八年级数学上半期考试卷
- 格式:doc
- 大小:85.50 KB
- 文档页数:4
苏科版八年级上册数学期中考试试卷一、单选题1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A .B .C .D .2.一个等腰三角形的两边长分别是2cm 和5cm ,则它的周长为()A .9cm B .12cm C .7cm D .9cm 或12cm 3.如图,点C 、D 分别在BO 、AO 上,AC 、BD 相交于点E ,若CO DO =,则再添加一个条件,仍不能证明AOC △≌BOD 的是()A .A B∠=∠B .ADE BCE ∠=∠C .AC BD =D .AD BC=4.如图,点A 、B 、C 都在方格纸的“格点”上,请找出“格点”D ,使点A 、B 、C 、D 组成一个轴对称图形,这样的点D 共有()个.A .1B .2C .3D .45.根据下列已知条件,能画出唯一的ABC ∆的是()A .90C ∠=︒,6AB =B .4AB =,3BC =,30A ∠=︒C .60A ∠=︒,45B ∠=︒,4AB =D .3AB =,4BC =,8CA =6.如图,Rt △ABC 中,AB =AC =3,AO =1,D 点在线段BC 上运动,若将AD 绕A 点逆时针旋转90°得到AE ,连接OE ,则在D 点运动过程中,线段OE²的最小值为()A.1B.2C.3D.4二、填空题7.一个汽车牌照号码在水中的倒影为,则该车牌照号码为_________.8.如图,在△ABC中,∠ACB=90°,D是AB边的中点若AB=18,则CD的长为_____.9.等腰三角形的一个内角为100°,则它的一个底角的度数为______.10.已知直角三角形两直角边长分别为8和6,则此直角三角形斜边长为___.11.如图,已知AD平分∠BAC,要使△ABD≌△ACD,根据“SAS”,需要添加的条件是_____.12.如图,在△ABC中,∠C=90°,BD平分∠ABC,DC=5,则点D到AB的距离为___.13.如图所示,△AEB≌△DFC,AE⊥CB,DF⊥BC,∠C=28°,则∠A的度数为______.14.如图,在△ABC中,BD平分∠ABC,ED∥BC,AB=9,AD=6,则△AED的周长为___.15.如图,∠ADB=90°,正方形ABCG和正方形AEFD的面积分别是100和36,则以BD 为直径的半圆的面积是___.(结果保留π)16.如图,在Rt△ABC中,∠C=90°,沿过点A的一条直线AE折叠Rt△ABC,使点C恰好落在AB边的中点D处,则∠B的度数是___.17.如图,点A、B、C、O在网格中小正方形的顶点处,直线l经过点C、O,将△ABC 沿l平移得到△MNO,M是A的对应点,再将这两个三角形沿l翻折,P、Q分别是A、M 的对应点.已知网格中每个小正方形的边长都等于1,则PQ2的值为___.18.如图,在长方形ABCD中,AB=6,AD=8,E、F分别是BC、CD上的一点,EF⊥AE,将△ECF沿EF翻折得到ΔEC′F,连接AC′.若△AEC′是等腰三角形,且AE=AC′,则BE =___.三、解答题19.已知:如图,C是AE的中点,AB∥CD,且AB=CD.求证:△ABC≌△CDE.20.已知:如图,ED⊥AB,FC⊥AB,垂足分别为D、C,AC=BD,AE=BF,求证:(1)△AED≌△BFC;(2)AE∥BF.21.如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在边BC上,且点E在小正方形的顶点上,连接AE.(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称;(2)△AEF与四边形ABCD重叠部分的面积=;(3)在AE上找一点P,使得PC+PD的值最小.22.如图,△ABC中,AD是高,CE是中线,点G是CE的中点,DG⊥CE,点G为垂足.(1)求证:DC=BE;(2)若∠AEC=66°,求∠BCE的度数.23.如图,在△ABC中,AB=7,AC=25,AD是中线,点E在AD的延长线上,且AD =ED=12.(1)求证:△CDE≌△BDA;(2)判断△ACE的形状,并证明;(3)求△ABC的面积.24.尺规作图:如图,射线OM ⊥射线ON ,A 为OM 上一点,请以OA 为一边作两个大小不等的等腰直角三角形.保留作图痕迹,标上顶点字母,并写出所画的三角形.25.如图,在ABC 中,90ACB ∠=︒,5AB =,3BC =,点P 从点A 出发,以每秒2个单位长度的速度沿折线A C B A ---运动.设点P 的运动时间为t 秒()0t >.(1)求AC 的长及斜边AB 上的高.(2)当点P 在CB 上时,①CP 的长为______________(用含t 的代数式表示).②若点P 在BAC ∠的角平分线上,则t 的值为______________.(3)在整个运动过程中,直接写出BCP 是等腰三角形时t 的值.26.【问题发现】(1)如图1,△ABC 和△ADE 均为等边三角形,点B ,D ,E 在同一直线上,连接CE ,容易发现:①∠BEC 的度数为;②线段BD 、CE 之间的数量关系为;【类比探究】(2)如图2,△ABC 和△ADE 均为等腰直角三角形,∠BAC =∠DAE =90°,点B ,D ,E 在同一直线上,连接CE ,试判断∠BEC 的度数及线段BE 、CE 、DE 之间的数列关系,并【问题解决】(3)如图3,∠AOB=∠ACB=90°,OA=3,OB=6,AC=BC,则OC2的值为.参考答案1.D【解析】【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A.不是轴对称图形,故A不符合题意;B.不是轴对称图形,故B不符合题意;C.不是轴对称图形,故C不符合题意;D.是轴对称图形,故D符合题意.故选:D.【点睛】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠2.B【解析】【分析】根据已知条件和三角形三边关系可知,等腰三角形的腰长不可能为2cm,只能为5cm,然后即可求得三角形的周长.【详解】本题只知道等腰三角形的两边的长,并不知道腰和底,所以需要分两种情况讨论,当腰长为2cm时,由于2+2<5,所以此时三角形不存在;当腰长为5cm时,5+5>2,所以此三角形满足题意,此时三角形的周长为:5+5+2=12cm.故答案为B.【点睛】本题考查了等腰三角形的概念,注意三角形两边之和大于第三边是解题的关键.3.C【解析】【分析】根据题目给出的条件结合全等三角形的判定定理分别分析即可.【详解】解:A、可利用AAS证明△AOC≌△BOD,故此选项不合题意;B、根据三角形外角的性质可得∠A=∠B,再利用AAS证明△AOC≌△BOD,故此选项不合题意;C、不可利用SSA证明△AOC≌△BOD,故此选项符合题意;D、根据线段的和差关系可得OA=OB,再利用SAS证明△AOC≌△BOD,故此选项不合题意.故选:C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.D【分析】直接利用轴对称图形的性质得出符合题意的答案.【详解】解:如图所示:点A 、B 、C 、D 组成一个轴对称图形,这样的点D 共有4个.故选D .【点睛】此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的定义是解题关键.5.C【解析】【分析】利用全等三角形的判定方法以及三角形三边关系分别判断得出即可.【详解】解:A .∠C=90°,AB=6,不符合全等三角形的判定方法,即不能画出唯一三角形,故本选项不符合题意;B .4AB =,3BC =,30A ∠=︒,不符合全等三角形的判定定理,不能画出唯一的三角形,故本选项不符合题意;C .60A ∠=︒,45B ∠=︒,4AB =,符合全等三角形的判定定理ASA ,能画出唯一的三角形,故本选项符合题意;D .3+4<8,不符合三角形的三边关系定理,不能画出三角形,故本选项不符合题意;故选:C .【点睛】此题主要考查了全等三角形的判定以及三角形三边关系,正确把握全等三角形的判定方法是解题关键.6.B【解析】在AB 上截取AQ=AO=1,利用SAS 证明△AQD ≌△AOE ,推出QD=OE ,当QD ⊥BC 时,QD 的值最小,即线段OE²有最小值,利用勾股定理即可求解.【详解】解:如图,在AB 上截取AQ=AO=1,连接DQ,∵将AD 绕A 点逆时针旋转90°得到AE ,∴∠BAC=∠DAE=90°,∴∠BAC-∠DAC =∠DAE-∠DAC ,即∠BAD=∠CAE ,在△AQD 和△AOE 中,AQ AOQAD OAE AD AE=⎧⎪∠=∠⎨⎪=⎩,∴△AQD ≌△AOE(SAS),∴QD=OE ,∵D 点在线段BC 上运动,∴当QD ⊥BC 时,QD 的值最小,即线段OE²有最小值,∵△ABC 是等腰直角三角形,∴∠B=45°,∵QD ⊥BC ,∴△QBD 是等腰直角三角形,∵AB=AC=3,AO=1,∴QB=2,∴由勾股定理得∴线段OE²有最小值为2,故选:B .【点睛】本题考查了勾股定理,等腰直角三角形的判定和性质,全等三角形的判定和性质,旋转的性质,熟记各图形的性质并准确识图是解题的关键.7.WL027【解析】【详解】解:关于水面对称的图形为W L027,∴该汽车牌照号码为WL027.8.9【解析】【分析】根据直角三角形的性质:在直角三角形中,斜边上的中线等于斜边的一半,即可得出答案.【详解】在△ABC中,∵∠ACB=90°,D是AB边的中点,∴CD=12AB=9.故答案为9.【点睛】本题考查的是直角三角形的性质.掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.9.40°【解析】【分析】由于等腰三角形的一个内角为100°,这个角是顶角或底角不能确定,故应分两种情况进行讨论.【详解】解:①当100°这个角是顶角时,底角=(180°-100°)÷2=40°;②当100°这个角是底角时,另一个底角为100°,因为100°+100°=200°,不符合三角形内角和定理,所以舍去.故答案为:40°.【点睛】本题考查的是等腰三角形的性质,解答此类问题时往往用到三角形的内角和是180°这一隐藏条件.10.10【解析】【分析】根据勾股定理列式计算即可得解.【详解】解:∵直角三角形的两直角边长分别为8和6,∴斜边长=10.故答案为:10.【点睛】本题主要考查了勾股定理,比较简单,熟练掌握勾股定理是解题的关键.11.AB=AC【解析】【分析】根据角平分线定义求出∠BAD=∠CAD ,根据SAS 推出两三角形全等即可.【详解】解:AB=AC ,理由是:∵AD 平分∠BAC ,∴∠BAD=∠CAD ,在△ABD 和△ACD 中,AB AC BAD CAD AD AD =⎧⎪=⎨⎪=⎩∠∠,∴△ABD ≌△ACD (SAS ),故答案为AB=AC .【点睛】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .12.5【解析】【分析】过点D 作DE ⊥AB 于E ,根据角平分线上的点到角的两边距离相等可得DE=CD .【详解】解:如图,过点D 作DE ⊥AB 于E ,∵∠C=90°,BD 平分∠ABC ,∴DE=CD=5,即点D 到AB 的距离是5.故答案为:5.13.62【分析】根据C ∠和AEB DFC V V ≌可得28B ∠=︒,再根据AE CB ⊥和三角形的内角和定理即可求解.【详解】解:∵AEB DFC V V ≌,28C ∠=︒,∴28B C ∠=∠=︒.∵AE CB ⊥,∴90AEB =︒∠.∴18062A AEB B ∠=︒-∠-∠=︒.故答案为:62.14.15【详解】解:∵ED ∥BC ,∴∠EDB=∠CBD ,∵BD 平分∠ABC ,∴∠CBD=∠ABD ,∴∠EDB=∠ABD ,∴DE=BE ,∴AE+ED+AD=AE+BE+AD=AB+AD=9+6=15,即△AED 的周长为15,故答案为:15.15.8π【分析】根据勾股定理求出BD ,再利用圆的面积公式求半圆面积即可.【详解】∵正方形ABCG 和正方形AEFD 的面积分别是100和36,∴AB 2=100,AD 2=36,∵∠ADB =90°,∴在Rt ABD △中,8BD =,∴半圆面积:218822ππ⎛⎫⨯= ⎪⎝⎭.故答案为:8π.16.30°【分析】由折叠的性质可得出:∠CAE=∠DAE ,∠ADE=∠C=90°,结合点D 为线段AB 的中点,利用等腰三角形的三线合一可得出AE=BE ,进而可得出∠B=∠DAE ,再利用三角形内角和定理,即可求出∠B 的度数.【详解】解:由折叠,可知:∠CAE=∠DAE ,∠ADE=∠C=90°,∴ED ⊥AB .∵点D 为线段AB 的中点,ED ⊥AB ,∴AE=BE ,∴∠B=∠DAE .又∵∠CAE+∠DAE+∠B+∠C=180°,∴3∠B=90°,∴∠B=30°.故答案为:30°.17.10【解析】连接PQ,AM,根据PQ=AM即可解答.【详解】解:连接PQ,AM,由图形变换可知:PQ=AM,由勾股定理得:AM2=12+32=10.∴PQ2=AM2=12+32=10.故答案为:10.18.8 3【解析】设BE=x,则EC=8-x,由翻折得:EC′=EC=8-x.当AE=AC′时,作AH⊥EC′,由∠AEF=90°,EF平分∠CEC′可证得∠AEB=∠AEH,则△ABE≌△AHE,所以BE=HE=x,由三线合一得EC′=2EH,即8-x=2x,解方程即可.【详解】解:∵四边形ABCD是矩形,设BE=x,则EC=8-x,由翻折得:EC′=EC=8-x,作AH⊥EC′,如图,∵EF⊥AE,∴∠AEF=∠AEC′+∠FEC′=90°,∴∠BEA+∠FEC=90°,∵△ECF沿EF翻折得△EC′F,∴∠FEC′=∠FEC,∴∠AEB=∠AEH,∵∠B=∠AHE=90°,AH=AH,∴△ABE≌△AHE(AAS),∴BE=HE=x,∵AE=AC′,∴EC′=2EH,即8-x=2x,解得x=8 3,∴BE=8 3.故答案为:8 3.19.见解析【解析】根据全等三角形的判定方法SAS,即可证明△ABC≌△CDE.【详解】证明:∵点C是AE的中点,∵AB ∥CD ,∴∠A=∠ECD ,在△ABC 和△CDE 中,AC CE A ECD AB CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△CDE (SAS ).20.(1)见解析;(2)见解析【解析】(1)求出90EDA FCB ∠=∠=︒,AD=BC ,根据HL 证明Rt AED Rt BFC ∆≅∆即可;(2)根据全等三角形的性质得出∠A=∠B ,根据平行线的判定得出即可.【详解】解:(1)∵ED ⊥AB ,FC ⊥AB ,∴90EDA FCB ∠=∠=︒∵AC =BD ,∴AC CD BD CD +=+,即AD BC=在Rt AED ∆和Rt BFC ∆中,AD BC AE BF=⎧⎨=⎩∴Rt AED Rt BFC∆≅∆(2)由(1)知Rt AED Rt BFC∆≅∆∴∠A=∠B∴AE ∥BF .21.(1)见解析;(2)6;(3)见解析【解析】(1)根据轴对称的性质确定出点B 关于AE 的对称点F 即可;(2)即DC 与EF 的交点为G ,由四边形ADGE 的面积=平行四边形ADCE 的面积-△ECG 的面积求解即可;(3)根据轴对称的性质取格点M ,连接MC 交AE 于点P ,此时PC+PD 的值最小.【详解】解:(1)如图所示,△AEF 即为所求作:(2)重叠部分的面积=S 四边形ADCE-S △ECG =2×4-12×2×2=8-2=6.故答案为:6;(3)如图所示,点P 即为所求作:22.(1)证明见解析;(2)22°.【解析】(1)连接DE .由G 是CE 的中点,DG CE ^得到DG 是CE 的垂直平分线,根据线段垂直平分线的性质得到DE DC =,由DE 是Rt ADB 的斜边AB 上的中线,根据直角三角形斜边上的中线等于斜边的一半得到12DE BE AB ==,即可得到DC BE =.(2)由DE DC =得到DEC BCE ∠=∠,由DE BE =得到B EDB ∠=∠,根据三角形外角性质得到2EDB DEC BCE BCE ∠=∠+∠=∠,则2B BCE ∠=∠,由此根据外角的性质来求BCE ∠的度数.【详解】(1)如图,连接DE .∵G是CE的中点,DG CE^,∴DG是CE的垂直平分线,∴DE DC=.∵AD是高,CE是中线,∴DE是Rt ADB的斜边AB上的中线,∴12DE BE AB==.∴DC BE=;(2)∵DC DE=,DEC BCE∴∠=∠,2EDB DEC BCE BCE∴∠=∠+∠=∠,DE BE=,B EDB∴∠=∠,2B BCE∴∠=∠,366AEC BCE∴∠=∠= ,22BCE∴∠= .23.(1)见解析;(2)△ACE是直角三角形,证明见解析;(3)84【解析】(1)根据SAS证明△CDE≌△BDA即可;(2)由全等三角形的性质得出AB=CE=7,利用勾股定理逆定理证得△ACE是直角三角形;(3)求得△ACE的面积,即可得出△ABC的面积.【详解】解:(1)证明:∵AD 是边BC 上的中线,∴BD=CD ,在△ABD 和△ECD 中,BD CD ADB EDC AD ED ⎧⎪∠∠⎨⎪⎩===,∴△CDE ≌△BDA (SAS ),(2)△ACE 是直角三角形,证明如下:∵△ABD ≌△ECD ,∴AB=CE=7,∵AE=AD+ED=24,AC=25,CE=7,∴AE 2+CE 2=AC 2,∴△ACE 是直角三角形,(3)∵△CDE ≌△BDA∴CDE BDAS =S ∴△ABC 的面积=△ACE 的面积=12×7×24=84.【点睛】此题考查三角形全等的判定与性质,勾股定理的逆定理的运用,三角形的面积计算方法,掌握三角形全等的判定方法与勾股定理逆定理是解决问题的关键.24.见解析【分析】以O 为圆心,OA 为半径作圆,与射线ON 交于点B ,则△AOB 是以OA 为腰的等腰直角三角形;作∠MON 的平分线OP ,过点A 作AC ⊥OP 于点C ,则△AOC 是以OA 为斜边的等腰直角三角形.【详解】解:如图:△AOB 和△AOC 即为所作..【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的判定.25.(1)125;(2)①24t -;②83;(3)t 的值为0.5或4.75或5或5.3.【解析】(1)直接利用勾股定理即可求得AC 的长,再利用等面积法即可求得斜边AB 上的高;(2)①CP 的长度等于运动的路程减去AC 的长度,②过点P '作P 'D ⊥AB ,证明Rt △AC P '≌Rt △AD P '得出AD=AC=4,分别表示各线段,在Rt △BD P '利用勾股定理即可求得t 的值;(3)由图可知,当△BCP 是等腰三角形时,点P 必在线段AC 或线段AB 上,①当点P 在线段AC 上时,此时△BCP 是等腰直角三角形,②当点P 在线段AB 上时,又分三种情况:BC=BP ;PC=BC ;PC=PB ,分别求得点P 运动的路程,再除以速度即可得出答案.【详解】解:(1)∵90C ∠=︒,5AB =,3BC =,∴在Rt ABC ∆中,2222534AC AB BC =-=-=.∴AC 的长为4.设斜边AB 上的高为h .∵1122AB h AC BC ⨯⨯=⨯⨯,∴1153422h ⨯⨯=⨯⨯,∴125h =.∴斜边AB 上的高为125.(2)已知点P 从点A 出发,以每秒2个单位长度的速度沿折线A-C-B-A 运动,①当点P 在CB 上时,点P 运动的长度为:AC+CP=2t ,∵AC=4,∴CP=2t-AC=2t-4.故答案为:2t-4.②当点P '在∠BAC 的角平分线上时,过点P '作P 'D ⊥AB ,如图:∵A P '平分∠BAC ,P 'C ⊥AC ,P 'D ⊥AB ,∴P 'D=P 'C=2t-4,∵BC=3,∴B P '=3-(2t-4)=7-2t ,在Rt △AC P '和Rt △AD P '中,AP AP P D P C ''''=⎧⎨=⎩,∴Rt △AC P '≌Rt △AD P '(HL ),∴AD=AC=4,又∵AB=5,∴BD=1,在Rt △BD P '中,由勾股定理得:2221(24)(72)t t +-=-解得:83t =,故答案为:83;(3)由图可知,当△BCP 是等腰三角形时,点P 必在线段AC 或线段AB 上,①当点P 在线段AC 上时,此时△BCP 是等腰直角三角形,∴此时CP=BC=3,∴AP=AC-CP=4-3=1,∴2t=1,∴t=0.5;②当点P在线段AB上时,若BC=BP,则点P运动的长度为:AC+BC+BP=4+3+3=10,∴2t=10,∴t=5;若PC=BC,如图2,过点C作CH⊥AB于点H,则BP=2BH,在△ABC中,∠ACB=90°,AB=5,BC=3,AC=4,∴AB•CH=AC•BC,∴5CH=4×3,∴125 CH=,在Rt△BCH中,由勾股定理得:1.8BH==,∴BP=3.6,∴点P运动的长度为:AC+BC+BP=4+3+3.6=10.6,∴2t=10.6,∴t=5.3;若PC=PB,如图3所示,过点P作PQ⊥BC于点Q,则30.52BQ CQ BC ==⨯=,∠PQB=90°,∴∠ACB=∠PQB=90°,∴PQ ∥AC ,∴PQ 为△ABC 的中位线,∴PQ=0.5×AC=0.5×4=2,在Rt △BPQ中,由勾股定理得: 2.5BP ==,点P 运动的长度为:AC+BC+BP=4+3+2.5=9.5,∴2t=9.5,∴t=4.75.综上,t 的值为0.5或4.75或5或5.3.【点睛】本题考查勾股定理,HL 定理,等腰三角形的性质和判定.掌握等面积法和分类讨论思想是解题关键.26.(1)60°,BD=CE ;(2)∠BEC=90°,BE=CE+DE ,理由见解析;(3)92【解析】【分析】(1)根据等边三角形的性质得到AB=AC ,AD=AE ,∠BAC=∠DAE=60°,得到∠BAD=∠CAE ,证明△BAD ≌△CAE ,根据全等三角形的性质证明结论;(2)由“SAS”可证△ABD ≌△ACE ,可得BD=CE ,∠AEC=∠ADB=135°,即可求解;(3)由“AAS”可证△ACF ≌△CBE ,可得BE=CF ,AF=CE ,可求OF=CF=32,由勾股定理可求解.【详解】解:(1)∵△ABC 和△ADE 为等边三角形,∴AB=AC ,AD=AE ,∠BAC=∠DAE=60°,∴∠BAC-∠DAC=∠DAE-∠DAC ,即∠BAD=∠CAE ,在△BAD 和△CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAE (SAS ),∴BD=CE ;∠AEC=∠ADB=180°-∠ADE=120°,∴∠BEC=∠AEC-∠AED=120°-60°=60°,故答案为:60°,BD=CE ;(2)∠BEC=90°,BE=CE+DE ,理由如下:∵∠BAC=∠DAE=90°,∴AB=AC ,AD=AE ,∠BAC-∠DAC=∠DAE-∠DAC ,即∠BAD=∠CAE ,在△ABD 和△ACE 中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ),∴BD=CE ,∠AEC=∠ADB=135°,∴∠BEC=∠AEC-∠AED=135°-45°=90°,∵BE=BD+DE ,∴BE=CE+DE ;(3)如图,过点C 作CF ⊥AO 交AO 延长线于F ,过点B 作BE ⊥CF 于E,∵∠ACB=90°=∠E=∠AFC ,∴∠BCE+∠ACF=90°=∠BCE+∠CBE ,∴∠ACF=∠CBE ,又∵AC=BC ,∠AFC=∠E ,∴△ACF ≌△CBE (AAS ),∴BE=CF,AF=CE,∵OA=3,OB=6,∴EC+CF=BO=6,OA=AF-OF=CE-BE=CE-CF=3,∴EC=92,CF=32=OF,∴OC2=CF2+OF2=(32)2+(32)2=92.故答案为:9 2.。
