的内涵,同时结合我校实际情况。
3. 要体现分类培养的原则,处理好博士、学术学位硕士、专业学位硕士间的关系,在培养目标、课程体系、培养环节等方面应有显著区别。
学术学位须注重科研创新能力的培养,专业学位应紧扣社会经济发展需求,充分体现应用特征。
4. 要根据经济社会发展需求、学科发展前沿和研究生个人发展需要,建构科学合理的课程体系,及时更新课程内容,丰富课程类型,优先选择具备开展双语教学、案例教学的课程。
本次修制订须将《学科前沿进展》课程纳入博士、学术学位硕士研究生培养方案公共必修课。
南昌航空大学硕士研究生 2014/2015 学年第 1 学期考试卷学生姓名:所在学院:学号:课程名称:随机过程成绩:任课教师姓名:许广红任课教师所在学院:数信学院.ωΦ∞∞其中ω为正常数,A和Φ是相互独立的1.设随机过程X(t)=Acos( t+),-<t<0,1上的均匀分布,求X(t)的数学期望(12分) 随机变量,且A和Φ服从在区间[]2.设顾客以每分钟2人的速率到达,顾客流为泊松流,求在2分钟内到达的顾客不超过3人的概率。
(10分){}R t t X ∈),ω,(R t t t X t t X ∈-==,2cos (2cos ,(),,)21ωω3.设明天是否有雨仅与今天的天气有关,而与过去的天气无关。
又设今天下雨而明天也下雨的概率为α,而今天无雨明天有雨的概率为β;规定有雨天气为状态0,无雨天气为状1。
设0.7,0.4αβ==,求今天有雨且第二天仍有雨的概率。
(10分)4.设随机过程 只有两条样本函数,求 1) 一维分布函数),0(x F 和),4/(x F π;2) 二维分布函数),;4/,0(y x F π3) 求该过程的均值函数,相关函数. (16分)2/12/1==)(ω,)(ω21P P5.一直随机游动的转移概率矩阵为;⎪⎪⎪⎭⎫ ⎝⎛=5.005.05.05.0005.05.0P 求2步转移概率矩阵(2)P 以及初始分布为3/1}3{}2{}1{000======X P X P X P 时,经2步转移后处在状态3的概率。
(12分)6.设有四个状态{}I=0123,,,的马氏链,它的一步转移概率矩阵110022110022P=111144440001⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(1)画出状态转移图;(2)对状态进行分类;(3)对状态空间I 进行分解。
(14分)7移民到某地区的居民数是一泊松过程,每周平均2户定居,如果每户人口数是随机变量,一户4口的概率是1/6,一户三口概率是1/3,一户2口概率是1/3一户一口的概率是1/6,每户人口是独立的,求3周内的移民期望和方差(14分)X是具有强度(每分钟)为 的泊松过8.设电话总机在(0,t]内接到电话的呼叫数)(t程,求1.两分钟内接到2次呼叫的概率;2.第二分钟内收到第2次呼叫”的概率(12分)。
随机过程的基本概念和分类随机过程是概率论中重要的概念之一,广泛应用于各个领域,包括金融、电信、工程等。
本文将介绍随机过程的基本概念和分类,以帮助读者更好地理解和应用随机过程。
一、基本概念随机过程是指一簇随机变量的集合,其中每个随机变量代表某个时间点的取值。
随机过程可以用数学形式表示为{X(t), t∈T},其中X(t)表示时间t时刻的取值,T表示时间的取值范围。
在随机过程中,时间是一个重要的概念。
时间可以是离散的,也可以是连续的。
当时间是离散的时候,随机过程称为离散随机过程;当时间是连续的时候,随机过程称为连续随机过程。
离散随机过程常用于描述离散事件,如投掷硬币的结果;而连续随机过程常用于描述连续变化的现象,如股票价格的变动。
二、分类随机过程可以根据其状态空间和时间的特性进行分类。
下面将介绍常见的几种分类方式。
1. 马尔可夫过程(Markov Process)马尔可夫过程是一种具有"无记忆性"的随机过程,即在给定当前状态下,未来的发展仅依赖于当前状态,而与过去的状态无关。
马尔可夫过程可以是离散的或连续的,常用于建模和分析具有动态特性的系统,如排队论、信道传输等。
2. 马尔可夫链(Markov Chain)马尔可夫链是马尔可夫过程的特例,它具有离散的状态空间和离散的时间。