一、选择题(每题4分,共20分)1. 下列各数中,有理数是()A. √2B. πC. √-1D. 0.1010010001……2. 下列函数中,是二次函数的是()A. y = x^2 + 3x + 2B. y = 2x^3 - 5x + 1C. y = 3x + 2D. y = 2x - 43. 在直角坐标系中,点P(2,-3)关于y轴的对称点坐标是()A.(-2,-3)B.(2,3)C.(-2,3)D.(2,-3)4. 已知等腰三角形ABC中,AB=AC,AD是底边BC的中线,则∠ADB的度数是()A. 45°B. 60°C. 90°D. 120°5. 若a,b是方程x^2 - 4x + 3 = 0的两个根,则a+b的值是()A. 4B. -4C. 3D. -3二、填空题(每题5分,共25分)6. (1)若x+2=0,则x=__________。
(2)若3x-5=2x+1,则x=__________。
(3)若x^2 - 2x + 1 = 0,则x=__________。
7. 已知函数y=2x+1,当x=3时,y=__________。
8. 在直角坐标系中,点A(-2,3),点B(4,-1),则线段AB的中点坐标是__________。
9. 若a,b是方程2x^2 - 3x - 2 = 0的两个根,则a+b的值是__________。
10. 等腰三角形ABC中,底边BC=6cm,腰AB=AC=8cm,则底边上的高AD=__________cm。
三、解答题(共55分)11. (10分)已知一次函数y=kx+b,其中k≠0,当x=1时,y=2;当x=2时,y=0。
求该一次函数的解析式。
12. (10分)已知正比例函数y=kx(k≠0),当x=3时,y=6;当x=5时,y=10。
求该正比例函数的解析式。
13. (15分)在直角坐标系中,点P(-3,4)关于x轴的对称点为P',点Q(2,-3)关于y轴的对称点为Q'。
大峪中学2024—2025第一学期初二年级数学学科期中考试试卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(共8小题,每小题2分,共16分).1..下列计算正确的是A.342a a a ⋅=B.()339a a =C.33()ab a b =D.824a a a ÷=2.如图,△ABC 中AB 边上的高线为3.如图,盖房子时,在窗框未安装之前,木工师傅常常先在窗框上斜钉一根木条,使其不变形,这种做法的根据是()A .两点之间,线段最短B .三角形的稳定性C .长方形的四个角都是直角D .四边形的稳定性4.将两个含30°和45°的直角三角板如图放置,则∠α的度数是()A .10°B .15°C .20°D .25°5.如图为了测量B 点到河对而的目标A 之间的距离,在B 点同侧选择了一点C ,测得65ABC ∠=︒,35ACB ∠=︒,然后在M 处立了标杆,使65MBC ∠=︒,35MCB ∠=︒,得到MBC ABC ≌△△,所以测得MB 的长就是A ,B 两点间的距离,这里判定MBC ABC ≌△△的理由是()A .SAS B .AAS C .ASA D .SSS(A )AD(B )CE (C )AF (D )BG的值为()是完全平方式,则已知m 9y 42++my 6.图中的四边形均为长方形,用等式表示下图中图形面积的运算为()A.()2222a b a ab b -=-+ B.()()22a b a b a b +-=-C.()2a a b a ab +=+ D.()222a b a ab b +=++7.A.6 B.12 C.6± D.12±8.设a ,b 是实数,定义一种新运算()2a b a b =-☆,下面有四个推断:①a b b a=☆☆②()222a b a b =☆☆③()()a b a b -=-☆☆④()a b c a b a c+=+☆☆☆其中所有正确推断的序号是A .①②③④B .①③④C .①②D .①③二、填空题:(共8小题,每小题2分,共16分).9.三角形两边长分别是4,6,则第三边边长a 的取值范围是.10.一个多边形的每个外角都是40°,则这个多边形的边数是__________.11.===+n m n m a a a 32则,2,3若__________.12.如图,△ABC 中,∠B=20°,D 是BC 延长线上一点,且∠ACD=60°,则∠A的度数是____________.第12题图第13题图13.如图,△ABC 中,∠A=90°,BD 平分∠A BC ,交AC 于点D ,DE ⊥BC 于E,若AB=6,BC=10,AC=8,则ΔCDE 的周长为__________.的条件是,可添加ADC ≌ABC ,添加一个条件使得AD AB 中,ABCD 如图,在四边形∆∆=97103)4(⨯.的值5)-x (2-3)x )(3-x (1)-x 求代数式(,12x 已知22++=-x 14.如图,已知方格纸中是4个相同的小正方形,则=∠+∠+∠321_________.15.________.16.如图,动点C 与线段AB 构成△ABC ,其边长满足AB =9,CA =22a +,CB =23a -.点D 在∠ACB 的平分线上,且∠ADC =90°,则a 的取值范围是_______,△ABD 的面积的最大值为_______.14题图15题图16题图三、解答题:(17题每小题3分共12分;18题6分;19-20题每题4分;21题3分;22-26题每小题5分;27-28题每小题7分)17.计算7352)()1(a a a ∙+)3()31215)(2(3224x x y x y x -÷--)2)(2()2)(3(2y x y x y x -+-+18.19.下面是证明三角形内角和定理的两种添加辅助线的方法,选择其中一种,并完成证明.三角形内角和定理:三角形三个内角的和等于180°.已知:如图,△ABC .求证:∠A+∠B+∠C=180°..的距离相等CA ,BC ,AB 内,且到三边ABC 在P ,使得点P 求作:点.ABC 已知:如图,∆∆.的度数DAE 求,50,30B 若.的高和角平分线ABC 分别是AE ,AD 中,ABC 如图,在∠=∠=∠∆∆ C方法一证明:如图,过点A 作DE ∥BC .方法二证明:如图,过点C 作CD ∥AB .20.如图,点B ,F ,C ,E 在一条直线上,BF =CE ,AB∥ED ,AC ∥FD .求证:△ABC ≌△DEF .21.22.23.已知一个等腰三角形的两边长分别为3cm 和8cm ,求它的周长..的倍数8是)1-n2(1)(2n两个连续奇数的平方差证明:当n是整数时,22-+24.(2)从上面的计算中你发现的规律(用含n的一般形式表示).25.26.已知:如图,A、B、D三点在同一直线上,AC=BC,DC=EC,∠ACB=∠DCE=90°,判断线段AD与线段BE的关系,并证明你的结论。
北师大版2024—2025学年八年级上册数学期中考试模拟试卷(测试范围:第一章~第四章)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、学号、准考证号填写在答题卡上。
2.回答第I卷时,选出每小题答案后,将答案填写在答题卡上对应题目的序号上,答案写在本试卷上无效。
3.回答第II卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第一章~第四章(北师大版)。
5.考试结束后,将本试卷和答题卡一并交回。
第I卷一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、下列四个数中,是无理数的是()A.3.14B.C.D.2、在平面直角坐标系中,点(3,﹣4)在()A.第一象限B.第二象限C.第三象限D.第四象限3、下列表示的图象,y不是x的函数的是()A.B.C.D.4、估算的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间5、已知3m=a,3n=b,那么32m+n等于()A.2ab B.a2+b C.a2b D.a﹣b6、以下列各组数为边长的三角形中,是直角三角形的是()A.0.3,0.4,0.5B.5,6,11C.2,,D.4,5,67、一次函数y=7x﹣3的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限8、在Rt△ABC中,∠C=90°,AC=2,BC=4,则点C到斜边AB的距离是()A.B.2C.D.9、在同一坐标系中,函数y=kx与y=2x﹣k的大致图象是()A.B.C.D.10、已知点和点是直线y=(k﹣2)x+b(0<k<2)上的两个点,则m,n的大小关系是()A.m<n B.m>n C.m=n D.不能确定二、填空题(每小题3分,满分18分)11、在平面直角坐标系内,点M(﹣9,12)到y轴的距离是.12、若二次根式有意义,则a的取值范围是.13、一个直角三角形的两边长是3和4,那么第三边的长是.14、比较大小:(填“>、<、或=”).15、已知函数y=(k﹣3)x|k|﹣2+6是一次函数,则k=.16、如图,正方形ABCD的边长是12,E,F,G分别是BC,CD,BD上的点,已知BE=8,DF=9,求三角形EFG周长的最小值.第II卷北师大版2024—2025学年八年级上册数学期中考试模拟试卷(答题卡)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________准考证号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:﹣+(﹣1)+2.18、已知:x﹣6和3x+14是a的两个不同的平方根,2y+2是a的立方根.(1)求x,y,a的值;(2)求1﹣4x的算术平方根.19、已知y+1与x﹣1成正比,且当x=3时y=﹣5,请求出y关于x的函数表达式.20、已知.(1)求a的值;(2)若a、b分别为一直角三角形的斜边长和一直角边长,求另一条直角边的长度.21、平面直角坐标系中,已知点M(m+2,m﹣5).(1)若点M在x轴上,求点M坐标;(2)若点M在第二、四象限的角平分线上,求点M坐标;(3)在同一平面直角坐标系中,点A(4,6),且AM∥y轴,求点M坐标.22、如图,把一张长方形纸片ABCD折叠起来,使其对角顶点A与C重合,D与G重合,若长方形的长BC为8,宽AB为4,求:(1)DE的长;(2)求阴影部分△GED的面积.23、某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元).(1)求y与x之间的函数表达式(不需要写出自变量取值范围);(2)根据市场调研发现,甲产品需求量吨数范围是1000≤x≤1200.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.24、如图,在△ABC中,AB=AC,AD⊥BC于点D,∠CBE=45°,BE分别交AC、AD于E、F.(1)如图1,AB=12,BC=8,求AF的长度;(2)如图2,取BF中点G,若BF2+EF2=CG2,求证:AF=BC;(3)如图3,在(2)的条件下,过点D作DN⊥AC于点N,并延长ND交AB延长线于点M,请直接写出的值.25、如图1,在平面直角坐标系中,点A坐标为(﹣4,4),点B的坐标为(2,0).(1)求线段AB的长;(2)点M是坐标轴上的一个点,若以AB为直角边构造直角三角形△ABM,请求出满足条件的所有点M的坐标;(3)如图2,以点A为直角顶点作∠CAD=90°,射线AC交x轴的负半轴于点C,射线AD交y轴的负半轴于点D,当∠CAD绕点A旋转时,OC﹣OD 的值是否发生变化?若不变,直接写出它的值;若变化,直接写出它的变化范围(不要求写解题过程).。
苏科版八年级上册数学期中考试试卷一、单选题1.下列四个标志是关于安全警示的标志,在这些标志中,是轴对称图形的是()A.B.C.D.2.4的平方根是()A.±2B.2C.-2D.±83.下列每一组数据中的三个数值分别为三角形的三边长,能构成直角三角形的是()A.3、4、5B.7、8、10C.5、12、14D.2、3、44.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为()A.40°B.100°C.40°或100°D.70°或50°5.一个等腰三角形的两边长分别是2和7,则它的周长是()A.11B.16C.15D.11或166.等边三角形中,两条中线所夹的锐角的度数为A.30°B.40°C.50°D.60°7.在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适 ()当的位置是在ABCA.三边中线的交点B.三边垂直平分线的交点C.三条角平分线的交点D.三边上高的交点8.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB 的长度为()A.5B.6C.7D.259.已知()22x -,求x+y 的值()A .-1B .-3C .1D .310.如图,DE 是△ABC 中AC 边上的垂直平分线,如果BC=5cm ,AB=6cm ,则△EBC 的周长为()A .8cmB .9cmC .10cmD .11cm二、填空题11.9的算术平方根是.12.等腰三角形的一个内角120°,则它的底角是_____.13.直角三角形的两条直角边长为6,8,那么斜边上的中线长是____.14.直角三角形的一直角边长4cm ,斜边长5cm ,则其斜边上的高是__________cm .15.在△ABC 中,∠A =80°,当∠B =_____时,△ABC 是等腰三角形.16.如图,∠1=∠2,要使△ABE ≌△ACE ,需添加一个条件是__________.(填上一个条件即可)17.如图,点E 在正方形ABCD 内,满足90AEB =︒∠,3AE =,4BE =,则阴影部分的面积是________.18.如图所示,已知△ABC 的周长是12,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D,且OD=3,则△ABC的面积是_____________三、解答题19.计算:求出下列x的值.x-=(1)x2=16(2)()316420.已知:如图,AC∥DF,AC=DF,AB=DE.求证:(1)△ABC≌△DEF;(2)BC∥EF.21.如图,△ABC中,∠B=90°,BC上一点D,BD=6,CD=10(1)若AD平分∠BAC,求点D到AC边的距离;(2)若点D恰好在AC边的垂直平分线上,求AB的长.22.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△BDE≌△CEF;(2)当∠A=40°时,求∠B和∠EDF的度数;23.已知△ABC中,AB=AC,CD⊥AB于D.(1)若∠A=40°,求∠B和∠BCD的度数;(2)若AC=5,CD=3,求BD和BC的长.24.钓鱼岛是中国的固有领土.近期我国海监船加大钓鱼岛海域的巡航维权力度.如图,OA OB,OA=90海里,OB=30海里,钓鱼岛位于O点,我国海监船在点B处发现有一不明国籍的渔船自A点出发沿着AO方向匀速驶向钓鱼岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.(1)请用直尺和圆规作出C处的位置.(不写作法,保留作图痕迹)(2)求我国海监船行驶的航程BC的长.25.在△ABC和△DEC中,AC=BC,DC=EC,∠ACB=∠ECD=90°,(1)如图1,当点A、C、D在同一条直线上时,AC=4,EC=3,①求证:AF⊥BD;②AF的长度为直接写出答案);(2)如图2,当点A、C、D不在同一条直线上时,求证:AF⊥BD;(3)如图3,在(2)的条件下,连接CF并延长CF交AD于点G,则∠FCD+∠FEC=(直接写出答案)26.如图,长方形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上的E点处,折痕的一端G点在边BC上.(1)如图1,当折痕的另一端F在AB边上且AE=4时,求AF的长(2)如图2,当折痕的另一端F在AD边上且BG=10时,①求证:EF=EG;②求AF的长.(3)如图3,当折痕的另一端F在AD边上,B点的对应点E在长方形内部,E到AD的距离为2cm,且BG=10时,求AF的长.参考答案1.D【解析】【分析】根据轴对称图形的定义,逐一判断选项,即可.【详解】A.不是轴对称图形,不符合题意,B.不是轴对称图形,不符合题意,C.不是轴对称图形,不符合题意,D.是轴对称图形,符合题意,故选D【点睛】本题主要考查轴对称图形的定义,熟练掌握轴对称图形的定义,是解题的关键.2.A【解析】【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的一个平方根.【详解】解:∵(±2)2=4,∴4的平方根是±2,故选:A.【点睛】本题主要考查平方根的定义,熟练掌握平方根的定义是解题的关键.3.A【解析】【分析】判断是否为直角三角形,这里给出三边的长,只要验证两小边的平方和是否等于最长边的平方即可.A、32+42=52,能构成直角三角形,故此选项符合题意;B、72+82≠102,不能构成直角三角形,故此选项不符合题意;C、52+122≠142,不能构成直角三角形,故此选项不符合题意;D、22+32≠42,不能构成直角三角形,故此选项不符合题意.故选:A.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4.C【解析】【分析】根据等腰三角形的性质及三角形的内角和定理即可求得结果.【详解】解:①当等腰三角形的一个底角为40°时,它的顶角为180°-40°×2=100°②当等腰三角形的一个顶角为40°时,它的顶角为40°故选:C.【点睛】本题考查了等腰三角形的性质,三角形的内角和定理,解答本题的关键是熟练掌握等腰三角形的两个底角相等,三角形的内角和为180°.5.B【解析】【分析】题目给出等腰三角形有两条边长为2和7,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:分两种情况:当腰为2时,2+2<7,所以不能构成三角形;当腰为7时,2+7>7,所以能构成三角形,周长是:2+7+7=16.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.6.D【解析】【分析】如图,等边三角形ABC中,根据等边三角形的性质知,底边上的高与底边上的中线,顶角的平分线重合,所以∠1=∠2=12∠ABC=30°,再根据三角形外角的性质即可得出结论.【详解】解:如图,∵等边三角形ABC,AD、BE分别是中线,∴AD、BE分别是角平分线,∴∠1=∠2=12∠ABC=30°,∴∠3=∠1+∠2=60°.故选:D.【点睛】本题考查的是等边三角形的性质,熟知等边三角形三线合一的性质是解答此题的关键.7.B【解析】【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.解:∵三角形的三条边的垂直平分线的交点到中间的凳子的距离相等,∴凳子应放在△ABC的三边中垂线的交点最适当.故选:B.【点睛】本题主要考查了游戏的公平性与线段垂直平分线的性质的应用;利用所学的数学知识解决实际问题是一种能力,要注意培养.想到要使凳子到三个人的距离相等是正确解答本题的关键.8.A【解析】【分析】建立格点三角形,利用勾股定理求解AB的长度即可.【详解】解:如图所示:AB==.5故选:A.【点睛】本题考查了勾股定理的知识,解题的关键是掌握格点三角形中勾股定理的应用.9.C【解析】【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【详解】x-+=0,解:∵()22∴x-2=0,y+1=0,∴x=2,y=-1,∴x+y=2-1=1,故选:C.【点睛】本题考查了代数式的求值,非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.D【解析】【分析】利用线段垂直平分线的性质得AE=CE,再等量代换即可求得三角形的周长.【详解】解:∵DE是△ABC中AC边的垂直平分线,∴AE=CE,∴AE+BE=CE+BE=AB=6cm,∴△EBC的周长=BC+BE+CE=5+6=11(cm).故选:D.【点睛】本题主要考查了线段垂直平分线的性质,利用线段进行等量代换是解答本题的关键.11.3【解析】【分析】根据一个正数的算术平方根就是其正的平方根即可得出.【详解】∵239 ,∴9算术平方根为3.故答案为:3.【点睛】本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.12.30°【解析】【分析】因为三角形的内角和为120°,所以120°只能为顶角,从而可求出底角.【详解】∵120°为三角形的顶角,∴底角为:(180°﹣120°)÷2=30°.故答案为30°.【点睛】本题考查等腰三角形的性质,等腰三角形的两个底角相等,从而可求出解.13.5【解析】【分析】先根据勾股定理求出斜边的长,再根据斜边上的中线等于斜边的一半求解即可.【详解】解:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10.∴斜边上的中线长=12×10=5.故答案为:5.【点睛】本题主要考查了勾股定理的应用和直角三角形斜边上的中线等于斜边的一半,关键是能正确求出斜边的长度.14.2.4【解析】【分析】根据勾股定理求出直角三角形另一条一直角边,根据三角形的面积公式计算即可.【详解】解:设斜边上的高为hcm,=3,由三角形的面积公式可得,1 2×3×4=12×h×5,解得,h=12 2.45=,故答案为:2.4.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.15.20°或50°或80°【解析】【分析】分三种情况分析,A ∠是顶角,B Ð是顶角,C ∠是顶角,【详解】∵80A ∠=︒,∴①当C ∠是顶角,80B A ∠=∠=︒时,△ABC 是等腰三角形;②当A ∠是顶角,∠B=(180°﹣80°)÷2=50°时,△ABC 是等腰三角形;③B Ð是顶角,∠B=180°﹣80°×2=20°时,△ABC 是等腰三角形;故答案为:80°或50°或20°16.∠B=∠C (或BE=CE 或∠BAE=∠CAE )【解析】【分析】根据题意,易得∠AEB=∠AEC ,又AE 公共,所以根据全等三角形的判定方法容易寻找添加条件.【详解】解:∵∠1=∠2,∴∠AEB=∠AEC ,又AE 是公共边,∴当∠B=∠C 时,△ABE ≌△ACE (AAS );当BE=CE 时,△ABE ≌△ACE (SAS );当∠BAE=∠CAE 时,△ABE ≌△ACE (ASA ).故答案为:∠B=∠C (或BE=CE 或∠BAE=∠CAE ).【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.17.19【解析】【分析】根据勾股定理求出AB,分别求出△AEB和正方形ABCD的面积,即可求出答案.【详解】解:∵在Rt△AEB中,∠AEB=90°,AE=3,BE=4,由勾股定理得:AB=5,∴正方形的面积是5×5=25,∵△AEB的面积是12AE×BE=12×3×4=6,∴阴影部分的面积是25-6=19,故答案为:19.18.18【分析】过点O作OE⊥AB于E,作OF⊥AC于F,根据角平分线上的点到角的两边的距离相等可得OE=OD=OF,然后根据三角形的面积列式计算即可得解.【详解】解:如图,过点O作OE⊥AB于E,作OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,OD⊥BC,∴OE=OD=OF=3,∴△ABC的面积=12×(AB+BC+CA)×3=12×12×3=18.故答案为:18.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.注意:角平分线上的点到角的两边的距离相等.19.(1)x=±4;(2)x=5【解析】【分析】(1)直接利用平方根的定义计算得出答案;(2)直接利用立方根的定义计算得出答案.【详解】解:(1)x 2=16,解得:x=±4;(2)(x-1)3=64,故x-1=4,解得:x=5.【点睛】本题主要考查了立方根和平方根,正确掌握相关定义是解题关键.20.(1)见解析;(2)见解析【解析】【分析】(1)由平行线的性质可得∠A=∠FDE ,再由已知即可证得结论;(2)由全等三角形的性质可得∠ABC=∠E ,由平行线的判定定理即可得到结论.(1)∵AC ∥DF∴∠A=∠FDE在△ABC 和△DEF 中AC DFA FDE AB DE=⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF(SAS)(2)∵△ABC≌△DEF∴∠ABC=∠E∴BC∥EF【点睛】本题考查了全等三角形的判定与性质、平行线的判定与性质,掌握这两个判定与性质是关键.21.(1)6;(2)8【解析】【分析】(1)过点D作DH⊥AC于点H,根据角平分线的性质可得出结论;(2)根据D恰好在AC边的垂直平分线上得出AD=CD=10,在Rt△ABD中根据勾股定理即可得出AB的长.【详解】(1)过点D作DH⊥AC于点H,∵AD平分∠BAC,∠B=90°,∴DH=BD=6,即点D到AC边的距离是3;(2)∵点D恰好在AC边的垂直平分线上,∴AD=CD=10,在Rt△ABD中,∵AD=10,BD=6,∴8=.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.22.(1)见解析;(2)∠B=70°;∠EDF=55°【解析】【分析】(1)由等腰三角形的性质可知B C ∠=∠,即可直接利用“SAS”证明BDE CEF ≅ .(2)根据三角形内角和定理和等腰三角形的性质可求出B Ð的大小,再根据全等三角形的性质可推出BDE CEF ∠=∠,DE EF =,进而得出EDF EFD ∠=∠.再次根据三角形内角和定理和平角可得出180B BDE BED DEF CEF BED ∠+∠+∠=∠+∠+∠=︒,即得到70B DEF ∠=∠=︒,最后再次利用三角形内角和定理和等腰三角形的性质即可求出答案.【详解】解:(1)∵AB=AC∴B C ∠=∠.在BDE 和CEF △中BE CF B C BD CE =⎧⎪∠=∠⎨⎪=⎩,∴()BDE CEF SAS ≅ .(2)∵40A ∠=︒,∴1(180)702B C A ∠=∠=︒-∠=︒.∵BDE CEF ≅ ,∴BDE CEF ∠=∠,DE EF =,∴EDF EFD ∠=∠.∵180B BDE BED DEF CEF BED ∠+∠+∠=∠+∠+∠=︒∴70B DEF ∠=∠=︒,∴1(180)552EDF EFD DEF ∠=∠=︒-∠=︒.23.(1)∠B=70°,∠BCD=20°;(2)BD=1,【分析】(1)在△ABC 中,AB=AC ,∠A=40°,利用等腰三角形的性质求出∠B 的度数,在Rt △CBD 中,求出∠BCD 的度数;(2)在Rt △CDA 中,利用勾股定理求出AD 的长,然后求出BD 的长,再在Rt △CDB 中,利用勾股定理求出BC 的长即可.【详解】解:(1)∵在△ABC 中,AB=AC ,∠A=40°,∴∠B=12×(180°-40°)=70°,又∵CD ⊥AB 于D ,∴在Rt △CBD 中,∠BCD=90°-∠B=20°;(2)在Rt △CDA 中,∵AC=AB=5,CD=3,∴,∴BD=AB-AD=5-4=1.在Rt △CDB 中,CD=3,BD=1,∴=24.(1)见解析;(2)我国渔政船行驶的航程BC 的长为50海里【分析】(1)利用尺规作图作AB 的垂直平分线即可;(2)设BC 为x 海里,在Rt OBC ∆利用勾股定理列方程即可解题.【详解】解:(1)作AB 的垂直平分线与OA 交于点C ;(2)连接BC ,设BC 为x 海里,则CA 也为x 海里,OC 为(90-x)海里∵∠O=90°,∴在Rt OBC ∆中,222BO OC BC +=,即:302+(90-x)2=x 2解得:x=50,答:我国渔政船行驶的航程BC 的长为50海里【点睛】本题考查了勾股定理的应用以及线段垂直平分线的性质,利用勾股定理不仅仅能求直角三角形的边长,而且它也是直角三角形中一个重要的等量关系.25.(1)①见解析;②AF=5.6;(2)见解析;(3)45°【解析】【分析】(1)①证明△ACE ≌△BCD ,得到∠1=∠2,由对顶角相等得到∠3=∠4,所以∠BFE=∠ACE=90°,即可解答;②根据勾股定理求出BD ,利用△ABD 的面积的两种表示方法,即可解答;(2)证明△ACE ≌△BCD ,得到∠1=∠2,又由∠3=∠4,得到∠BFA=∠BCA=90°,即可解答;(3)∠AFG=45°,如图3,过点C 作CM ⊥BD ,CN ⊥AE ,垂足分别为M 、N ,由△ACE ≌△BCD ,得到S △ACE=S △BCD ,AE=BD ,证明得到CM=CN ,得到CF 平分∠BFE ,由AF ⊥BD ,得到∠BFE=90°,所以∠BFC=45°,根据三角形外角的性质即可得到∠FCD+∠FEC=45°.【详解】(1)①证明:如图1,在△ACE 和△BCD 中,∵90AC BC ACB ECD EC DC =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ACE ≌△BCD ,∴∠1=∠2,∵∠3=∠4,∴∠BFE=∠ACE=90°,∴AF ⊥BD ;②∵∠ECD=90°,BC=AC=4,DC=EC=3,∴=5,∵S △ABD=12AD•BC=12BD•AF ,即12×(4+3)×4=12×5•AF ,∴AF=5.6;(2)证明:如图2,∵∠ACB=∠ECD=90°,∴∠ACB+∠ACD=∠ECD+∠ACD ,∴∠BCD=∠ACE ,在△ACE ≌△BCD 中,AC BCACE BCD EC DC=⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD ,∴∠1=∠2,∵∠3=∠4,∴∠BFA=∠BCA=90°,∴AF ⊥BD ;(3)∠FCD+∠FEC=45°,如图3,过点C 作CM ⊥BD ,CN ⊥AE ,垂足分别为M 、N ,∵△ACE ≌△BCD ,∴S △ACE=S △BCD ,AE=BD ,∠FEC=∠FDC ,∵S △ACE=12AE•CN ,S △BCD=12BD•CM ,∴CM=CN ,∵CM ⊥BD ,CN ⊥AE ,∴CF 平分∠BFE ,∵AF ⊥BD ,∴∠BFE=90°,∴∠BFC=45°,∴∠FCD+∠FEC=∠FCD+∠FDC=∠BFC=45°.【点睛】本题考查了全等三角形的判定定理与性质定理,角平分线的判定和性质,解决本题的关键是证明△ACE ≌△BCD ,得到三角形的面积相等,对应边相等.26.(1)3;(2)①见解析,②6;(3)223【分析】(1)根据翻折的性质可得BF =EF ,然后用AF 表示出EF ,在Rt △AEF 中,利用勾股定理列出方程求解即可;(2)①根据翻折的性质可得∠BGF =∠EGF ,再根据两直线平行,内错角相等可得∠BGF =∠EFG ,从而得到∠EGF =∠EFG ,再根据等角对等边证明即可;②根据翻折的性质可得EG =BG ,HE =AB ,FH =AF ,然后在Rt △EFH 中,利用勾股定理列式计算即可得解;(3)设EH 与AD 相交于点K ,过点E 作MN ∥CD 分别交AD 、BC 于M 、N ,然后求出EM、EN,在Rt△ENG中,利用勾股定理列式求出GN,再根据△GEN和△EKM相似,利用相似三角形对应边成比例列式求出EK、KM,再求出KH,然后根据△FKH和△EKM相似,利用相似三角形对应边成比例列式求解即可.【详解】(1)解:∵纸片折叠后顶点B落在边AD上的E点处,∴BF=EF,∵AB=8,∴EF=8﹣AF,在Rt△AEF中,AE2+AF2=EF2,即42+AF2=(8﹣AF)2,解得AF=3;(2)①证明:∵纸片折叠后顶点B落在边AD上的E点处,∴∠BGF=∠EGF,∵长方形纸片ABCD的边AD∥BC,∴∠BGF=∠EFG,∴∠EGF=∠EFG,∴EF=EG;②解:∵纸片折叠后顶点B落在边AD上的E点处,∴EG=BG=10,HE=AB=8,FH=AF,∴EF=EG=10,在Rt△EFH中,FH6,∴AF=FH=6;(3)解:如图3,设EH与AD相交于点K,过点E作MN∥CD分别交AD、BC于M、N,∵E到AD的距离为2cm,∴EM=2,EN=8﹣2=6,在Rt△ENG中,GN=8,∵∠GEN+∠KEM=180°﹣∠GEH=180°﹣90°=90°,∠GEN+∠NGE=180°﹣90°=90°,∴∠KEM=∠NGE,又∵∠ENG=∠KME=90°,∴△GEN∽△EKM,∴EKEG=KMEN=EMGN,即EK10=KM6=28,解得EK=52,KM=32,∴KH=EH﹣EK=8﹣52=112,∵∠FKH=∠EKM,∠H=∠EMK=90°,∴△FKH∽△EKM,∴FHEM=KHKM,即FH2=11232,解得FH=22 3,∴AF=FH=22 3.。
四川省成都市金牛实验中学2024-2025学年上学期八年级半期考试数学试题一、单选题1.式子:①35<;②450x +>;③3x =;④2x x +;⑤4x ≠-;⑥21x x +≥+.其中是不等式的有().A .2个B .3个C .4个D .5个2.金沙遗址陈列馆有5个展厅,分别是第一展厅:远古家园;第二展厅:王都剪影;第三展厅:天地不绝;第四展厅:千载遗珍;第五展厅:解读金沙.某班同学分小组到以上五个展厅进行研学活动,人数分别为:9,11,8,11,10(单位:人),这组数据的众数和中位数分别是()A .11人,10人B .11人,8人C .11人,9人D .9人,8人3.若x >y ,则下列各式正确的是()A .x +2<y +2B .x ﹣2<y ﹣2C .﹣2x <﹣2yD .1122x y <4.在平面直角坐标系中,已知点(,)M a b ,(4,7)N ,//MN x 轴,则一定有()A .4a =B .4a =-C .7b =-D .7b =5.不等式3(x +1)>2x +1的解集在数轴上表示为()A .B .C .D .6.下表中记录了甲、乙、丙、丁四名运动员跳远选拔赛成绩(单位:cm )的平均数和方差,要从中选择一名成绩较高且发挥稳定的运动员参加决赛,最合适的运动员是()甲乙丙丁平均数x 376350376350方差2s 12.513.52.45.4A .甲B .乙C .丙D .丁7.下列图象中,可以表示一次函数y kx b =+与正比例函数y kbx =(k ,b 为常数,且0kb ≠)的图象的是()A .B .C .D .8.乐乐和姐姐一起出去运动,两人同时从家出发.沿相同路线前行,途中姐姐有事返回,乐乐继续前行,5分钟后也原路返回,两人恰好同时到家,乐乐和姐姐在整个运动过程中离家的路程1y (米),2y (米)与运动时间x (分)之间的函数关系如图所示.下列结论中错误的是()A .两人前行过程中的速度为180米/分B .m 的值是15,n 的值是2700C .姐姐返回时的速度为90米/分D .运动18分钟时,两人相距800米二、填空题9.若()120mx x ++>是关于x 的一元一次不等式,则m =.10.某校在期末考核学生的体育成绩时,将早锻炼及体育课外活动表现占成绩的20%,体育理论测试占30%,体育技能测试占50%.小颖的上述成绩分别为92分、80分、84分,则小颖这学期的体育成绩是分11.直角坐标系中,点P (x ,y )在第三象限,且P 到x 轴和y 轴的距离分别为3,4,则点P 的坐标为.12.如图,在平面直角坐标系中,直线21y x =+与直线3y x m =-+相交于点P ,若点P 的横坐标为1,则关于,x y 的二元一次方程组213y x y x m =+⎧⎨=-+⎩的解是.13.如图,一次函数y kx b =+(k 、b 为常数,且0k ≠)与正比例函数y ax =(a 为常数,且0a ≠)相交于点P ,则不等式kx b ax +≤的解集是.三、解答题14.计算(1)112202432-⎛⎫+-- ⎪⎝⎭;(3)11324(25)11x y x y +⎧-=⎪⎨⎪--=⎩①②;(4)解不等式组()214131132x xx x ⎧+≥⎪⎨-++>⎪⎩,并将解集在数轴上表示出来.15.某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:(1)上表中众数m 的值为;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.16.如图,在平面直角坐标系中,(2,4)(3,1)(2,1)A B C --,,.(1)在图中作出ABC V 关于x 轴的对称图形111A B C △,并直接写出点1C 的坐标;(2)求ABC V 的面积;(3)点(,2)P a a -与点Q 关于x 轴对称,若8PQ =,直接写出点P 的坐标.17.某市自来水公司为鼓励居民节约用水,采取按月用水量分段收费办法,若某户居民应交水费y (元)与用水量x (吨)的函数关系如图所示.(1)分别写出当015x ≤≤和15x >时,y 与x 的函数关系式;(2)若某用户十月份用水量为10吨,则应交水费多少元?若该用户十一月份交了51元的水费,则他该月用水多少吨18.直线3AB y x =+:分别与x ,y 轴交于A ,B 两点、过点B 的直线交x 轴正半轴于点C ,且:3:1OB OC =.(1)直接写出点A 、B 、C 的坐标;(2)在线段OB 上存在点P ,使点P 到B ,C 的距离相等,求出点P 的坐标:(3)在第一象限内是否存在一点E ,使得BCE 为等腰直角三角形,若存在,直接写出E 点坐标;若不存在,说明理由.四、填空题19.若点(),m n 在函数34y x =-的图象上,则62m n -的值是.20.若关于x 的不等式23335x x x a -⎧⎨-≥⎩>只有两个整数解,则a 的取值范围是.21.对于实数a b ,,定义运算“※”:())ab a b a a b <⎧=≥※,例如23-※,因为23-<,所以23236-=-⨯=-※.若,x y 满足方程组48229x y x y -=-⎧⎨+=⎩,则x y =※.22.如图,在平面直角坐标系中,点C 的坐标是(0,4),作点C 关于直线AB :y =+1的对称点D ,则点D 的坐标是.23.如图六边形ABCDEF 是正六边形,曲线123456FA A A A A A …叫做正六边形的渐开线,满足1AA AF =,21BA BA =,32CA CA =,43DA DA =…;点B 、点A 与点1A 共线,点C 、点B 与点2A 共线,点D 、点C 与点3A 共线…,当点A 坐标为()1,0,点B 坐标为()0,0时,点2021A 的坐标是.五、解答题24.定义:如果一元一次方程的解是一元一次不等式组的解,则称该一元一次方程为该不等式组的【相伴方程】.(1)在下列方程中:①10x -=;;②2103x +=;③()315x x -+=-,与不等式组25312x x x x -+>-⎧⎨->-+⎩是【相伴方程】的是;(填序号)(2)若不等式组312332x x x ⎧-<⎪⎨⎪-+>-+⎩的一个【相伴方程】的解是整数,则这个【相伴方程】可以是;(写出一个即可)(3)若方程32x -=,1322x x ⎛⎫+=+ ⎪⎝⎭都是关于x 的不等式组2312x x m x m ≤-⎧⎨-≤⎩的【相伴方程】,求m 的取值范围.25.某服装店准备购进甲、乙两种服装出售,甲种每件售价120元,乙种每件售价90元.每件甲服装的进价比乙服装的进价贵20元,购进3件甲服装的费用和购进4件乙服装的费用相等,现计划购进两种服装共100件,其中甲种服装不少于65件.(1)甲种服装进价为多少元/件?乙种服装进价为多少元/件?(2)若购进这100件服装的费用不得超过7500元:①求甲种服装最多购进多少件?②该服装店对甲种服装每件降价a (020)a <<元,乙种服装价格不变,如果这100件服装都可售完,那么该服装店如何进货才能获得最大利润?26.如图1,已知直线l1:y=kx+b与直线l2:y=43x交于点M,直线l1与坐标轴分别交于A,C两点,且点A坐标为(0,7),点C坐标为(7,0).(1)求直线l1的函数表达式;(2)在直线l2上是否存在点D,使△ADM的面积等于△AOM面积的2倍,若存在,请求出点D的坐标,若不存在,请说明理由;(3)若点P是线段OM上的一动点(不与端点重合),过点P作PB∥x轴交CM于点B,设点P的纵坐标为m,以点P为直角顶点作等腰直角△PBF(点F在直线PB下方),设△PBF 与△MOC重叠部分的面积为S,求S与m之间的函数关系式,并写出相应m的取值范围.。
考试时间:90分钟满分:100分一、选择题(每题2分,共20分)1. 下列数中,有理数是()。
A. √9B. √-9C. √16D. √02. 下列各数中,绝对值最小的是()。
A. -3B. -2C. 0D. 13. 已知a > 0,b < 0,则下列不等式中正确的是()。
A. a + b > 0B. a - b < 0C. -a + b > 0D. -a - b > 04. 如果一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的周长是()cm。
A. 20B. 24C. 28D. 325. 下列函数中,y是x的一次函数的是()。
A. y = x^2 + 1B. y = 2x + 3C. y = √xD. y = 5/x6. 下列图形中,轴对称图形是()。
A. 正方形B. 等边三角形C. 长方形D. 圆7. 若a,b是方程x^2 - 5x + 6 = 0的两根,则a^2 + b^2的值为()。
A. 1B. 4C. 9D. 168. 下列各式中,正确的是()。
A. a^2 = aB. (a + b)^2 = a^2 + b^2C. (a - b)^2 = a^2 - b^2D. (a + b)^2 = a^2 + 2ab + b^29. 已知等腰三角形ABC中,AB = AC,若∠BAC = 50°,则∠ABC的度数是()。
A. 50°B. 65°C. 75°D. 80°10. 下列各式中,正确的是()。
A. 2√3 - √2 = √6 - √2B. 2√3 + √2 = √6 + √2C. 2√3 - √2 = √6 - √2D. 2√3 + √2 = √6 + √2二、填空题(每题2分,共20分)11. 若a = -3,b = -2,则a^2 - b^2的值为________。
12. 在直角坐标系中,点A(2,3)关于x轴的对称点坐标为________。
八年级数学半期考试卷八年级数学半期考试卷1一.选择题(共10小题,满分30分,每小题3分)1.下列二次根式中,属于最简二次根式的是()A.B.C.D.2.在平行四边形ABCD中,∠A=55°,则∠D的度数是()A.105°B.115°C.125°D.55°3.在平行四边形ABCD中,若∠A=60°,则∠B的度数是()A.30°B.60°C.90°D.120°4.国庆节期间,重庆南开中学用彩灯带装饰了艺术楼大厅的所有圆柱形柱子.为了美观,每根柱子的彩灯带需要从A点沿柱子表面缠绕两周到其正上方的B点,如图所示,若每根柱子的底面周长均为2米,高均为3米,则每根柱子所用彩灯带的最短长度为()A.米B.米C.米D.5米5.如图一个圆桶儿,底面直径为12cm,高为8cm,则桶内能容下的最长的木棒为()A.8cm B.10cm C.4cm D.20cm6.已知,整数x满足﹣6≤x≤6,y1=x+1,y2=﹣2x+4,对任意一个x,p都取y1,y2中的大值,则p的最小值是()A.4 B.1 C.2 D.﹣57.李老师设计了一个关于实数运算的程序:输入一个数,乘以后再减去,输出结果.若小刚按程序输入2,则输出的结果应为()A.2 B.C.﹣D.38.如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与线段AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠AOF的度数是()A.105°B.110°C.115°D.120°9.如图,直角△ABC沿BC方向平移到△DEF的位置,平移的距离为8,AB=6,则图中四边形ACFD的面积是()A.24 B.36C.48 D.以上答案都不对10.如图,在▱ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD于点F,连接AE、CF.则四边形AECF是()A.梯形B.矩形C.菱形D.正方形二.填空题(共6小题,满分18分,每小题3分)11.如图:▱ABCD对角线相交于点O,E是DC的中点,若AC=8,△OCE的周长为10,那么▱ABCD的周长是.12.某日上午,甲、乙两车先后从A地出发沿同一条公路匀速前往B地,甲车8点出发,如图是其行驶路程s(千米)随行驶时间t(小时)变化的图象.乙车9点出发,若要在当天12点至13点之间(含12点和13点)追上甲车,则乙车的速度v(单位:千米/小时)的范围是.13.要使式子在实数范围内有意义,则x的取值范围是.14.一个等腰三角形工件,尺寸标注如图,则△ABC的面积为.15.直线y=x+2与直线y=﹣x+n的交点在第二象限,则n的取值范围是.16.如图,长方形ABCD中,AD=20,AB=8,点Q是BC的中点,点P在AD边上运动,当△BPQ是等腰三角形时,AP的长为.三.解答题(共9小题,满分72分)17.(8分)计算:(1)(+)×;(2)(5+).18.(4分)图图碰到这样一道题:将分式约分.并选一个你喜欢的数代入求值.图图这样解:==.当x=1时,原式=.图图的解法正确吗?试说明理由.19.(4分)已知,AB∥DC,AC、BD交于O,且AC=BD,求证:OC=OD.20.(8分)如图,AD是△ABC的中线,且AC=17,BC=16,AD=15.(1)判断△ABC的形状;(2)求点D到边AC的距离.21.(6分)如图,矩形ABCD中∠ABD,∠CDB的平分线BE,DF分别交边AD,BC于点E,F.(1)求证:四边形BEDF为平行四边形;(2)当∠ABE的度数是时,四边形BEDF是菱形.22.(8分)如图,直线AO,BO表示两条笔直的公路,它们相交于点O,点M,N表示两个村庄,现计划新建一家超市,使得超市到两条公路的距离相等,同时要求到两个村庄的距离也相等,请你在图中用尺规确定超市的位置.(保留作图痕迹,不用写作法)23.(10分)已知直线x﹣2y=﹣k+6和x+3y=4k+1,若它们的交点在第四象限内.(1)求k的取值范围;(2)若k为非负整数,点A的坐标(2,0),点P在直线x﹣2y=﹣k+6上,求使△PAO 为等腰三角形的点的坐标.24.(12分)在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想:如图1,当点D在线段BC上时,①BC与CF的位置关系为;②BC,CD,CF之间的数量关系为.(将结论直接写在横线上)(2)数学思考:如图2,当点D在线段CB的延长线上时,第(1)中结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸:如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧正方形ADEF的对角线AE,DF交于点O,其他条件不变,若AB=3,CF=1,请直接写出DF长度.25.(12分)如图,平面直角坐标系的单位是厘米,直线AB的解析式为y=x﹣6,分别与x轴y轴相交于A、B两点.点C在射线BA上以3cm/秒的速度运动,以C点为圆心作半径为1cm的⊙C.点P以2cm/秒的速度在线段OA上来回运动,过点P作直线l垂直与x轴.(1)求A、B两点的坐标;(2)若点C与点P同时从点B、点O开始运动,求直线l与⊙C第2次相切时点P的坐标;(3)在整个运动过程中,直线l与⊙C有交点的时间共有多少秒?八年级数学半期考试卷1参考答案1.A.2.C.3.D.4.D.5.C.6.C.7.B.8.A.9.C.10.C.11.24.12.75≤v≤80.13.x≥﹣3且x≠2.14.512mm2.15.﹣6<n<2.16.4或5或6或16.17.解:(1)原式=+=+=4+2.(2)原式=5÷+÷=5×4+2=22.18.解:图图的解法不正确.理由如下:分式有意义,则x≠0且x≠1且x≠﹣1,所以图图的解法不正确.19.证明:如图,过A作AE∥BD,交CD的延长线于点E,∵AB∥DC,∴四边形ABDE为平行四边形,∴AE=BD,∠E=∠BDC,∵AC=BD,∴∠E=∠C,∴∠BDC=∠C,∴OD=OC.20.