马尔可夫链是一种时间齐次的马尔可夫过程,即系统的转移概率在不同的时间点保持不变。
马尔可夫链常用于描述离散状态的随机系统,如天气的转变、赌博游戏的输赢等。
3. 马尔可夫跳过程(Markov Jump Process)马尔可夫跳过程是一种具有离散和连续混合特性的随机过程。
它在连续时间间隔内可能发生状态的跳跃,并且在一个状态下停留的时间是指数分布的。
马尔可夫跳过程广泛应用于电信系统、金融市场等领域。
4. 广义随机过程(Generalized Stochastic Process)广义随机过程是一种对传统随机过程进行扩展的概念。
数学中的随机过程一、引言在数学领域中,随机过程是研究随机事件随时间的演变规律的数学模型。
它既具有随机性,又具有确定性,广泛应用于概率论、统计学和其他相关领域。
本文将介绍随机过程的基本概念、分类及其在现实生活中的应用。
二、随机过程的定义随机过程是一类随机变量的集合,表示随机事件随时间变化的模型。
随机过程通常用X(t)表示,其中t是时间参数,X(t)是在某一时刻t的取值。
随机过程可以分为离散和连续两种类型。
三、离散时间随机过程离散时间随机过程是指在一系列离散时间点上定义的随机变量序列。
常见的离散时间随机过程有伯努利过程、泊松过程等。
1. 伯努利过程伯努利过程是最简单的离散时间随机过程,它是一种只有两个取值的随机过程。
以掷硬币为例,假设正面出现的概率为p,反面出现的概率为1-p,掷硬币的结果序列就是伯努利过程。
2. 泊松过程泊松过程描述了随机事件在时间上的独立出现,并且满足平稳性和无记忆性。
在实际应用中,泊松过程可以用来模拟各种随机事件的发生,如电话呼叫到达、交通事故发生等。
四、连续时间随机过程连续时间随机过程是指在连续时间区间上定义的随机变量。
其中最常见的连续时间随机过程是布朗运动和随机行走。
1. 布朗运动布朗运动是一种连续的、无界变差的随机过程,其特点是随机变量在任意时间间隔上的累积值符合正态分布。
布朗运动经常用来模拟金融市场的波动、温度变化等。
2. 随机行走随机行走是一种描述随机变量在空间上随机移动的随机过程。
它的最简单形式是一维随机行走,即随机变量只能在一维空间上左右移动。
随机行走在金融市场中的应用较广,可以用来模拟股票价格的变化。
五、随机过程的应用随机过程在现实生活中有着广泛的应用,以下两个领域是典型的例子。
1. 通信网络随机过程在通信网络中扮演着重要的角色。
例如,通过对网络中的数据流量建模,可以使用随机过程来优化网络的传输效率和资源分配。
2. 金融领域在金融领域中,随机过程被广泛应用于期权定价、风险管理和投资组合优化等方面。
什么是随机过程(一)引言概述:随机过程是概率论和数学统计学中的重要概念,用于描述随机事件在时间和空间上的演化规律。
它在实际问题建模和分析中具有广泛的应用,涵盖了大量的领域,如通信系统、金融市场、生物学等。
本文将介绍随机过程的基本概念和特征,并探讨其在实际中的应用。
正文:1. 随机过程的定义1.1 随机过程的基本概念1.2 随机变量与随机过程的关系1.3 不同类型的随机过程(如离散随机过程、连续随机过程等)2. 随机过程的特征2.1 随机过程的时间域特征2.2 随机过程的统计特征2.3 随机过程的独立性和相关性2.4 随机过程的平稳性2.5 随机过程的马尔可夫性质3. 随机过程的应用3.1 通信系统中的随机过程3.2 金融市场中的随机过程3.3 生物学中的随机过程3.4 物理学中的随机过程3.5 工程控制中的随机过程4. 随机过程的建模和分析方法4.1 马尔可夫链模型4.2 随机演化方程模型4.3 随机微分方程模型4.4 随机过程的仿真方法4.5 随机过程的参数估计方法5. 随机过程的未来发展5.1 随机过程在人工智能中的应用5.2 随机过程在时空数据分析中的应用5.3 随机过程在大数据分析中的应用5.4 新兴领域中的随机过程研究5.5 随机过程理论与实际应用的结合总结:本文介绍了随机过程的定义、特征和应用,并讨论了随机过程的建模和分析方法。
随机过程作为概率论和数学统计学的重要分支,具有广泛的应用前景。
随着人工智能和大数据分析的发展,随机过程在各个领域中的应用将进一步扩展。
值得期待的是,未来随机过程理论和实际应用的结合将推动该领域的进一步发展。