证明:(1)∵AD是△ABC的中线(已知),∴BD=CD(中线的性质),∵BC=16,∴BD=CD=8,∵AC=17,AD=15,CD=8,∴AD2+CD2=152+82=289,AC2=172,∴AD2+CD2=AC2,∴∠ADC=90°,∴AD⊥BC,∴△ABC为等腰三角形;(2)过点D作DE⊥AC,交AC于点E,∵S=CD•AD=AC•DE,△ADC∴CD•AD=AC•DE,∴8×15=17DE,∴DE=.21.证明:(1)∵四边形ABCD是矩形,∴AB∥DC、AD∥BC,∴∠ABD=∠CDB,∵BE平分∠ABD、DF平分∠BDC,∴∠EBD=∠ABD,∠FDB=∠BDC,∴∠EBD=∠FDB,∴BE∥DF,∴四边形BEDF是平行四边形;(2)当∠ABE=30°时,四边形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°﹣∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形,故答案为:30°.22.解:如图,点P即为所求.23.解:(1)由题可得:,解得:,∴两直线的交点坐标为(k+4,k﹣1),又∵交点在第四象限,∴,解得:﹣4<k<1;(2)由于k为非负整数且﹣4<k<1,∴k=0,此函数的解析式为:x﹣2y=6.直线x﹣2y=6与y轴的交点坐标为:(0,﹣3),与x轴交点坐标为(6,0),∵A(2,0),∴AO=2,∵2<3,若OP=AP,则点P的横坐标为1,代入x﹣2y=6,可得y=﹣,∴可得P1点坐标为(1,﹣);设P(2y+6,y),若OA=OP,则(2y+6)2+y2=4,此时无解;若OA=AP,则(2y+6﹣2)2+y2=4,解得:y=﹣2或y=﹣,∴P2(2,﹣2)或P3(,﹣).24.解:(1)①BC⊥CF;证明:正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC(SAS),∴∠ABC=∠ACF,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠ACB+∠ACF=45°+45°=90°,即BC⊥CF;故答案为BC⊥CF;②∵△DAB≌△FAC,∴CF=BD,∵BC=BD+CD,∴BC=CF+CD;故答案为:BC=CF+CD;(2)CF⊥BC成立,BC=CD+CF不成立,CF=CD+BC,∵四边形ADEF是正方形,∴AD=AF,∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC(SAS),∴∠ABD=∠ACF,∵∠BAC=90°,AB=AC,∴∠ACB=∠ABC=45°.∴∠BCF=∠ACB+∠ACF=45°+45°=90°,∴CF⊥BC,∵BD=CD+BC,DB=CF,∴CF=CD+BC;(3).∵∠BAC=90°,AB=AC=3,∴BC=AB=6,由(2)可知△DAB≌△FAC,BC⊥CF,∴CF=BD=1,∴DC=BC+BD=7,∵∠DCF=90°,∴DF===5.,25.解:(1)由直线方程,令x=0得y=﹣6则B点坐标为(0,﹣6);令y=0得x=6则A点坐标为(6,0).(2)如图1,直线l与⊙C第2次相切时,根据题意得:12﹣2t=3t•cos60°+1,解得t=,则P点横坐标为3××cos60°+1=,P点纵坐标为:0则P点坐标为(,0);(3)第一次有交点时间为T,则2T﹣3T×cos60°=1得,T=2,第二次相交时间为S,则3S×cos60°+2S=2得,S=,则有交点的时间共2+=2秒.八年级数学半期考试卷2一、单选题1.下列二次根式化简后能与√3合并的是()A.√8B.√24C.√125D.1√122.使得式子√4−x有意义的x的取值范围是()A.x⩾4B.x>4C.x⩽4D.x<4 3.下列计算结果正确的是()A.3+4√2=7√2B.√8−√2=√6C.√3×√2=√5D.√31√3=34.在Rt△ABC中,∠ACB=90°,如果AB=8,BC=6,那么AC的长是().A.10B.2√7C.10或2√7D.7 5.下列三个数为边长的三角形不是直角三角形的是()A.3,3,3√2B.4,8,4√3C.6,8,10D.5,5,5√36.如图,在□ABCD中,对角线AC,BD相交于点O,将△AOB平移至△DPC的位置,连结OP,则图中平行四边形的个数为()A.1B.2C.3D.4 7.点A,B,C,D在同一平面内,有以下条件:①AB∥DC;②AB=DC;③BC∥AD;④BC=AD。
人教版2024—2025学年八年级上学期数学期中考试模拟试卷一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、下列图案不是轴对称图形的是( )A .B .C .D .2、下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm3、如图,盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条让其固定,其所运用的几何原理是( )A .三角形的稳定性B .垂线段最短C .两点确定一条直线D .两点之间,线段最短4、下列说法中,表示三角形的重心的是( )A .三角形三条中线的交点B .三角形三条高所在的直线的交点C .三角形三条角平分线的交点D .三角形三条边的垂直平分线的交点5、等腰三角形的一个内角为70°,则另外两个内角的度数分别是( )A .55°,55°B .70°,40°或70°,55°C .70°,40°D .55°,55°或70°,40°6、如图,在Rt △ABC 中,∠ABC =90°,DE 是AC 的垂直平分线,交AC 于点D ,交BC 于点E ,∠BAE =20°,则∠C 的度数是( )A .30°B .35°C .40°D .50°7、使两个直角三角形全等的条件是( )A .一个锐角对应相等B .两个锐角对应相等C .一条边对应相等D .两条边对应相等8、如图,点D 、E 分别在AC 、AB 上,已知AB =AC ,添加下列条件,不能说明△ABD ≌△ACE 的是( )A .∠B =∠C B .AD =AE C .∠BDC =∠CEB D .BD =CE9、若P =(x ﹣3)(x ﹣4),Q =(x ﹣2)(x ﹣5),则P 与Q 的大小关系是( )A .P >QB .P <QC .P =QD .由x 的取值而定10、如图,点P 为定角∠AOB 的平分线上的一个定点,且∠MPN 与∠AOB 互补,若∠MPN 在绕点P 旋转的过程中,其两边分别与OA 、OB 相交于M 、N 两点,则以下结论:(1)PM =PN 恒成立;(2)OM +ON 的值不变;(3)四边形PMON 的面积不变;(4)MN 的长不变,其中正确的个数为( )A .4B .3C .2D .1二、填空题(每小题3分,满分18分)11、已知点A (a ﹣1,﹣2)与点B (﹣5,b +5)关于x 轴对称,则a +b = .12、等腰三角形的周长为11cm ,其中一边长为2cm ,则该等腰三角形的腰长为 .13、一个多边形的每一个外角都等于60°,则这个多边形的内角和为 度.14、如图,AD 平分∠CAB ,若S △ACD :S △ABD =4:5,则AB :AC = .15、如图,△ABC 中,AD 是BC 边上的高,AE 是∠BAC 的角平分线,若∠EAD =10°,∠C =70°,则∠B 的度数为 .16、如图,在等腰△ABC 中,AB =AC =8,∠ACB =75°,AD ⊥BC 于D ,点M 、N 分别是线段AB 、AD 上的动点,则MN +BN 的最小值是 .三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:.18、如图,在△ABC 中,点D 为∠ABC 的平分线BD 上的一点,过点D 作EF ∥BC 交AB 于点E ,交AC 于点F ,连接CD ,若BE +CF =EF .求证:△CFD 是等腰三角形.19、如图,在所给的网格图中,完成下列各题(用直尺画图,否则不给分)(1)画出格点△ABC 关于直线DE 的对称的△A 1B 1C 1;(2)在DE 上画出点P ,使P A +PC 最小;(3)在DE 上画出点Q ,使QA ﹣QB 最大.20、如图,在△ABC 中,AB =AC ,D 是BC 上任意一点,过点D 分别向AB、AC引垂线,垂足分别为E、F,CG是AB边上的高.(1)当D点在BC什么位置时,DE=DF?并证明;(2)线段DE,DF,CG的长度之间存在怎样的数量关系?并加以证明.21、已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.(1)求证:△ABE≌△CAD;(2)求∠BPQ的度数;(3)求AD的长.22、某园林部门决定利用现有的349盆甲种花卉和295盆乙种花卉搭配A,B两种园艺造型共50个,摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉8盆,乙种花卉4盆;搭配一个B种造型需甲种花卉5盆,乙种花卉9盆.(1)某校九年级某班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来;(2)若搭配一个A种造型的成本是200元,搭配一个B种造型的成本是360元,试说明哪种方案成本最低,最低成本是多少元?23、如图,直线MN一侧有一等腰Rt△ABC,其中∠ACB=90°,CA=CB,直线MN过顶点C,分别过点A,B作AE⊥MN,BF⊥MN,垂直分别为点EF,∠CAB的角平分AG交BC于点O,交MN于点G,连接BG,满足AG⊥BG,延长AC,BG交于点D.(1)证明:CE=BF;(2)求证:AC+CO=AB;(3)若BG=2,求线段AO的长度.24、定义:有一组对角互补的四边形叫做互补四边形.(1)互补四边形ABCD中,若∠B:∠C:∠D=2:3:4,则∠A=°;(2)已知:如图1,在四边形ABCD中BD平分∠ABC,AD=CD,BC>BA.求证:四边形ABCD是互补四边形;(3)如图2,互补四边形ABCD中,∠B=∠D=90°,AB=AD,CD=3,点E,F分别是边BC,CD 的动点,且∠EAF=∠BAD,△CEF周长是否变化?若不变,请求出不变的值;若有变化,说明理由.25、在平面直角坐标系中,点A的坐标为(0,a),点B的坐标为(b,0),且a、b满足a2﹣12a+36+|a﹣b|=0.点C为x轴负半轴上一个动点,OC<OB,BD⊥AC于点D,交y轴于点E.(1)求点A、点B的坐标;(2)求证:OD平分∠CDB.(3)延长BD到点F,使得BF=AB,连接CF若此时∠ACF=∠ABF,2∠DAO=∠ABD,画出图形并证明:CD+CF=AD.。
2022学年第一学期期中考试八年级数学试卷(考试时间:90分钟,满分100分)一、选择题:(本大题共6题,每题3分,满分18分)1.下列各组二次根式中,属于同类二次根式的是()A.B. C.与3 D.【答案】B【解析】【分析】将各项先化为最简二次根式,再根据同类二次根式的定义逐项判断即可.【详解】A.,不是同类二次根式,故该选项不符合题意;B.=,是同类二次根式,故该选项符合题意;C.33=-和3,不是同类二次根式,故该选项不符合题意;D.==故选:B .【点睛】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式,掌握同类二次根式的定义是解题的关键.2.的一个有理化因式是()A. B. C. D.【答案】A【解析】【分析】根据有理化的定义以及二次根式的乘除法则解决此题.【详解】解:A m n =+,的一个有理化因式,故A 符合题意;B =+不是的一个有理化因式,故B 不符合题意;C =-的一个有理化因式,故C 不符合题意;D =,的一个有理化因式,故D 不符合题意;故选:A .【点睛】本题主要考查分母有理化,熟练掌握有理化的定义以及二次根式的乘除法则是解决本题的关键.3.下列选项中的数是一元二次方程28x x x +=-的根的是()A.2- B.5 C.4- D.4【答案】C【解析】【分析】利用因式分解法解出一元二次方程的解,再作出判断即可.【详解】解:28x x x +=-,移项得2280x x +-=,因式分解得(4)(2)0x x +-=,所以40x +=或20x -=,解得4x =-或2x =.故选:C .【点睛】本题考查了一元二次方程的解,掌握一元二次方程的解法并灵活运用是解题的关键.4.下列计算正确的是()A.+=B.=C.4=D.2=-【答案】C【解析】【分析】分别根据二次根式的加法,乘法,除法法则以及利用平方差公式进行分母有理化逐一判断即可.【详解】解:A 、与B 、6742=⨯=,故本选项不合题意;C 4==,故本选项符合题意;D 2=,故本选项不合题意.故选:C .【点睛】本题考查了二次根式的混合运算以及分母有理化,掌握相关运算法则是解答本题的关键.5.下列命题中,假命题的是()A.在同一平面内,垂直于同一条直线的两条直线平行B.面积相等的两个三角形全等C.等腰三角形的顶角平分线垂直于底边D.三角形的一个外角大于任何一个与它不相邻的内角【答案】B【解析】【分析】分别利用平行线的判定、三角形全等的判定方法、等腰三角形的性质以及三角形外角的性质逐一判断即可.【详解】A .在同一平面内,垂直于同一条直线的两条直线平行,是真命题,故选项A 不合题意;B .面积相等的两个三角形不一定全等,故选项B 是假命题,符合题意;C .等腰三角形的顶角平分线垂直于底边,是真命题,故选项C 不合题意;D .三角形的一个外角大于任何一个与它不相邻的内角,是真命题,故选项D 不合题意,故选:B【点睛】本题考查了命题的真假,熟练掌握已经学过的概念、性质、定理是解题的关键.6.已知a 、b 、c 是三角形三边的长,则关于x 的一元二次方程()220ax b c x a +-+=的实数根的情况是()A.有两个相等的实数根B.有两个不相等的实数根;C.没有实数根D.无法确定【答案】C【解析】【分析】根据三角形的三边关系可知Δ0<,可知一元二次方程根的情况.【详解】解:[]222()44()()b c a b c a b c a ∆=--=-+--,∵a 、b 、c 是三角形三边的长,∴00b c a b c a -+>--<,,∴4()()0b c a b c a ∆=-+--<,∴原方程没有实数根,故选:C.【点睛】本题考查了一元二次方程根的判别式,三角形的三边关系,熟练掌握根的判别式与根的情况的关系是解题的关键.二、填空题:(本大题共12题,每题2分,满分24分)7.分母有理化:=____________.【答案】【解析】【即可分母有理化.255==..【点睛】本题考查了二次根式的运算,解题的关键是掌握分母有理化.8.=____________.【答案】3π-【解析】【分析】根据二次根式的性质解答.【详解】∵π>3,∴π−3>0;=π−3.【点睛】本题考查二次根式的性质与化简,解题的关键是掌握二次根式的性质.9.设x x应满足的条件是____________.【答案】14 x≥【解析】【分析】根据二次根式有意义的条件进行求解即可.【详解】解:∵二次根式∴410x-≥,解得14x ≥,故答案为:14x ≥.【点睛】本题主要考查了二次根式有意义的条件,熟知二次根式有意义的条件是被开方数大于等于0是解题的关键.10.比较大小:-.(填“>”“<”“=”)【答案】>【解析】【分析】利用两个负数比较大小,绝对值大的反而小即可求解.【详解】解:∵=,-==∴-即-故答案为:>【点睛】本题考查了实数的大小比较,熟记两个负实数比较大小的方法是解题的关键.11.已知2410ax x +-=是关于x 的一元二次方程,那么a 的取值范围为___________.【答案】0a ≠【解析】【分析】根据一元二次方程的定义求解即可.【详解】解:因为2410ax x +-=是关于x 的一元二次方程,所以a 的取值范围为0a ≠.故答案为:0a ≠.【点睛】本题考查了一元二次方程的定义,解题的关键是掌握一元二次方程的定义:只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是20(0)ax bx c a ++=≠.特别要注意0a ≠的条件.12.不等式10->的解集是____________.【答案】66x <-【解析】【分析】直接按照解不等式的一般步骤求解即可.【详解】10->解:移项,得1>,不等式两边同除以66x <-,故答案为:6x <-【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的解题步骤是解题的关键.13.方程()87x x -=-的根是____________.【答案】17x =,21x =【解析】【分析】把原方程化为一般形式后利用因式分解法解方程即可.【详解】解:∵()87x x -=-,∴2870x x -+=,∴()()710x x --=,∴70x -=或10x -=,解得17x =,21x =,故答案为:17x =,21x =【点睛】本题考查了因式分解法解一元二次方程,根据所给方程的特点选择适当的是解题的关键.14.一种型号的电视,原来每台售价7500元,经过两次降价后,现在每台售价为4800元,如果每次降价的百分率相同,设每次降价百分率为x ,那么根据题意可列出方程:______.【答案】()2750014800x -=【解析】【分析】设每次降价百分率为x ,根据原来每台售价为7500元,经过两次降价后,现在每台售价为4800元,可列出方程.【详解】解:每次降价百分率为x ,()2750014800x -=.故答案为:()2750014800x -=.【点睛】本题考查理一元二次方程的应用,是个增长率问题,根据两次降价前的结果,和现在的价格,列出方程是关键.15.在实数范围内分解因式:231x x --=_________.【答案】(22x x --##()(22x x --【解析】【分析】求出方程2310x x --=中的判别式的值,求出方程的两个解,代入212()()ax bx c a x x x x ++=--即可.【详解】设2310x x --=,∵2(3)41(1)13∆=--⨯⨯-=,∴3132x ±=∴1 2x =,2 2x =,∴231()()22x x x x --=--.故答案为:3133+13(22x x ---.【点睛】本题考查了在实数范围内分解因式和解一元二次方程,注意:若x 1和x 2是一元二次方程20ax bx c ++=的两个根,则212()()ax bx c a x x x x ++=--.16.已知关于x 的一元二次方程230x mx +-=的一个根是3,则该方程的另一个根是___________.【答案】1-【解析】【分析】根据一元二次方程根与系数的关系求解即可.【详解】解:∵关于x 的一元二次方程230x mx +-=的一个根是3,∴该方程的另一个根是313-=-,故答案为:1-.【点睛】本题主要考查了一元二次方程根与系数的关系,对于一元二次方程()200ax bx c a ++=≠,若其两根为12x x ,则1212bc a x x x x a+=-=,.17.已知:如图,AC AD =,要使ACB ADB ≌,还需添加一个条件,这个条件可以是__________.写出一个即可)【答案】BC BD =(答案不唯一)【解析】【分析】根据全等三角形的判定定理求解即可.【详解】解:这个条件可以是BC BD =,在ACB △和ADB 中,AC AD AB AB BC BD =⎧⎪=⎨⎪=⎩,∴(SSS)ACB ADB ≌△△,故答案为:BC BD =(答案不唯一).【点睛】此题考查了全等三角形的判定,熟记全等三角形的判定定理是解题的关键.18.阅读材料:在直角三角形中,斜边和两条直角边满足定理:两条直角边的平方和,等于斜边的平方,因此如果已知两条边的长,根据定理就能求出第三边的长,例如:在Rt ABC △中,已知90C ∠=︒,3AC =,4BC =,由定理得222AC BC AB +=,代入数据计算求得5AB =.请结合上述材料和已学几何知识解答以下问题:已知:如图,90C ∠=︒,AB CD ∥,5AB =,11CD =,8AC =,点E 是BD 的中点,那么AE 的长为____________.【答案】5【解析】【分析】延长AE 交CD 于点F ,如图所示,只要证得()ASA ABE FDE ≌,根据全等三角形的性质可得AE EF =,5AB DF ==,然后在Rt ACF 中,利用勾股定理求得10AF ===,最后可得152AE EF AF ===.【详解】解:延长AE 交CD 于点F,如图所示,∵AB CD ∥,∴B D ∠=∠,∵点E 是BD 的中点,∴BE DE =,在ABE 和FDE V 中B D BE DE AEB DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA ABE FDE ≌,∴AE EF =,5AB DF ==,∵11CD =,∴1156CF DC DF =-=-=,又∵90C ∠=︒,8AC =,∴Rt ACF中,10AF ===,∴152AE EF AF ===,故答案为:5【点睛】本题考查了全等三角形的判定和性质,勾股定理的应用,根据题意作出适当的辅助线是解题的关键.三、简答题:(本大题共4题,满分32分)19.(1)计算:-+;(2(其中0x >).【答案】(1)3-;(2)3y x 【解析】【分析】(1)利用二次根式的性质及二次根式的加减混合运算计算即可;(2)利用二次根式的乘除混合运算法则计算即可.【详解】解:(1)-21224=-⨯+()2221122=---++3=-(2====3yx=【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的性质及加减乘除混合运算的法则是解题的关键.20.(1)解方程:()()22131x x -=-;(2)用配方法解方程:23620x x +-=.【答案】(1)112x =-,21x =;(2)11513x =-+,21513x =--【解析】【分析】(1)把方程移项变形后,利用因式分解法解方程即可;(2)直接利用配方法解方程即可.【详解】解:(1)()()22131x x -=-解:移项,得()()202131x x -+-=因式分解得,()()2110x x +-=,∴210x +=或10x -=,解得112x =-,21x =;(2)23620x x +-=,解:方程两边同除以3,得22203x x +-=,移项,得2232x x +=,方程两边同加上一次项系数一半的平方,得221321x x +=++,即()2513x +=,∴1513x +=±,解得11513x =-+,21513x =--.【点睛】本题考查了一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.21.已知:x =,求代数式221x x --的值.【答案】1【解析】【分析】先分母有理数求出1x =+,再根据完全平方公式进行变形,最后代入求出答案即可.【详解】解:∵1x ==,∴221x x --2(1)11x =---211)2=--32=-1=.【点睛】本题考查了二次根式的化简求值和分母有理化,能求出x 的值是解此题的关键.22.已知:a 、b 20b +=,求关于x 的一元二次方程2102ax bx ++=的根.【答案】12113x x ==,【解析】、b 的值,然后解一元二次方程即可.20b +=020b ≥+=≥,,∴30202a b -=+=,,∴322a b ==-,,∴原一元二次方程即为2312022x x -+=,整理得:23410x x -+=,∴()()3110x x --=,解得12113x x ==.【点睛】本题主要考查了非负数的性质,解一元二次方程,正确求出a 、b 的值是解题的关键.四、解答题:(本大题共2题,满分16分)23.如图,点D ,E 在ABC ∆的边BC 上,AD AE =,BD CE =,求证:B C ∠=∠.【答案】证明见解析【解析】【分析】利用全等三角形的性质证明即可.【详解】证明∵AD AE =,∴ADE AED ∠=∠,∵180ADE ADB AED AEC ∠+∠=∠+∠=︒,∴ADB AEC ∠=∠,在ABD ∆和ACE ∆中,AD AE ADB AEC BD EC =⎧⎪∠=∠⎨⎪=⎩,∴()ABD ACE SAS ∆≅∆,∴B C ∠=∠.【点睛】本题考查全等三角形的判定和性质,解题的关键是灵活运用所学知识解决问题.24.某小区为了美化环境,准备在一块长50米,宽42米的长方形场地上修筑内外宽度相等且互相垂直的道路,余下的部分作为草坪(图中阴影部分),若草坪的面积是1920平方米,求道路的宽度.【答案】道路的宽度为2米【解析】【分析】设道路的宽度为x 米,根据平移的性质可知草坪的面积可以看作一个长为()50x -米,宽为()42x -米的长方形面积,据此列出方程求解即可.【详解】解:设道路的宽度为x 米,由题意得()()50421920x x --=,∴2921800x x -+=,解得2x =或90x =(不符合题意,舍去)∴道路的宽度为2米.【点睛】本题主要考查了一元二次方程的应用,正确理解题意找到等量关系是解题的关键.五、综合题:(本大题共1题,满分10分)25.已知:如图,在Rt ABC △中,90BAC ∠=︒,ABC ∠的平分线交AD 于点E ,交AC 于点F ,AD BC ⊥,垂足为点D .(1)求证:AE AF =;(2)过点E 作EG D C ∥交AC 于点G ,过点F 作FH BC ⊥,垂足为点H .①请判断AF 与CG 的数量关系,并说明理由;②当AE BE =时,设BF x =,试用含有x 的式子表示GC 的长.【答案】(1)见解析(2)①AF CG =,理由见解析;②12CG x =.【解析】【分析】(1)根据90AEF BED CBF ∠=∠=︒-∠,90AFB ABF ∠=︒-∠,得AFE AEF ∠=∠,从而AE AF =;(2)①由角平分线的性质知AF FH =,由(1)知AF AE =,则AE FH =,再利用AAS 证明AEG FHC ≌△△,得AG CF =,即可证明;②由等腰三角形的性质可得BAE ABE ∠=∠,可证AE EF AF BE ===,可得结论.【小问1详解】证明:∵BF 平分ABC ∠,∴ABF CBF ∠=∠,∵AD BC ⊥,∴90ADB ∠=︒,∴90AEF BED CBF ∠=∠=︒-∠,∵90AFB ABF ∠=︒-∠,∴AFE AEF ∠=∠,∴AE AF =;【小问2详解】解:①AF CG =,理由如下:∵BF 平分ABC ∠,FA AB FH BC ⊥⊥,,∴AF FH =,由(1)知AF AE =,∴AE FH =,∵EG D C ∥,∴90AEG FHC ∠=∠=︒,AGE C ∠=∠,∴(AAS)AEG FHC ≌△△,∴AG CF =,∴AF CG =;②∵AE BE =,∴BAE ABE ∠=∠,∵90BAC ∠=︒,∴EAF EFA ∠=∠,∴AE EF =,∴AE EF AF BE ===,∴2BF AF =,∴12CG AF x ==.【点睛】本题考查了全等三角形的判定和性质,直角三角形的性质,角平分线的性质等知识,得到AEG FHC ≌△△是解题的关键.第16页/共16页。
2019年八年级数学上册半期试卷(附答案和解释)距离期中考试越来越近了,半学期即将结束,各位同学们都进入了紧张的复习阶段,对于初二学习的复习,在背诵一些课本知识点的同时还需要做一些练习题,一起来看一下这篇2019年八年级数学上册半期试卷吧!一、选择题(每小题3分,共30分)1.(2019秋阳泉校级期中)下列图案是轴对称图形的有( )A.(1)(3)B.(1)(2)C.(2)(4)D.(2)(3)考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:(1)不是轴对称图形,(2)是轴对称图形,(3)是轴对称图形,(4)不是轴对称图形.2.(2019春东阳市期末)平面内点A(﹣1,2)和点B(﹣1,6)的对称轴是( )A.x轴B.y轴C.直线y=4D.直线x=﹣1考点:坐标与图形变化-对称.分析:观察两坐标的特点,发现横坐标相同,所以对称轴为平行与x轴的直线,即y=纵坐标的平均数.解答:解:∵点A(﹣1,2)和点B(﹣1,6)对称,3.(2019秋博野县期末)下列各组图形中,是全等形的是( )A.两个含60角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形考点:全等图形.分析:综合运用判定方法判断.做题时根据已知条件,结合全等的判定方法逐一验证.解答:解:A、两个含60角的直角三角形,缺少对应边相等,所以不是全等形;B、腰对应相等的两个等腰直角三角形,符合AAS或ASA,或SAS,是全等形;C、边长为3和4的两个等腰三角形有可能是3,3,4或4,4,3不一定全等对应关系不明确不一定全等;D、一个钝角相等的两个等腰三角形.缺少对应边相等,不是全等形.4.(2019秋昆山市校级期末)已知等腰三角形的一个外角等于100,则它的顶角是( )A.80B.20C.80或20D.不能确定考点:等腰三角形的性质.专题:分类讨论.分析:此外角可能是顶角的外角,也可能是底角的外角,需要分情况考虑,再结合三角形的内角和为180,可求出顶角的度数.解答:解:①若100是顶角的外角,则顶角=180﹣100=80 ②若100是底角的外角,则底角=180﹣100=80,那么顶角=180﹣280=20.5.(2019泰山区模拟)已知,Rt△ABC中,C=90,AD平分BAC 交BC于D,若BC=32,且BD:CD=9:7,则D到AB的距离为( )A.18B.16C.14D.12考点:角平分线的性质.分析:首先由线段的比求得CD=16,然后利用角平分线的性质可得D到边AB的距离等于CD的长.解答:解:∵BC=32,BD:DC=9:76.(2019秋广水市校级期中)一个多边形内角和是1080,则这个多边形的对角线条数为( )A.26B.24C.22D.20考点:多边形内角与外角;多边形的对角线.分析:先根据多边形的内角和公式求出边数,然后根据对角线的条数的公式进行计算即可求解.解答:解:设多边形的边数是n,则(n﹣2)180=1080,7.(2019襄阳)以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是( )A.1个B.2个C.3个D.4个考点:三角形三边关系.分析:从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.解答:解:首先可以组合为13,10,5;13,10,7;13,5,7;10,5,7.再根据三角形的三边关系,发现其中的13,5,7不符合,则可以画出的三角形有3个.8.(2019秋天津期末)如图,A=15,AB=BC=CD=DE=EF,则DEF 等于( )A.90B.75C.70D.60考点:等腰三角形的性质;三角形内角和定理;三角形的外角性质.分析:根据已知条件,利用等腰三角形的性质及三角形的内角和外角之间的关系进行计算.解答:解:∵AB=BC=CD=DE=EF,A=15,BCA=A=15,CBD=BDC=BCA+A=15+15=30,BCD=180﹣(CBD+BDC)=180﹣60=120,ECD=CED=180﹣BCD﹣BCA=180﹣120﹣15=45,CDE=180﹣(ECD+CED)=180﹣90=90,EDF=EFD=180﹣CDE﹣BDC=180﹣90﹣30=60,(1)三角形的外角等于与它不相邻的两个内角和;(2)三角形的内角和是180度.求角的度数常常要用到三角形的内角和是180这一隐含的条件.9.(2019秋曲阜市期末)如图,DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为( )厘米.A.16B.28C.26D.18考点:线段垂直平分线的性质.专题:计算题.分析:利用线段垂直平分线的性质得AE=CE,再等量代换即可求得三角形的周长.解答:解:∵DE是△ABC中AC边的垂直平分线10.(2019张家界)把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是( )A. B. C. D.考点:剪纸问题.专题:操作型.分析:把一个正方形的纸片向上对折,向右对折,向右下方对折,从上部剪去一个等腰直角三角形,展开,看得到的图形为选项中的哪个即可.解答:解:从折叠的图形中剪去8个等腰直角三角形,易得将从正方形纸片中剪去4个小正方形,故选C.二、填空题(每题3分,共24分)11.(2019秋渝北区期末)从商场试衣镜中看到某件名牌服装标签上的后5位编码是:则该编码实际上是 BA629 .考点:镜面对称.专题:操作型.分析:根据镜面对称的性质,在平面镜中的像与现实中的事物恰好左右颠倒,且关于镜面对称,分析可得答案.解答:解:根据在平面镜中的像与现实中的事物恰好左右颠倒,12.(2019春泰山区期末)等腰三角形一腰上的高与另一腰的夹角为30,则它的顶角为 60或120 .考点:等腰三角形的性质.专题:计算题;分类讨论.分析:等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.解答:解:当高在三角形内部时,顶角是12013.(2019秋阳泉校级期中)在平面直角坐标系内点P(﹣3,2a+b)与点Q(a﹣b,﹣1)关于y轴对称,则a+b的值为 .考点:关于x轴、y轴对称的点的坐标.分析:根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得,解出a、b的值,进而可得a+b的值.解答:解:∵点P(﹣3,2a+b)与点Q(a﹣b,﹣1)关于y轴对称,14.(2019秋兴化市校级期末)已知等腰三角形的两边长分别为4cm和7cm,则这个三角形的周长为 15cm或18cm .考点:等腰三角形的性质.分析:根据等腰三角形的性质,分两种情况:①当腰长为4cm 时,②当腰长为7cm时,解答出即可.解答:解:根据题意,①当腰长为4cm时,周长=4+4+7=15(cm);15.(2019春金台区期末)如图,△ABC中,A=40,B=72,CE 平分ACB,CDAB于D,DFCE,则CDF= 74 度.考点:三角形内角和定理.分析:利用三角形的内角和外角之间的关系计算.解答:解:∵A=40,B=72,ACB=68,∵CE平分ACB,CDAB于D,BCE=34,BCD=90﹣72=18,16.(2019绵阳)如图,在△ABC中,BC=5cm,BP、CP分别是ABC和ACB的角平分线,且PD∥AB,PE∥AC,则△PDE的周长是 5 cm.考点:等腰三角形的判定与性质;平行线的性质.分析:分别利用角平分线的性质和平行线的判定,求得△DBP 和△ECP为等腰三角形,由等腰三角形的性质得BD=PD,CE=PE,那么△PDE的周长就转化为BC边的长,即为5cm. 解答:解:∵BP、CP分别是ABC和ACB的角平分线,ABP=PBD,ACP=PCE,∵PD∥AB,PE∥AC,ABP=BPD,ACP=CPE,PBD=BPD,PCE=CPE,BD=PD,CE=PE,2019年八年级数学上册半期试卷就分享到这里,希望以上内容对您有所帮助!。
广东省深圳市深圳外国语学校2024—2025学年八年级上学期期中考试数学试卷一、单选题1.如果电影票上的“3排1号”记作()3,1,那么()4,3表示()A .3排5号B .5排3号C .4排3号D .3排4号2.一个三角形,其中有两个角分别是50︒和70︒,第三个角是()A .60︒B .70︒C .80︒D .90︒3.若32x y =⎧⎨=-⎩是关于x 、y 的方程14mx y -=的一个解,则m 的值是()A .4B .4-C .8D .8-4.如图,小手盖住的点的坐标可能是()A .()4,1-B .()1,4--C .2,3D .()2,2-5.下列命题中是假命题的是()A .平行于同一条直线的两直线互相平行B .对顶角相等C .同角的补角相等D .两条直线被第三条直线所截,同位角相等6.光从空气斜射入水中,传播方向会发生变化.如图,表示水面的直线AB 与表示水底的直线CD 平行,光线EF 从空气射入水中,改变方向后射到水底G 处,FH 是EF 的延长线,若142∠=︒,216∠=︒,则CGF ∠的度数是().A .58︒B .48︒C .26︒D .32︒7.关于一次函数32y x =-+,下列说法正确的是()A .图象过点()1,1B .其图象可由3y x =的图象向下平移2个单位长度得到C .y 随着x 的增大而增大D .图象经过第一、二、四象限8.“五一节”期间,数学老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y (千米)与汽车行驶时间x (小时)之间的函数图象.他们出发2.2小时时,离目的地还有()千米.A .12B .24C .146D .164二、填空题9.如图,点D 在ABC V 的边BC 的延长线上,若45B ∠=︒,150ACD ∠=︒,则A ∠的大小为.10.若函数25m y x -=+是关于x 的一次函数,则m =.11.已知一次函数21y x =+与y kx =(k 是常数0k ≠)的图像的交点坐标是()1,3,则方程组210x y kx y -=-⎧⎨-=⎩的解是.12.用四张形状、大小完全相同的小长方形纸片在平面直角坐标系中摆成如图所示图案,若点()3,7A ,则点B 的坐标是.13.定义:在平面直角坐标系中,如果直线()0y kx b k =+≠上的点(),M m n 经过一次变换后得到点1,22M n m ⎛⎫ ⎪⎝⎭',那么称这次变换为“逆倍分变换”.直线24y x =-+与x 轴、y 轴分别相交于点()2,0A ,()0,4B ,点Q 为该直线上一点,若经过一次“逆倍分变换”后,得到的对应点Q '使得ABQ ' 和ABO 的面积相等,则点Q 的坐标为.三、解答题14.解下列方程(组):(1)8521y x x y -=⎧⎨-=⎩(用代入消元法解);(2)422237x y x y -=⎧⎨+=-⎩(用加减消元法解).15.在下面的正方形网格图中,标明了学校附近的一些地方,其中每一个小正方形网格的边长代表1个单位长度.在图中以正东和正北方向分别为x 轴,y 轴正方向,建立平面直角坐标系xOy .若学校的坐标为()3,1--,体育馆的坐标为()6,1.(1)坐标原点所在的位置为___________;(2)请在图中画出这个平面直角坐标系;(3)超市所在位置的坐标为___________.16.如图,ABC V 中,D 是AC 上一点,过D 作DE BC ∥交AB 于E 点,F 是BC 上一点,连接DF .若1AED ∠=∠.(1)求证:DF AB ∥.(2)若150∠=︒,DF 平分CDE ∠,求C ∠的度数.17.为打造集休闲娱乐、健身运动、观光旅游、体验自然等于一体的多功能活动区域.深圳湾公园海滨步道现有一段长350米的河边道路需整治,任务由A ,B 两个工程队先后接力完成,A 工程队每天整治15米,B 工程队每天整治10米,共用时30天.根据题意,甲、乙两位同学分别列出了如下不完整的方程组:甲:1510x y x y +=⎧⎨+=⎩ 乙:1510x y x y +=⎧⎪⎨+=⎪⎩ 从甲、乙两位同学所列方程组中任选一组,补全以下解题过程,并利用此方程组求出A ,B 两个工程队分别整治河边道路多少米.解:选择的方程组为____________(填“甲”或“乙”)设x 为_______________________;y 为_________________________.18.综合与实践生活中的数学:古代计时器“漏壶”问题情境某小组同学根据“漏壶”的原理制作了如图1所示的液体漏壶,该漏壶是由一个圆锥和一个圆柱组成的,中间连通,液体可以从圆锥容器中匀速漏到圆柱容器中,实验开始时圆柱容器中已有一部分液体.实验观察下表是实验记录的圆柱容器液面高度()cm y 与时间()h x 的数据根据上述的实践活动,解决以下问题:(1)【探索发现】请你根据表中的数据在图2中描点、连线,用所学过的一次函数的知识求出y 与x 之间的函数表达式;(2)【结论应用】如果本次实验记录开始时间是上午7:00,当时间为下午13:00时,圆柱容器液面高度达到了多少厘米?19.对于实数a ,b 定义两种新运算“※”和“*”:a b a kb =+※,*a b ka b =+(其中k 为常数,且0k ≠),若对于平面直角坐标系xOy 中的点(),P a b ,有点P '的坐标(),*a b a b ※与之对应,则称点P 的“k 衍生点”为点P '.例如:()1,3P 的“2衍生点”为()123,213P '+⨯⨯+,即()7,5P '.(1)点()1,5P -的“3衍生点”的坐标为_______________;(2)若点P 的“5的衍生点”P '的坐标为()18,6-,求点P 的坐标;(3)若点P 的“k 的衍生点”为点P ',且直线PP '平行于y 轴,线段PP '的长度与线段OP 长度相等,求k 的值.20.材料:如图所示,B 、C 、E 三点在同一条直线上,AC CD =,90B E ∠=∠=︒,AC CD ⊥,则有ABC CED △≌△.(1)【小试牛刀】如图1,在平面直角坐标系中,OC BC ⊥且OC BC =,()1,4C ,点C 、B 按顺时针顺序排列,则B 点坐标为_____________;(2)【深入探究】如图2,点M ,E 分别在x 轴、y 轴上,OM OE =,点A 在x 轴负半轴上,连接AE ,作EF AE ⊥且EF AE =,连MF 交y 轴于N ,请猜想线段ON 与线段AM 的数量关系并进行证明;(3)【拓展提升】如图3,)1,0A ,AM x ⊥轴,在直线AM 上有一动点N ,连接ON 并在x 轴上方作OQ ON ⊥且OQ ON =,连接点)1D +与点Q 的线段平行于x 轴,连接QN 交坐标轴于点E ,当2OE =时,直接写出Q 点的坐标.。
人教版八年级上册数学期中考试试卷一、单选题1.以下面各组线段为边,不能构成三角形的是()A.5,6,7B.6,6,6C.8,4,4D.20,30,362.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短3.已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形4.若点M(2,a)和点N(a+b,3)关于y轴对称,则a、b的值为()A.a=3,b=-5B.a=-3,b=5C.a=3,b=5D.a=-3,b=1 5.下列运算正确的是()A.-a4·a3=a7B.a4·a3=a12C.(a4)3=a12D.a4+a3=a7 6.如图,在△ABC中,AB=AC,AD=DE,∠BAD=20°,∠EDC=10°,则∠DAE的度数为()A.30°B.40°C.60°D.80°7.如图,在等边 ABC中,AD是它的角平分线,DE⊥AB于E,若AC=8,则BE=()A .1B .2C .3D .48.如图,用直尺和圆规作已知角的平分线,要证明CAD DAB ∠=∠成立的全等三角形的判定依据是()A .SSSB .SASC .ASAD .AAS9.如图,已知等边 ABC ,AB=2,点D 在AB 上,点F 在AC 的延长线上,BD=CF ,DE ⊥BC 于E ,FG ⊥BC 于G ,DF 交BC 于点P ,则下列结论:①BE=CG ;② EDP ≌ GFP ;③∠EDP=60°;④EP=1中,一定正确的个数是()个A .1B .2C .3D .410.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE 的度数是()A .20°B .35°C .40°D .70°二、填空题11.若()2120a b -+-=,则以a 、b 为边长的等腰三角形的周长为_____.12.若am=3,则(a 3)m =.13.如图,锐角△ABC 的高AD 、BE 相交于F ,若BF=AC ,BC=7,CD=2,则AF 的长为____14.如图,在ABC 中,AB AC =,50A ∠=︒,AB 的垂直平分线MN 交AC 于D 点,连接BD ,则DBC ∠的度数是________.15.如图,撑伞时,把伞“两侧的伞骨”和支架分别看作AB 、AC 和DB 、DC ,始终有AB=AC ,DB=DC ,请大家考虑一下伞杆AD 所在的直线是B 、C 两点的连线BC 的____线.16.如图,是A 、B 、C 三个村庄的平面图,已知B 村在A 村的南偏西50°方向,C 村在A 村的南偏东15°方向,C 村在B 村的北偏东85°方向,求从C 村村观测A 、B 两村的视角∠ACB 的度数是__.三、解答题17.计算:(1)[(-a)3]4;(2)(-m 2)3·(-m 3)2.(3)[(m-n)2]5(n-m)3(4)(-x 2)5+(-x 5)218.已知在△ABC 中,AB =AC ,且线段BD 为△ABC 的中线,线段BD 将△ABC 的周长分成12和6两部分,求△ABC 三边的长.19.如图,在边长为1个单位长度的小正方形组成的网格中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与 ABC 关于直线l 成轴对称的A B C '''(2)四边形ABCA '的面积为_____;(3)在直线l 上找一点P ,使PA+PB 的长最短.20.如图,AD ⊥BC 于D ,AD=BD ,AC=BE .(1)请说明∠1=∠C ;(2)猜想并说明DE 和DC 有何特殊关系.21.如图在△ABC中,AB=AC,∠BAC=120°,EF为AB的垂直平分线,EF交BC于点FC.F,交AB于点E.求证:BF=1222.(1)若2x+5y﹣3=0,求4x•32y的值.(2)已知a3m=3,b3n=2.求(a2m)3+(bn)3-a2mbn·a4mb2n的值.23.如图,已知AB=CB,BE=BF,点A,B,C在同一条直线上,∠1=∠2.(1)证明:△ABE≌△CBF;(2)若∠FBE=40°,∠C=45°,求∠E的度数.24.已知点P在∠MON内.(1)如图1,点P关于射线OM的对称点是G,点P关于射线ON的对称点是H,连接OG、OH、OP.①若∠MON=50°,则∠GOH=______;②若PO=5,连接GH,请说明当∠MON为多少度时,GH=10;(2)如图2,若∠MON=60°,A、B分别是射线OM、ON上的任意一点,当 PAB的周长最小时,求∠APB 的度数.25.如图1,点P 、Q 分别是等边△ABC 边AB 、BC 上的动点(端点除外),点P 从顶点A 、点Q 从顶点B 同时出发,且它们的运动速度相同,连接AQ 、CP 交于点M .(1)求证:ABQ CAP ≌△△:(2)当点P 、Q 分别在AB 、BC 边上运动时,∠QMC 的大小变化吗?若变化,请说明理由:若不变,求出它的度数.(3)如图2,若点P 、Q 在运动到终点后继续在射线AB 、BC 上运动,直线AQ 、CP 相交于点M ,则∠QMC 的大小变化吗?若变化,请说明理由:若不变,则求出它的度数.参考答案1.C【解析】【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,逐项分析判断即可.【详解】+>,能构成三角形,该项不符合题意;A.567+>,能构成三角形,该项不符合题意;B.666+=,不能构成三角形,该项符合题意C.448+>,能构成三角形,该项不符合题意;D.203036故选C【点睛】本题考查了构成三角形的条件,掌握三角形三边关系是解题的关键.2.A【解析】【分析】根据三角形的稳定性即可解决问题.【详解】解:根据三角形的稳定性可固定窗户.故选:A.【点睛】本题考查了三角形的稳定性,属于基础题型.3.D【解析】【分析】根据多边形的内角和=(n﹣2)•180°,列方程可求解.【详解】设所求多边形边数为n,∴(n﹣2)•180°=1080°,解得n=8.故选D.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.4.A【解析】【分析】关于y 轴对称的点的坐标特征是:横坐标变为原数的相反数,纵坐标不变,据此解出a,b 的值.【详解】解:根据题意,点M(2,a)和点N(a+b ,3)关于y 轴对称,则a+b=-2,a=3,解得b=-5,故选:A .【点睛】本题考查关于y 轴对称的点的坐标,是基础考点,掌握相关知识是解题关键.5.C【解析】【分析】由同底数幂相乘,幂的乘方,合并同类项,分别进行判断,即可得到答案.【详解】解:A 、437·a a a -=-,故A 错误;B 、437·a a a =,故B 错误;C 、4312()a a =,故C 正确;D 、43a a +不是同类项,不能合并,故D 错误;故选:C .【点睛】本题考查了幂的乘方,同底数幂相乘,合并同类项,解题的关键是熟练掌握运算法则进行判断.6.C【解析】【分析】先根据三角形外角性质,用∠C 表示出∠AED ,再根据等边对等角和三角形内角和定理,列出等式即可求出∠C 的度数,再求∠DAE .【详解】解:设∠C=x ,∵AB=AC ,∴∠B=∠C=x ,∴∠AED=x+10°∵AD=DE ,∴∠DAE=∠AED=x+10°根据三角形的内角和定理,得x+x+(20°+x+10°)=180°解得x=50°,∴∠DAE=50°+10°=60°故选C .【点睛】本题考查了等腰三角形的性质,三角形内角和定理,三角形的外角性质,求出∠C 的度数是解答本题的关键.7.B【解析】【分析】由等边△ABC 的“三线合一”的性质推知142BD BC ==,根据等边三角形三个内角都相等的性质、直角三角形的两个锐角互余推知∠BDE=30°,最后根据“30°角所对的直角边等于斜边的一半”来求BE 即可.【详解】∵ABC 是等边三角形,AD 是它的角平分线,∴118422BD BC ==⨯=,60B ∠=︒.∵DE AB ⊥于E ,∴30BDE ∠=︒,∴122BE BD ==.故选B 【点睛】本题考查了等边三角形的性质及含30°角的直角三角形,解题的关键是熟练掌握以上知识.8.A【解析】【分析】根据全等三角形的判定定理即可解答.【详解】解:∵AF=AE ,FD=ED ,在△AFD 与△AED 中AF AE FD ED AD AD =⎧⎪=⎨⎪=⎩∴△AFD ≌△AED (SSS )∴CAD DAB ∠=∠,因此全等三角形的判定依据是SSS ,故选:A .【点睛】本题考查了角平分线的尺规作图的依据,解题的关键是找到图中的全等三角形,并熟记全等三角形的判定定理.9.C【解析】【分析】由等边三角形的性质可以得出△DEB ≌△FGC ,就可以得出BE =CG ,DE =FG ,就可以得出△DEP ≌△FGP ,得出∠EDP =∠GFP ,EP =PG ,得出PC +BE =PE ,就可以得出PE =1,从而得出结论.【详解】解:∵△ABC 是等边三角形,∴AB =BC =AC ,∠A =∠B =∠ACB =60°.∵∠ACB =∠GCF ,∵DE ⊥BC ,FG ⊥BC ,∴∠DEB =∠FGC =∠DEP =90°.在△DEB 和△FGC 中,DEB FGC GCF B BD CF ∠∠⎧⎪∠∠⎨⎪⎩===,∴△DEB ≌△FGC (AAS ),∴BE =CG ,DE =FG ,故①正确;在△DEP 和△FGP 中,DEP FGP DPE FPG DE FG ∠∠⎧⎪∠∠⎨⎪⎩===,∴△DEP ≌△FGP (AAS ),故②正确;∴PE =PG ,∠EDP =∠GFP≠60°,故③错误;∵PG =PC +CG ,∴PE =PC +BE .∵PE +PC +BE =2,∴PE =1,故④正确.故答案为:C .【点睛】本题考查了等边三角形的性质,全等三角形的判定及性质,解题的关键是证明三角形全等.10.B【解析】【分析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB )=70°.再利用角平分线定义即可得出∠ACE=12∠ACB=35°.【详解】∵AD 是△ABC 的中线,AB=AC ,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB )=70°.∵CE 是△ABC 的角平分线,∴∠ACE=12∠ACB=35°.故选B .【点睛】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.11.5【解析】【分析】根据偶次方和绝对值的非负性,可以得到a -1=0,b -2=0,得到a ,b 的值,根据三角形三边关系求解即可.【详解】解:∵()2120a b -+-=,∴a -1=0,b -2=0,解得a=1,b=2.①若a=1是腰长,则底边为2,三角形的三边分别为1、1、2,∵1+1=2,∴1、1、2不能组成三角形.②若a=2是腰长,则底边为1,三角形的三边分别为2、2、1,能组成三角形,∴周长=2+2+1=5.故答案为:5【点睛】本题考查了偶次方和绝对值的非负性,等腰三角形的性质,三角形的三边关系,关键是求出a ,b 的值.12.27【解析】【分析】根据幂的乘方的逆运算可得结果.【详解】解:∵am=3,∴(a 3)m=()333327m m a a ====,故答案为:27.【点睛】本题考查了幂的乘方,熟练掌握幂的乘方以及其逆运算法则是解题的关键.13.3【解析】【详解】∴∠BDF=∠ADC=∠BEC=90°,∴∠DBF+∠C=90°,∠DAC+∠C=90°,∴∠DBF=∠DAC ,在△BDF 与△ADC 中,DBF DAC BDF ADC BF AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDF ≌△ADC(ASA),∴AD=BD=BC−CD=7−2=5,DF=CD=2,∴AF=AD−DF=5−2=3;故答案为3.14.15°【解析】【分析】根据等腰三角形两底角相等,求出∠ABC 的度数,再根据线段垂直平分线上的点到线段两端点的距离相等,可得AD=BD ,根据等边对等角的性质,可得∠ABD=∠A ,然后求∠DBC 的度数即可.【详解】∵AB=AC ,∠A=50∘,∴∠ABC=12(180∘−∠A)=12(180∘−50∘)=65∘,∵MN 垂直平分线AB ,∴AD=BD ,∴∠ABD=∠A=50∘,∴∠DBC=∠ABC−∠ABD=65∘−50∘=15∘.故答案为:15∘.【点睛】考查等腰三角形的性质,线段垂直平分线的性质,掌握垂直平分线的性质是解题的关键.15.垂直平分【解析】【分析】根据线段的垂直平分线的性质定理的逆定理得出A 、D 都在线段BC 的垂直平分线上,根据两点确定一条直线得出直线AD 是线段BC 的垂直平分线.【详解】解:如图,连接BC 、AD ,∵,AB AC DB DC ==,∴点A 在线段BC 的垂直平分线上,点D 在线段BC 的垂直平分线上,∴根据两点确定一条直线得出直线AD 是线段BC 的垂直平分线,故答案为:垂直平分.【点睛】本题考查了线段的垂直平分线的判定,解题的关键是熟练掌握线段的垂直平分线的性质.16.80°【解析】【分析】根据三角形的内角和进行计算,即可得到结论.【详解】由题意得:∠BAE=∠ABD=50°,∠CAE=15°,∠DBC=85°,∴∠BAC =50°+15°=65°,∠ABC =85°﹣50°=35°,在△ABC 中,∠ACB =180°﹣∠BAC ﹣∠ABC =180°﹣65°﹣35°=80°.故答案为:80°.【点睛】本题考查的是方向角的概念及三角形内角和定理,解题的关键是熟练掌握三角形的内角和.17.(1)a 12;(2)-m 12;(3)(n-m )13;(4)0【解析】【分析】(1)由题意利用积的乘方和幂的乘方的运算法则进行计算即可;(2)由题意先利用积的乘方和幂的乘方的运算法则进行计算,继而利用同底数幂的乘法进行计算即可;(3)由题意先利用幂的乘方的运算法则进行计算,继而利用同底数幂的乘法进行计算即可;(4)由题意先利用积的乘方和幂的乘方的运算法则进行计算,继而利用合并同类项原则进行计算即可.【详解】解:(1)[(-a)3]412a =;(2)(-m 2)3·(-m 3)26612m m m =-⋅=-;(3)[(m-n)2]5(n-m)310310313()()()()()m n n m n m n m n m =-⋅-=-⋅-=-;(4)(-x 2)5+(-x 5)210100x x =-+=.【点睛】本题考查幂的运算,熟练掌握积的乘方和幂的乘方以及同底数幂的乘法运算法则是解题的关键.18.8,8,2【解析】【分析】设腰长为x ,底边长为y ,分两种情况进行讨论,12为腰长加腰长的一半和6为腰长加腰长的一半,求解即可.解:设腰长为x ,底边长为y ,当12为腰长加腰长的一半时,则:1122162x x y x ⎧+=⎪⎪⎨⎪+=⎪⎩,解得82x y =⎧⎨=⎩此时三角形的三边长为8,8,2,能组成三角形当6为腰长加腰长的一半时,则1621122x x y x ⎧+=⎪⎪⎨⎪+=⎪⎩解得410x y =⎧⎨=⎩,此时三角形的三边长为4,4,10,不能组成三角形故三角形的三边长为8,8,2【点睛】本题考查了等腰三角形和三角形三边关系的求解,解题的关键是注意分情况讨论,并判断是否组成三角形.19.(1)见解析;(2)172;(3)见解析【解析】【分析】(1)根据题意作出点A ,点B 关于L 的对称点A′、B′,连结CA′,A′B′,B′C 即可;(2)用割补法利用矩形面积减去3个直角三角形面积求解即可得到结论;(3)作出图形,根据勾股定理求得结果即可.【详解】解:(1)作出点A ,点B 关于l 的对称点A′、B′,连结CA′,A′B′,B′C ,如图所示,△A'B'C'即为所求;(2)四边形ABCA'的面积=4×412-⨯2×112-⨯1×412-⨯3×3=16-1-2-92=172;故答案为:172;(3)∵点B 与点B′关于l 对称,连接AB'交直线l 与点P ,∴PA+PB=PA+PB′,则PA+PB长的最短值=AB',∴AB'==;.【点睛】本题考查了轴对称﹣最短路线问题,勾股定理,作图﹣轴对称变换,正确的理解题意是解题的关键.20.(1)证明见解析;(2)DE=DC,证明见解析.【解析】【分析】(1)欲证∠1=∠C,只需证明△DBE≌△DAC即可;(2)由△DBE≌△DAC,得到DE=DC.【详解】(1)∵AD⊥BC于D,∴∠BDE=∠ADC=90°.∵AD=BD,AC=BE,∴Rt△BDE≌Rt△ADC(HL),∴∠1=∠C.(2)DE=DC.理由如下:由(1)知△BDE≌△ADC,∴DE=DC.本题考查了直角三角形全等的判定及性质;三角形全等的判定和性质是中考的热点,斜边与直角边对应相等的两个直角三角形全等.21.见解析【解析】【详解】试题分析:连接AF,根据等腰三角形性质和三角形内角和定理求出∠B=∠C=30°,根据线段的垂直平分线的性质得出BF=AF,推出∠BAF=∠B=30°,求出∠FAC=90°,根据含30度角的直角三角形性质求出即可.试题解析:连接AF,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵EF为AB的垂直平分线,∴BF=AF,∴∠BAF=∠B=30°,∴∠FAC=120°-30°=90°,∵∠C=30°,∴AF=12 CF,∵BF=AF,∴BF=12 FC.22.(1)8;(2)-7【解析】【分析】(1)先化为以2为底的幂的形式,再利用同底数幂相乘,底数不变,指数相加,最后采用整体代入思想解题;(2)先利用幂的乘方公式将所要求的式子化简,再代入解题.【详解】解:(1)若2x+5y ﹣3=0,则2x+5y=32525343222228x y x y x y +⋅=⋅===;(2)(a 2m )3+(bn )3-a 2mbn·a 4mb 2n=(a 3m )2+(b 3n )-a 6mb 3n=(a 3m )2+(b 3n )-(a 3m )2b 3n=32+2-32×2=9+2-18=-7.【点睛】本题考查幂的运算,涉及同底数幂的乘法、幂的乘方、整体思想等知识,是重要考点,掌握相关知识是解题关键.23.(1)证明见解析;(2)25°【解析】【分析】(1)根据SAS 即可证明;(2)在△ABE 中,求出∠A ,∠ABE 即可解决问题.【详解】(1)证明:∵∠1=∠2,∴∠1+∠EBF =∠2+∠EBF ,即∠ABE =∠CBF .在△ABE 和△CBF 中,∵AB BC ABE CBF BE BF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CBF .(2)∵∠1=∠2,∠FBE =40°,∴∠1=∠2=70°.∵△ABE ≌△CBF ,∴∠A =∠C =45°,∵∠ABE =∠1+∠FBE =70°+40°=110°,∴∠E =180°-∠A -∠ABE =180°-45°-110°=25°.【点睛】本题考查全等三角形的判定和性质,三角形的内角和定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常见题.24.(1)①100°;②当90MON ∠=︒时,10GH =;(2)60APB ∠=︒【解析】【分析】(1)①根据对称性可得OG OP OM GP =⊥,,即可得到OM 平分POG ∠,ON 平分∠POH ,进而得出∠GOH 的值;②当90MON ∠=︒时,180GOH ∠=︒,此时G O H ,,在同一直线上,可得=10GH GO HO +=;(2)设点P 关于OM 、ON 对称点分别为P P ''',,当点A 、B 在P P '''上时, PAB 周长的最小,根据轴对称的性质,可求出APB ∠的度数.【详解】解:(1)①P 关于射线OM 的对称点是G ,点P 关于射线ON 的对称点是H ,OG OP OM GP ∴=⊥,,OM ∴平分POG ∠,同理得,ON 平分∠POH ,=2250100GOH MON ∴∠∠=⨯︒=︒,故答案为:100°;②P O=5,5GO HO ∴==当90MON ∠=︒时,180GOH ∠=︒G O H ∴,,在同一直线上,=10GH GO HO ∴+=;(2)如图,分别作点P 关于OM 、ON 的对称点P P ''',,连接OP OP P P P P '''''''''、、,交OM ON 、于点A 、B ,连接PA ,PB ,则AP=AP BP BP '''=,,此时 PAB 周长的最小值等于P P '''的长,由对称性可得,==,OP OP OP P OA POA P OB POB ''''''∠=∠∠=∠,,2260120P OP MON '''∴∠=∠=⨯︒=︒(180120)230OP P OP P ''''''∴∠=∠=︒-︒÷=︒30OPA OP A '∴∠=∠=︒同理可得30BPO OP B ''∠=∠=︒303060APB ∴∠=︒+︒=︒.【点睛】本题考查轴对称——最短路线问题,涉及角平分线性质等知识,是重要考点,掌握相关知识是解题关键.25.(1)证明见解析(2)∠QMC 的大小不变,∠QMC=60°(3)∠QMC 的大小不变,∠QMC =120°【解析】【分析】(1)根据等边三角形的性质,利用SAS 证明△ABQ ≌△CAP ;(2)由△ABQ ≌△CAP 根据全等三角形的性质可得∠BAQ=∠ACP ,从而得到∠QMC=60°;(3)由△ABQ ≌△CAP 根据全等三角形的性质可得∠BAQ=∠ACP ,从而得到∠QMC=120°.(1)证明:∵△ABC 是等边三角形∴∠ABQ =∠CAP =60°,AB =CA ,又∵点P 、Q 运动速度相同,∴AP =BQ ,在△ABQ 与△CAP 中,∵AB CA ABQ CAP BQ AP =⎧⎪∠=∠⎨⎪=⎩,∴ABQ CAP ≌△△(SAS );(2)解:点P 、Q 分别在AB 、BC 边上运动时,∠QMC 的大小不变,∠QMC =60°.理由:∵ABQ CAP ≌△△,∴∠BAQ =∠ACP ,∵∠QMC =∠ACP +∠MAC ,∴∠QMC =∠BAQ +∠MAC =∠BAC =60°(3)解:点P 、Q 在运动到终点后继续在射线AB 、BC 上运动时,∠QMC 的大小不变.理由:同理可得ABQ CAP ≌△△,∴∠BAQ =∠ACP ,∵∠QMC =∠BAQ +∠APM ,∴∠QMC =∠ACP +∠APM =180°-∠PAC =180°-60°=120°.。
攀枝花八年级上期数学半期考题及答案题市二中2021级2021――2021学年上期半期考试考试题7、如果x2?kx?ab=(x-a)(x+b),则k应为()a、a+bb、a-bc、b-ad、-a-by2x?yx8、若3?5,3?4,则3等于()数学(命题人:陈平,李康)本卷分为第ⅰ卷(选择题)和第ⅱ卷(非选择题)两部分。
共120分,考试时间120分钟。
张振强号考不内名姓线级班订校装学第ⅰ卷(选择题,共30分后)温馨提示:1、答第ⅰ卷前,考生务必把自己的姓名、考号、考试科目用2b铅笔涂写在机读卡上。
2、考试结束后,将本试题卷带走妥善保管,机读卡和答题卷交回。
一、选择题:(每小题3分后,共30分后;将答案圣皮耶尔埃在机读卡上。
)1、-27的立方根是()a、9b、-9c、3d、-32、以下观点恰当的就是()a、38就是无理数;b、3.14就是无理数;22c、7是无理数;d、15是无理数。
3、以下各组数中,能够形成直角三角形的就是()a:4,5,6b:1,1,2c:6,8,11d:5,12,234、在数轴上n点表示的数可能是() a.10b.5nc.3d.2-1012345、下列各式中正确的是()a、(a+4)(a-4)=a2?4b、(5x-1)(1-5x)=25x2?1c、(?3x?2)2=4?12x?9x2d、(x-3)(x-9)=x2?276、计算3a2b3?4的结果是()a、81a8b12b、12a6b7c、?12a6b7d、?81a8b12a.;254b.6c.21d.209、下列各式分解因式正确的个数有()①a2?16?(a?4)2②3m2?8m?m3?m(3m?8?m2)③a3?2a2?a?a(a2?2a?1)④a2?8a?16?(a?4)(a?4)a:1个b:2个c:3个d:4个10、已知,如图长方形abcd中,ab=3cm,aedad=9cm,将此长方形折叠,使点b与点d重合,折痕为ef,则△abe的面积为()ba、3cm2b、4cm2fcc、6cm2d、12cm2二、填空题:(每小题4分后,共24分后;将答案写下在ⅱ卷答题卡上。
2024-2025学年八年级数学上学期期中模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:北师大版八上册第一至四章(勾股定理+实数+位置与坐标+一次函数)。
5.难度系数:0.65第一部分(选择题共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.(2024·云南昆明·三模)在函数y =中,自变量x 的取值范围是()A .2024x ≥B .2024x ≥-C .2024x >D .2024x >-2.下列计算正确的是()A=B =6´C =D 4=3.(23-24八年级上·江苏无锡·期中)在22703π,中,无理数有()A .0个B .1个C .2个D .3个4.(22-23八年级上·山东青岛·期中)若点A 的坐标(),x y 满足条件()2320x y -++=,则点A 在()A .第一象限B .第二象限C .第三象限D .第四象限5.(22-23八年级·宁夏石嘴山·期中)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A .1B C .6,7,8D .2,3,46.(23-24八年级上·四川成都·期中)已知一次函数24y x =-+,那么下列结论正确的是()A .y 的值随x 的值增大而增大B .图象经过第一、二、三象限C .图象必经过点(1,2)D .与y 轴交于(0,4)-7.(23-24八年级上·陕西宝鸡·期中)已知在平面直角坐标系中,点()3,5A a --与点()1,7B b +关于x 轴对的值为(精确到0.1)()A .3.4B .3.5C .3.6D .3.78.(23-24八年级上·重庆·期中)已知点(),P k b -在第二象限,则直线y kx b =+的图象大致是()A .B .C .D .9.(22-23八年级上·江苏连云港·期中)有一个边长为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了如图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2022次后形成的图形中所有的正方形的面积和是()A .2023B .2022C .2021D .110.(22-23八年级·重庆璧山·期中)甲,乙两车从A 地开往B 地,并以各自的速度匀速行驶,甲车比乙车早出发2h ,并且甲车途中休息了0.5h ,甲、乙两车行驶的路程(km)y 与甲车的行驶时间(h)x 的函数关系如图所示.当甲、乙两车相距50km 时,乙车的行驶时间为()A .9h 4或19h 4B .1h 4或11h 4C .1h4D .19h 4第二部分(非选择题共90分)二、填空题(本大题共3小题,每小题3分,满分18分)11.(23-24八年级上·甘肃酒泉·期中)已知x 的平方根是8±,则x 的立方根是.12.(22-23八年级上·浙江金华·期中)已知()()()1231,,1.8,,2,y y y -是直线3y x m =-+(m 为常数)上的三个点,则123,,y y y 的大小关系.13.(22-23八年级上·江苏泰州·期中)点P 到x 轴的距离为3,到y 轴的距离为2,则第二象限内的点P 的坐标为.14.(22-23七年级上·黑龙江绥化·a ,b ,则a b +=.15.(23-24八年级上·重庆·期中)一个圆柱底面周长为16cm ,高为6cm ,则蚂蚁从A 点爬到B 点的最短距离为cm .16.(22-23八年级上·辽宁阜新·期中)如图,在平面直角坐标系中,直线443y x =-+与x 轴、y 轴分别交于A 、B 两点.点C 在第二象限.若C 点坐标(),1.2m 则四边形OABC 的面积(用含m 的代数式表示).三、解答题(本大题共8小题,满分72分.解答应写出文字说明,证明过程或演算步骤)17.(8分)(22-23八年级·河南漯河·期中)计算:⎛⎫ ⎪ ⎪⎝⎭;(2)22)+-.18.(8分)(23-24八年级·江苏南通·期中)已知3y -与42x -成正比例,且当1x =时,5y =.(1)求y 与x 的函数关系式;(2)设点(),2a -在(1)中函数的图象上,求a 的值.19.(8分)(23-24八年级上·河南商丘·期末)如图,在直角坐标系中,()()()153043A B C ---,,,,,.(1)在图中作出ABC V 关于y 轴对称的图形111A B C △;(2)写出点1C 的坐标;(3)求ABC V 的面积.20.(8分)(23-24八年级下·山东济南·期末)小明和小亮学习了“勾股定理”之后,为了测量风筝的垂直高度CE ,他们进行了如下操作:①测得水平距离BD 的长为15米;②根据手中剩余线的长度计算出风筝线BC 的长为25米;③牵线放风筝的小明的身高为1.6米.(1)求风筝的垂直高度CE ;(2)如果小明想风筝沿CD 方向下降12米,则他应该往回收线多少米?21.(8分)(23-24八年级上·全国·课后作业)请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的长.22.(8分)(23-24八年级上·陕西西安·期中)观察下列各式,并解答下列问题:第122112=+第2233223=+.第3344334=+.……(1)写出第4个等式:______.(2)猜想第n 个等式:______.(3)22123329910010099++++ 23.(10分)(23-24八年级上·陕西西安·期中)联通公司手机话费收费有A 套餐(月租费15元,通话费每分钟0.1元)和B 套餐(月租费0元,通话费每分钟0.15元)两种,设A 套餐每月话费为1y (元),B 套餐每月话费为2y (元),月通话时间为x 分钟.(1)分别表示出1y 与x ,2y 与x 的函数关系式;(2)如果该手机用户使用A 套餐且本月缴费50元,求他本月的通话时间?(3)若该用户这个月的通话时间为160分钟,请分别计算使用套餐A 和套餐B 应缴费多少元?24.(14分)(23-24八年级·海南·期中)如图①,在长方形ABCD 中,10cm AB =,8cm BC =、点P 从A出发,沿A B C D →→→路线运动,到D 停止;点P 的速度为每秒1cm ,a 秒时点P 改变速度,变为每秒cm b ,图②是点P 出发x 秒后,APD △的面积()2cm S 与(x 秒)的关系图象;(1)当点P 在AB 上运动时,APD △的面积会_______,点P 在BC 上运动时,APD △的面积会______,点P 在CD 上运动时,APD △的面积会________;(填“增大”或“减小”或“不变”)(2)根据图②提供的信息,求出a 、b 及图②中c 的值;(3)设点P 离开点A 的路程为()cm y ,请写出动点P 改变速度后y 与出发后的运动时间(x 秒)的关系式.(4)当点P 出发后几秒时,APD △的面积S 是长方形ABCD 面积的142024-2025学年八年级数学上学期期中模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
渝北区实验中学校2025届2023—2024学年度第一学期半期考试数学试卷(满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作图(包括作辅助线)请一律用黑色2B 铅笔完成.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A ,B ,C ,D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1. 以下列各组线段为边,能组成三角形的是( )A. 1,2,4B. 2,3,5C. 4,6,8D. 5,6,12【答案】C【解析】【分析】根据两条短边之和大于最长的边和两边之差小于第三边逐项进行判断即可.【详解】解:A 、,不能组成三角形,故本选项不符合题意;B 、,不能组成三角形,故本选项不符合题意;C 、,能组成三角形,故本选项符合题意;D 、,不能组成三角形,故本选项不符合题意.故选:C .【点睛】本题考查三角形的三边关系,熟记三角形任意两边之和大于第三边,任意两边之差小于第三边,是解题的关键.2. 下列标志中,是轴对称图形的是( )A. B. C. D.【答案】D【解析】【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.根据轴对称图形的定义判断即可.【详解】解:A、不是轴对称图形,不符合题意,选项错误;1234+=<235+=46108+=>561112+=<B 、不是轴对称图形,不符合题意,选项错误;C 、不是轴对称图形,不符合题意,选项错误;D 、是轴对称图形,符合题意,选项正确;故选:D .【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解题关键.3. 下列四个图形中,线段是的高的是( )A. B. C. D.【答案】C【解析】【分析】本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.根据三角形高的画法知,过点作边上的高,垂足为,其中线段是的高,再结合图形进行判断.【详解】解:线段是的高的图是;故选:C .4. 如图,已知图中的两个三角形全等,则度数是( )A. B. C. D. 【答案】A【解析】【分析】本题考查了全等三角形的性质,正确得出对应角是解题的关键.根据全等三角形对应角相等即可得出结论.【详解】解:∵图中的两个三角形全等,∴,BE ABC V B AC E BE ABC V BE ABC V α∠50︒58︒60︒72︒50α∠=︒5. 工人师傅常用角尺平分一个任意角,作法如下:如图所示,是一个任意角,在边,上分别取,移动角尺,使角尺两边相同刻度分别与,重合(),射线即是的角平分线;这种作法的理由是( )A. B. C. D. 【答案】A【解析】【分析】本题考查了全等三角形的判定及性质.由三边相等得,即由判定三角全等.【详解】解:由图可知,,又,在和中,,,,即是的平分线.故答案为:.故选:A.6. 如图,点B ,F ,C ,E 共线,∠B =∠E ,BF =EC ,添加一个条件,不能判断△ABC ≌△DEF 的是( )A. AB =DEB. ∠A =∠DC. AC =DFD. AC ∥FD的AOB ∠OA OB OM ON =M N CM CN =OC AOB ∠SSSSAS ASA AASCOM CON V V ≌SSS CM CN =OM ON = MCO V NCO V MO NO CO CO CM CN =⎧⎪=⎨⎪=⎩(SSS)COM CON ∴V V ≌AOC BOC ∴∠=∠OC AOB ∠SSS【解析】【分析】根据全等三角形的判定与性质逐一分析即可解题.【详解】解:BF =EC ,A. 添加一个条件AB =DE ,又故A 不符合题意;B. 添加一个条件∠A =∠D又故B 不符合题意;C. 添加一个条件AC =DF ,不能判断△ABC ≌△DEF ,故C 符合题意;D. 添加一个条件AC ∥FD又故D 不符合题意,故选:C .【点睛】本题考查添加条件使得三角形全等即全等三角形的判定,是重要考点,难度较易,掌握相关知识是解题关键.7. 等腰三角形的顶角是,则这个三角形的底角的大小是( )A. B. 或 C. D. 【答案】C【解析】【分析】根据等腰三角形的性质和三角形的内角和定理求解.【详解】解:等腰三角形的顶角是,则这个三角形的底角是;故选:C . BC EF∴=,BC EF B E=∠=∠ ()ABC DEF SAS ∴△≌△,BC EF B E=∠=∠ ()ABC DEF AAS ∴V V ≌ACB EFD∴∠=∠,BC EF B E=∠=∠ ()ABC DEF ASA ∴V V ≌50︒50︒65︒50︒65︒80︒50︒()118050652⨯︒-︒=︒【点睛】本题考查了等腰三角形的两个底角相等和三角形的内角和定理,熟练掌握上述基本知识是关键.8. 如果一个等腰三角形周长为17cm ,一边长为5cm ,那么腰长为( )A. 5cmB. 6cmC. 7cmD. 5cm 或6cm 【答案】D【解析】【分析】此题分为两种情况:5cm 是等腰三角形的底边长或5cm 是等腰三角形的腰长,然后进一步根据三角形的三边关系进行分析能否构成三角形.【详解】当5cm 是等腰三角形的底边时,则其腰长是(17−5)÷2=6(cm ),能够组成三角形;当5cm 是等腰三角形的腰时,则其底边是17−5×2=7(cm ),能够组成三角形.故该等腰三角形的腰长为:6cm 或5cm .故选:D .【点睛】此题考查了等腰三角形的两腰相等的定义,三角形的三边关系,熟练掌握等腰三角形的定义是解题的关键.9. 如图,在等腰直角中,点是边上的中点,点为边上的动点,连接,过点作,交于点,连接,,则下列结论错误的是( )A. B. C. D. 【答案】B【解析】【分析】本题考查全等三角形的判定与性质及等腰三角形三线合一,先证明出,再根据全等三角形的性质推出其他选项,即可得到答案.【详解】解:由题意:为等腰直角三角形,点是的中点,,平分,且,,,,,在和中,的ABC V D BC E AB ED D DF DE ⊥AC F EF AD DFA DEBV V ≌EF AD =45DEF ∠=︒12ABC AEDF S S =△四边形DFA DEB V V ≌ABC V D BC AD BD CD ∴==AD BAC ∠AD BC ⊥45DAF DAE DBE DCF ∴∠=∠=∠=∠=︒DF DE ⊥ BDE ADF ∴∠=∠ADE CDF ∠=DFA V DEB V,,A 正确,不符合题意;,,,C 正确,不符合题意;,,,,为等腰直角三角形,点是的中点,,D 正确,不符合题意;无法得出,B 错误,符合题意;故选:B .10. 对多项式任意加一个或者两个括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:,,…,给出下列说法:①不存在任何“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和互为相反数;③所有的“加算操作”共有3种不同的结果.以上说法中正确的个数为( )A. 0B. 1C. 2D. 3【答案】B【解析】DAF DBE BD ADBDE ADF ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA DFA DEB ∴V V ≌∴DF DE ∴=DF DE ⊥ 45DEF ∴∠=︒∴DFA DEB V V ≌∴DFA DEB S S =V V ADE ADF AEDF S S S =+四边形V V ∴ADE DEB ABD AEDF S S S S =+=四边形V V V ABC V D BC ∴12ABD ABC AEDF S S S ==四边形V V ∴EF AD =∴x y z m ---()()x y z m x y z m ---=--+()x y z m x y z m ---=--+【分析】本题主要考查了整式的加减运算,原多项式为,“加算操作”后为:,①,存在“加算操作”后使其结果与原多项式相等,从而进行判断;②假设存在原多项式与“加算操作”后的原多项式互为相反数,得到,由此进行判断;③列举所有“加算操作“后的结果,从而进行判断即可.【详解】解:若原多项式为,“加算操作”后为:,①,存在“加算操作”,使其结果与原多项式相等,故①中的说法不正确;②若原多项式与“加算操作”后的原多项式互为相反数,添括号后的符号始终为正,不存在任何“加算操作”,使其结果与原多项式之和互为相反数,故②的说法正确;③所有的“加算操作”共有4种不同的结果:(1);(2);(3);(4)故③的说法不正确,综上可知:以上说法中正确的个数为1,故选:B .二、填空题:(本大题共8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11. 如图,在中,,则__________.【答案】##130度【解析】【分析】利用三角形的外角的性质,直接计算即可.x y z m ---()()x y z m ---()x y z m x y z m ---=---x y z m x y z m -+++≠--+x y z m ---()()x y z m x y z m ---=--+()x y z m x y z m ---=---∴x ∴()x y z m x y z m ---=--+()x y z m x y z m ---=-++()x y z m x y z m ---=-+-()x y z m x y z m---=---ABC V 70,60A B ∠=︒∠=︒ACD ∠=130︒【详解】解:由图可知:;故答案为:.【点睛】本题考查三角形的外角的性质.熟练掌握三角形的一个外角等于与它不相邻的两个内角的和,是解题的关键.12. 如图,是的中线,若,则________.【答案】【解析】【分析】本题考查了三角形中线的性质,根据三角形的中线的性质即可求解.【详解】解:∵是中线, ,∴,故答案为:.13. 如图所示,,,直线垂直平分线段,交于点,则的周长为________.【答案】【解析】【分析】本题考查的是线段的垂直平分线的性质,根据线段的垂直平分线的性质得到,利用三角形的周长公式计算即可.【详解】解:直线是的垂直平分线,,的周长的130ACD A B ∠=∠+∠=︒130︒AD ABC V 2ABC S =△ACD S =V 1AD ABC V 2ABC S =△ACD S =V 114cm AB AC ==3cm BC =a AB AC D BDC V cm 7DA DB = a AB DA DB ∴=BDC ∴V BD BC CD=++DA CD BC=++,故答案为:.14. 一个多边形的内角和是,这个多边形的边数是______.【答案】8【解析】【分析】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键;因此此题可根据多边形内角和公式进行求解即可.【详解】解:由题意得:,∴;故答案为8.15. 如图,Rt △ABC 中,∠C =90°,AD 是∠BAC 的平分线,CD =3,AB =8,则△ABD 的面积等于_____.【答案】12【解析】【分析】过D 作DE ⊥AB 于E ,由角平分线的性质,即可求得DE 的长,继而求得三角形面积.【详解】解:如图,过D 作DE ⊥AB 于E ,∵AD 平分∠BAC ,∠C =90°,∴DE =DC =3,∵AB =8,∴△ABD 的面积=AB •DE =×8×3=12.故答案为:12.【点睛】本题考查了角平分线的性质,能根据角平分线性质得出DE =CD 是解题的关键,注意:角平分线上的点到这个角两边的距离相等.()7cm AC BC =+=71080︒()2180n -⨯︒()21801080n -⨯︒=︒8n =121216. 如图,在中,,和的角平分线分别交于点,,若,,.则的长为________.【答案】【解析】【分析】本题考查了等腰三角形的判定与性质,平行线的性质,根据角平分线的定义和平行线的性质可证和是等腰三角形,从而可得,,然后利用线段的和差关系进行计算,即可解答.【详解】解:平分,平分,,,,,,,,,,,,故答案为:.17. 如图,在中,,,,点Q 是边上的一个动点,点Q 从点B 开始沿方向运动,且速度为每秒,设出发的时间为t 秒.当点Q 在边CA 上运动时,出发________秒后,是以为腰的等腰三角形.【答案】或【解析】【分析】题考查了等腰三角形的性质,分两种情况:当时;当时;然后分别进行计算ABC V ED BC ∥ABC ∠ACB ∠ED G F 4BE =6CD =3FG =ED 7EBG V DFC V 4EB EG ==6DC DF ==BG ABC ∠CF ACB ∠ABG CBG ∴∠=∠ACF BCF ∠=∠ ED BC ∥EGB CBG ∴∠=∠DFC BCF ∠=∠ABG EGB ∴∠=∠ACF DFC ∠=∠4EB EG ∴==6DC DF ==3FG = 4637DE EG DF FG ∴=+-=+-=7ABC V 90B Ð=°16cm AB =12cm BC =20cm AC =ABC V B C A →→1cm BCQ △CQ 2224CQ CB =QC QB =即可解答.【详解】解:分两种情况:当时,如图:秒;当时,如图:,,,,,,,,秒;综上所述:当点在边上运动时,出发或秒后,是以为腰的等腰三角形,故答案为:或.18. 一个四位自然数M ,若各个数位上的数字均不为0,且满足百位上的数字与十位上的数字之和是千位CQ CB =12cm CB CQ == ,∴241CB CQ t +==()QC QB =QC QB = C CBQ ∠∠∴=90ABC ∠=︒ 90C A ∠∠∴+=︒90CBQ QBA ∠∠+=︒QBA A ∠∠∴=BQ QA ∴=()110cm 2CQ QA AC ∴===∴221CB CQ t +==()Q CA 2224BCQ V CQ 2224上的数字与个位上的数字之和的3倍,则称这个四位数M 为“三生数”.例如:,,是“三生数”;,,不是“三生数”.则最小的“三生数”是________;如果一个“三生数”M 的各数位上的数字之和为16,并且规定:将这个“三生数”M 的十位与百位交换得到记,且为正整数,则符合条件的最大的M 的值是________.【答案】①. ②. 【解析】【分析】本考查了二元一次方程的解;由题意得,百位上的数字+十位上的数字=3×(千位上的数字+个位上的数字),根据最小的“三生数”的千位上的数字和个位上的数字都取1,求得最小的“三生数”;设千位上的数字为,百位上的数字为,十位上的数字为,个位上的数字为,由题意得,,,根据的值最大,得出,,,,【详解】解:由题意得,百位上的数字十位上的数字千位上的数字个位上的数字,各个数位上的数字均不为,∴最小的“三生数”的千位上的数字和个位上的数字都取,则百位上的数字十位上的数字,百位上的数字取,十位上的数字取,,∴最小的“三生数”是,设千位上的数字为,百位上的数字为,十位上的数字为,个位上的数字为,由题意得,,,,,由于的值要最大,,,,,即,则,,符合题意,故最大的的值是,故答案为:,.三、解答题:(本大题共8个小题,19、20题每小题8分,26题12分,其余每小题101843M =()84313+=⨯+ 1843∴6312M =()31362+≠⨯+ 6312∴M '()270M M G M '-=()G M 11513931a b c d 16a b c d +++=()3b c a d +=⨯+M 3a =9b =3c =1d =+3(=⨯+) 01+6=∴15()15311+=⨯+ 1151a b c d 16a b c d +++=()3b c a d +=⨯+4a d ∴+=12b c +=M 3a ∴=9b =3c =1d =3931M =3391M '=()393133912270270M M GG M '--===M 393111513931分,共78分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.19. 如图,在△ABC 中,BD 是∠ABC 的平分线,CE 是AB 边上的高,且∠ACB=60°,∠ADB=97°,求∠A 和∠ACE 的度数.【答案】∠A =46°, ∠ACE =44°【解析】【分析】先由三角形内角与外角的关系可求∠DBC ,再根据三角形的内角和可求∠A ,最后由直角三角形AEC 可求∠ACE .【详解】∵∠ADB=∠DBC+∠ACB ,∴∠DBC=∠ADB-∠ACB=97°-60°=37°.∵BD 是角平分线,∴∠ABC=74°,∴∠A=180°-∠ABC-∠ACB=46°.∵CE 是高,∴∠AEC=90°,∴∠ACE=90°-∠A=44°.【点睛】本题考查了三角形的内角和以及三角形内角与外角的关系,利用此可计算其它角的度数,是一道基础题.20. 如图,三个顶点的坐标分别为,,.ABC V ()1,1A ()4,2B ()3,4C(1)请画出关于轴成轴对称的图形,并写出、、的坐标;(2)求的面积.【答案】(1)画出图形见解析,、、的坐标为、、;(2)的面积为【解析】【分析】(1)根据题意画出图形,写出坐标即可;(2)利用割补法求面积即可求解.【详解】解:(1)画出图形如下:,ABC V x 111A B C △1A 1B 1C ABC V 1A 1B 1C ()11,1A -()14,2B -()13,4C -ABC V 72、、的坐标为、、;(2)的面积为.【点睛】本题考查平面直角坐标系中图形的对称、割补法求面积,根据轴对称的定义画出图形是解题的关键.21. 如图,在中,,,垂足为点,点在的延长线上.(1)尺规作图:作的平分线交于点(按要求完成作图,不写作法,保留作图痕迹);(2)填空:在(1)的条件下,若,试说明.证明:∵,,∴ ① , ② ,∵,∴ ③ ,又∵平分,∴2 ④ ,∴ ⑤ ,在和中,,∴,∴.【答案】(1)作图见解析1A 1B 1C ()11,1A -()14,2B -()13,4C -ABC V 1117332321132222⨯-⨯⨯-⨯⨯-⨯⨯=ABC V AB AC =AD BC ⊥D E AD ACB ∠AD F 2EBD ABC ∠=∠DE DF =AB AC =AD BC ⊥BD =ABC ∠=2EBD ABC ∠=∠2EBD ∠=CF ACB ∠ACB =∠EBD ∠=BED V CFD △EBD FCD BD CD BDE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA BED CFD ≅V V DE DF =(2),,,,【解析】【分析】对于(1),以点C 为圆心,以小于为半径画弧,交于点M ,交于点N ,再分别以点M ,N 为圆心,以大于为半径画弧,两弧交于点P ,作射线,交于点F ;对于(2),先根据等腰三角形的性质得,,结合已知条件得,再根据角平分线定义可得,然后根据“”证明≌,最后根据全等三角形的性质得出答案.【小问1详解】如图所示.【小问2详解】∵,,∴,.∵,∴.∵平分,∴,∴.在和中,,CD ACB ∠ACB ∠BCF ∠DCF∠BC BC AC 12MN CP AD BD CD =A ABC CB =∠∠2E B D A C B ∠=∠EBD DCF ∠=∠ASA BED V CFD △AB AC =AD BC ⊥BD CD =A ABC CB =∠∠2EBD ABC ∠=∠2E B D A C B ∠=∠CF ACB ∠2B C F A C B ∠=∠EBD DCF ∠=∠BED V CFD △EBD DCFBD CD BDE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴≌(),∴.故答案为:,,,,.【点睛】本题主要考查了尺规作角平分线,等腰三角形的性质,全等三角形的性质和判定,角平分线的定义等,证明线段相等的常用方法是证明两个三角形全等.22. 如图,点、、、在一条直线上,,,.求证:.【答案】见解析【解析】【分析】此题考查全等三角形的判定与性质,证明它们所在的三角形全等即可.根据平行线的性质可得;由可得.运用证明与全等.【详解】证明:,.,.在与中,,,.23. (1)如图1,在中,,边上的垂直平分线交于点,交于点,连接,将分成两个角,且,求的度数.(2)如图2,中,、的三等分线交于点、,若,,求的度数.BED V CFD △ASA DE DF =CD ACB ∠ACB ∠BCF ∠DCF ∠B E C F AC DF ∥AC DF =BE CF =AB DE =ACB F ∠=∠BE CF =BC EF =SAS ABC V DEF V AC DF ∥ACB F ∴∠=∠BE CF = BC EF ∴=ABC V DEF V AC DF ACB F BC EF =⎧⎪∠=∠⎨⎪=⎩()SAS ABC DEF ∴V V ≌AB DE ∴=Rt ABC △90C ∠=︒AB DE BC D AB E AD AD CAB ∠1:21:2∠∠=ADC ∠ABC V ABC ∠ACB ∠E D 120BFC ∠=︒108BGC ∠=︒A ∠【答案】(1);(2)【解析】【分析】本题考查的是线段垂直平分线的性质、等边对等角,三角形的内角和定理;(1)根据线段垂直平分线的性质得到,根据等腰三角形的性质得到,根据直角三角形的两锐角互余列方程,解方程得到答案.(2)设,,在和中,根据三角形内角和定理列方程,相加可得:的值,即可求得的度数.【详解】解:(1)设,则,是边的垂直平分线,,,,,解得:,,则;(2)设,,在中,①,在中,②,解得:①②:,.24. 如图,点在线段上,点在线段上,,,,点,72︒48︒DA DB =B BAD ∠=∠GBC x ∠=DCB y ∠=BFC V BGC V 33x y +A ∠1x ∠=22x ∠=DE AB DA DB ∴=22B x ∴∠=∠=90C ∠=︒2290x x x ∴++=︒18x =︒118∴∠=︒90172ADC ∠=︒-∠=︒GBC x ∠=DCB y ∠=BFC V 218012060x y +=︒-︒=︒BGC V 218010872x y +=︒-︒=︒+33132x y +=︒()1803318013248A x y ∴∠=︒-+=︒-︒=︒B AC E BD ABD DBC ∠=∠EB BC =AE DC =M分别在线段,边上,且满足,猜测与的数量关系并说明理由.【答案】,理由见解析【解析】【分析】本题考查了全等三角形的性质与判定,先证明,进而证明,证明即可得证.【详解】解:,证明:∵点在线段上,,∴,在中,∴∴,又∵∴又,即在中,∴,∴.25. 在中,平分,交于点.N AE CD 90MBN ∠=︒BM BN BM BN =()Rt Rt HL ABE DBC V V ≌MAB NDB ∠=∠()ASA AMB DNB V V ≌BM BN =B AC ABD DBC ∠=∠90ABE DBC ∠=∠=︒Rt ,Rt ABE DBC V V AE DCEB BC=⎧⎨=⎩()Rt Rt HL ABE DBC V V ≌AB DB =EAB CDB∠=∠90MBN ∠=︒90ABM MBE DBN∠=︒-∠=∠EAB CDB ∠=∠MAB NDB∠=∠,AMB DNB V V ABM DBNAB DBMAB NDB∠=⎧⎪=⎨⎪∠=∠⎩()ASA AMB DNB V V ≌BM BN =ABC V AD BAC ∠BC D(1)如图1,点为线段上一点,点,分别为,边上点,连接,,且满足,若,求的长度;(2)如图2,延长至点,且满足,若,,求证:.【答案】(1)(2)见解析【解析】【分析】此题考查了全等三角形的判定与性质,角平分线的性质,等腰三角形的性质与判定;(1)过点作于点,于点,根据角平分线的性质得到,利用证明,根据全等三角形的性质即可得解;(2)在上截取,连接,利用三角形内角和定理求出,,利用证明,根据全等三角形的性质得出,,利用证明,根据全等三角形的性质得到,,根据线段的和差及等腰三角形的性质求解即可.【小问1详解】解:如图1,过点作于点,于点,平分,,,,,,,,在和中,的E AD M N AB AC EM EN 180AME ENA ∠+∠=︒6EM =EN AD H DH DB =40BAC ∠︒=100B ∠=︒AB CH AH +=6E EH AB ⊥H EG AC ⊥G EH EG =AAS MEH NEG V V ≌AC AM AB =DM 40BCA ∠=︒60BDA ∠=︒SAS ABD AMD V V ≌BD MD =60BDA MDA ∠=∠=︒SAS CDM CDH V V ≌CH CM =40MCD HCD ∠=∠=︒E EH AB ⊥H EG AC ⊥G AD BAC ∠EH AB ⊥EG AC ⊥EH EG ∴=90EHM EGN ∠=∠=︒180AME ENA ∠+∠=︒ 180AME EMH ∠+∠=︒EMH ENA ∴∠=∠MEH V NEG V,;【小问2详解】证明:如图2,在上截取,连接,,,,平分,,,,,在和中,,,,,,,,,,在和中,EM EN =⎩()AAS MEH NEG ∴V V ≌6EM EN ∴==AC AM AB =DM 40BAC ∠=︒ 100B ∠=︒40BCA ∴∠=︒AD BAC ∠40BAC ∠=︒20BAD MAD ∴∠=∠=︒18060BDA B BAD ∴∠=︒-∠-∠=︒180120ADC BDA ∴∠=︒-∠=︒ABD V AMD V AB AM BAD MAD AD AD =⎧⎪∠=∠⎨⎪=⎩()SAS ABD AMD ∴V V ≌BD MD ∴=60BDA MDA ∠=∠=︒60CDM ADC MDA BDA ∴∠=∠-∠=︒=∠CDH BDA ∠=∠ CDM CDH ∴∠=∠DH DB = MD DH ∴=CDM V CDH V,,,,,,,,,.26. 在中,,.点为内部一点,连接,,.(1)如图1,若,,求点到直线的距离;(2)如图2,以为直角边作等腰直角,,线段,交于点,若,求证:;(3)如图3,点在边上,且,点为直线上的一个动点,连接,过点作,且满足,连接,当最短时,请直接写出的度数.【答案】(1)(2)见解析(3)【解析】【分析】(1)过点作于,过点作于,可证得,得出,再由等腰三角形性质可得;(2)延长交于点,过点作于点,可证得,进而可证CD CD =⎩()SAS CDM CDH ∴V V ≌CH CM ∴=40MCD HCD ∠=∠=︒AC AM CM =+ AC AB CH ∴=+80ACH ∴∠=︒180208080H ∴∠=︒-︒-︒=︒AH AC ∴=AC AM CM =+ AB CH AH ∴+=Rt ABC △90ACB ∠=︒AC BC =D ABC V CD AD BD AD AC =8CD =B CD CD CDE V DE DC =EC AD F DCB ABD ∠=∠AF DF =Q AB AQ AC =M AC MQ Q NQ MQ ⊥NQ MQ =BN BN CMQ ∠467.5︒A AH CD ⊥H B BG CD ⊥G ()AAS ACH CBG V V ≌BG CH =142CH CD ==BD CE L A AS CE ⊥S ()AAS ACS CBL V V ≌,即可证得结论;(3)作点关于对称点,连接、,交于点,过点作交的延长线于点,连接,可证得,得出,即点在直线上运动,当且仅当时,最短,即点与点重合,作点关于的对称点,连接,则,即,再利用等腰三角形性质即可求得答案.【小问1详解】解:过点作于,过点作于,如图,则,,,,在和中,,,,,,,,即点到直线的距离为;【小问2详解】证明:延长交于点,过点作于点,则,的()AAS AFS DFL V V ≌C AB P AP CP CP AB O Q QW AB ⊥AC W AN ()SAS QWM QAN V V ≌45QAN W ∠∠==︒N AP BN AP ⊥BN N P C AB P CQ QP QC =QN QC =A AH CD ⊥H B BG CD ⊥G 190AHC CGB ∠∠==︒90ACH CAH ∠∠∴+=︒90ACH BCG ACB ∠∠∠+==︒ CAH BCG ∠∠∴=ACH V CBG V AHC CGB CAH BCG AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ACH CBG ∴V V ≌BG CH ∴=AD AC = AH CD ⊥142CH DH CD ∴===4BG ∴=B CD 4BD CE L A AS CE ⊥S 90ASC ∠=︒是等腰直角三角形,,,,,,,,,,,,在和中,,,,,,,,,在和中,,,;CDE V DE DC =45DCE DEC ∠∠∴==︒45ABD CBD ABC ∠∠∠+==︒ DCB ABD ∠∠=45DCB CBD ∠∠∴+=︒90DCB CBD DCE ∠∠∠∴++=︒1809090BLC ∠∴=︒-︒=︒ASC BLC ∠∠∴=90ACS CAS ∠∠∴+=︒90ACS BCL ACB ∠∠∠+==︒ CAS BCL ∠∠∴=ACS V CBL V ASC BLC CAS BCL AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ACS CBL ∴V V ≌AS CL ∴=45DCE ∠=︒ 90CLD ∠=︒904545CDL DCE ∠∠∴=︒-︒=︒=CL DL ∴=AS DL ∴=AFS V DFL V 90ASF DLF AFS DFLAS DL ∠=∠=︒⎧⎪∠=⎨⎪=⎩()AAS AFS DFL ∴V V ≌AF DF ∴=【小问3详解】解:如图,作点关于的对称点,连接、,交于点,过点作交的延长线于点,连接,则,,,,,,,,且满足,,,在和中,,,,即点在直线上运动,当且仅当时,最短,即点与点重合,3C AB P AP CP CP AB O Q QW AB ⊥AC W AN 90AQW ∠=︒BAP BAC ∠∠=90ACB ∠=︒ AC BC =45BAC ∠∴=︒904545W BAC ∠∠∴=︒-︒=︒=QA QW ∴=NQ MQ ⊥ NQ MQ =90AQM MQW AQM NQA ∠∠∠∠∴+=+=︒MQW NQA ∠∠∴=QWM V QAN V QW QA MQW NQA QM QN =⎧⎪∠=∠⎨⎪=⎩()SAS QWM QAN ∴V V ≌45QAN W ∠∠∴==︒N AP BN AP ⊥BN N P如图,连接,则,即,,,,,,.【点睛】本题考查了等腰直角三角形的性质,全等三角形的判定和性质,点到直线的距离垂线段最短,等腰三角形的性质,三角形内角和定理等知识,解题的关键是正确添加辅助线构造全等三角形.4CQ QP QC =QN QC =QM QN = QC QM ∴=AQ AC = ()11804567.52ACQ AQC ∠∠∴==︒-︒=︒QM QC = 67.5CMQ ACQ ∠∠∴==︒。
人教版八年级上学期期中考试数学试卷(一)一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c4.下列各式中,正确的是()A.B.C. =D.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±26.下列各分式中,最简分式是()A.B.C.D.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣18.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .12.若(x﹣2)0有意义,则x的取值范围是.13.分解因式:x2+x﹣2= .14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 cm.17.若x2+4x+1=0,则x2+= .18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= .三、解答题(本题共54分)19.(5分)请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误:;(2)从B到C是否正确,若不正确,错误的原因是;(3)请你正确解答.20.(2分)尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.21.(6分)分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.22.(7分)计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.23.(5分)先化简,再求值:,其中x=5.24.(5分)解分式方程:.25.(4分)已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.26.(4分)已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.27.(4分)在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.28.(4分)若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.29.(4分)已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A 旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.30.(4分)已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.参考答案与试题解析一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°【考点】KA:全等三角形的性质.【分析】根据全等三角形对应角相等解答即可.【解答】解:∵两个三角形全等,∴α=58°.故选C.【点评】本题考查了全等三角形的性质,熟记性质并准确识图,确定出对应角是解题的关键.2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等【考点】KB:全等三角形的判定.【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A、符合全等三角形的判定定理SSS,能推出两三角形全等,故本选项不符合题意;B、不符合全等三角形的判定定理,不能推出两三角形全等,故本选项符合题意;C、符合全等三角形的判定定理SAS,能推出两三角形全等,故本选项不符合题意;D、符合全等三角形的判定定理ASA,能推出两三角形全等,故本选项不符合;故选B.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c【考点】51:因式分解的意义.【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【解答】解:A、是整式的乘法运算,故选项错误;B、结果不是积的形式,故选项错误;C、x2﹣1=(x+1)(x﹣1),正确;D、结果不是积的形式,故选项错误.故选:C.【点评】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.4.下列各式中,正确的是()A.B.C. =D.【考点】65:分式的基本性质.【分析】利用分式的基本性质对各式进行化简即可.【解答】解:A、已经是最简分式,故本选项错误;B、,故本选项错误;C、=,故本选项错误;D、利用分式的基本性质在分式的分子与分母上同时乘以x+y即可得到,故本选项正确;故选D.【点评】本题考查了分式的基本性质,解题的关键是在进行分式的运算时要同时乘除.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±2【考点】63:分式的值为零的条件.【分析】根据分式值为0的条件可得x2﹣4=0且x+2≠0,再解出x的值即可.【解答】解:由题意得:x2﹣4=0且x+2≠0,解得:x=2.故选:B.【点评】此题主要考查了分式的值为零的条件,分式值为零的条件是分子等于零且分母不等于零.6.下列各分式中,最简分式是()A.B.C.D.【考点】68:最简分式.【分析】最简分式是指分子和分母没有公因式.【解答】解:(A)原式=,故A不是最简分式;(B)原式==,故B不是最简分式;(C)原式=,故C是最简分式;(D)原式==,故D不是最简分式;故选(C)【点评】本题考查考查最简分式,要注意将分子分母先分解后,约去公因式.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣1【考点】4E:完全平方式.【分析】这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x 和4积的2倍.【解答】解:依题意,得m﹣3=±4,解得m=7或﹣1.故选D.【点评】本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.8.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF【考点】KF:角平分线的性质.【分析】题目的已知条件比较充分,满足了角平分线的性质要求的条件,可直接应用性质得到结论,与各选项进行比对,得出答案.【解答】解:∵P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,∴PE=PF,又有AD=AD∴△APE≌△APF(HL∴AE=AF故选D.【点评】本题主要考查平分线的性质,由已知证明△APE≌△APF是解题的关键.9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定【考点】K6:三角形三边关系;K2:三角形的角平分线、中线和高.【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.倍长中线,构造一个新的三角形.根据三角形的三边关系就可以求解.【解答】解:7﹣3<2x<7+3,即2<x<5.故选A.【点评】本题主要考查了三角形的三边关系,注意此题构造了一条常见的辅助线:倍长中线.10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16【考点】K3:三角形的面积.【分析】利用角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=8:6=4:3,故选:B.【点评】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .【考点】6F:负整数指数幂.【分析】根据负整数指数为正整数指数的倒数计算.【解答】解:3﹣2=.故答案为.【点评】本题主要考查了负指数幂的运算,比较简单.12.若(x﹣2)0有意义,则x的取值范围是x≠2 .【考点】6E:零指数幂.【分析】根据非零的零次幂等于1,可得答案.【解答】解:由题意,得x﹣2≠0,解得x≠2,故答案为:x≠2.【点评】本题考查了零指数幂,利用非零的零次幂等于1是解题关键.13.分解因式:x2+x﹣2= (x﹣1)(x+2).【考点】57:因式分解﹣十字相乘法等.【分析】因为(﹣1)×2=﹣2,2﹣1=1,所以利用十字相乘法分解因式即可.【解答】解:∵(﹣1)×2=﹣2,2﹣1=1,∴x2+x﹣2=(x﹣1)(x+2).故答案为:(x﹣1)(x+2).【点评】本题考查的是十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是两角和它们的夹边分别相等的两个三角形全等.【考点】KE:全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出即可.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故答案为:两角和它们的夹边分别相等的两个三角形全等.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理:两角及其夹边分别对应相等的两个三角形全等是解题的关键.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是AO=DO或AB=DC或BO=CO .【考点】KB:全等三角形的判定.【分析】本题要判定△AOB≌△DOC,已知∠A=∠D,∠AOB=∠DOC,则可以添加AO=DO或AB=DC或BO=CO从而利用ASA或AAS判定其全等.【解答】解:添加AO=DO或AB=DC或BO=CO后可分别根据ASA、AAS、AAS判定△AOB≌△DOC.故填AO=DO或AB=DC或BO=CO.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 1.5 cm.【考点】KF:角平分线的性质.【分析】作出图形,过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD解答.【解答】解:如图,过点D作DE⊥AB于E,∵BC=4cm,BD:DC=5:3,∴CD=×4=1.5cm,∵AD是∠BAC的平分线,∴DE=CD=1.5cm.故答案为:1.5.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.17.若x2+4x+1=0,则x2+= 14 .【考点】4C:完全平方公式.【分析】由x2+4x+1=0可得x≠0,两边除以x可得到x+=﹣4,再两边平方,根据完全平方公式展开即可得到x2+的值.【解答】解:∵x2+4x+1=0,∴x+4+=0,即x+=﹣4,∴(x+)2=(﹣4)2,∴x2+2+=16,∴x2+=14.故答案为14.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了代数式的变形能力.18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式2n+1﹣2n=2n;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= 2 .【考点】37:规律型:数字的变化类.【分析】(1)根据等式的变化找出变化规律“第n个等式为2n+1﹣2n=2n”,此题得解;(2)根据2n=2n+1﹣2n将算式210﹣29﹣28﹣…﹣22﹣2进行拆项,合并同类项即可得出结论.【解答】解:(1)观察,发现规律:22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23,…,∴第n个等式为2n+1﹣2n=2n.故答案为:2n+1﹣2n=2n.(2)∵2n=2n+1﹣2n,∴210﹣29﹣28﹣…﹣22﹣2=210﹣210+29﹣29+28﹣28+27﹣…﹣23+22﹣2=22﹣2=2.故答案为:2.【点评】本题考查了规律型中数字的变化类,根据等式的变化找出变化规律是解题的关键.三、解答题(本题共54分)19.请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误: A ;(2)从B到C是否正确,若不正确,错误的原因是不能去分母;(3)请你正确解答.【考点】6B:分式的加减法.【分析】异分母分式相加减,先化为同分母分式,再加减.【解答】解:===,(1)故可知从A开始出现错误;(2)不正确,不能去分母;(3)===.【点评】本题考查异分母分式相加减.应先通分,化为同分母分式,再加减.本题需注意应先把能因式分解的分母因式分解,在计算过程中,分母不变,只把分子相加减.20.尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.【考点】N4:作图—应用与设计作图;KF:角平分线的性质.【分析】作出角平分线,进而截取PB=400进而得出答案.【解答】解:如图所示:P点即为所求.【点评】此题主要考查了应用设计与作图,正确掌握角平分线的性质是解题关键.21.分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.【考点】55:提公因式法与公式法的综合运用.【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=(3a+1)(3a﹣1);(2)原式=p(p2﹣16p+64)=p(p﹣8)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.【考点】6B:分式的加减法;2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】(1)直接利用分式加减运算法则化简求出答案;(2)直接利用负指数幂的性质以及零指数幂的性质以及绝对值的性质分别化简求出答案.【解答】解:(1)原式===;(2)原式=2﹣1+1+3=5.【点评】此题主要考查了分式得加减运算以及实数运算,正确掌握运算法则是解题关键.23.先化简,再求值:,其中x=5.【考点】6D:分式的化简求值.【分析】把原式的第二项被除式分母及除式分母都分解因式,然后利用除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分后,再与第一项通分,利用同分母分式的减法运算计算,可化为最简,最后把x的值代入化简的式子中即可求出值.【解答】解:==﹣=﹣===,(4分)当x=5时,原式==.(5分)【点评】此题考查了分式的化简求值,分式的化简求值时,加减的关键是通分,通分的关键是找出各分母的最简公分母,分式的乘除关键是约分,约分的关键是找出公因式,本题属于化简求值题,解答此类题要先将原式化为最简,再代值,同时注意有时计算后还能约分,比如本题倒数第二步约去公因式x+1.24.解分式方程:.【考点】B3:解分式方程;86:解一元一次方程.【分析】方程的两边都乘以5(x+1),把分式方程转化成整式方程,求出方程的解,再代入方程进行检验即可.【解答】解:方程的两边都乘以5(x+1)、去分母得:5x=2x+5x+5,移项、合并同类项得:2x=﹣5,∴系数化成1得:x=﹣,经检验x=﹣是原方程的解,∴原方程的解是x=﹣.【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要检验.25.已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.【考点】KB:全等三角形的判定.【分析】首先得出∠EAC=∠BAD,进而利用全等三角形的判定方法(SAS)得出即可.【解答】证明:∵∠1=∠2,∴∠EAC=∠BAD,在△DAB和△EAC中,∴△ABD≌△ACE(SAS)【点评】此题主要考查了全等三角形的判定,正确应用全等三角形的判定方法是解题关键.26.已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.【考点】KD:全等三角形的判定与性质.【分析】(1)易证△ABD≌△CDB,根据全等三角形的对应边相等知AB=DC;(2)因为△ABD≌△CDB,所以全等三角形的对应角∠ADB=∠CBD.然后由平行线的判定定理知AD∥BC.【解答】证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,∴在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(HL),∴AB=DC(全等三角形的对应边相等);(2)∵Rt△ABD≌Rt△CDB[由(1)知],∴∠ADB=∠CBD(全等三角形的对应角相等),∴AD∥BC(内错角相等,两直线平行).【点评】本题考查了全等三角形的判定与性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.以及三角形全等的性质:全等三角形的对应边、对应角相等.27.在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.【考点】KD:全等三角形的判定与性质.【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以(1)、(2)、(4)为条件,(3)为结论为例.【解答】解:以(1)、(2)、(4)为条件,(3)为结论.证明:∵AE=CF,∴AF=CE,∵AD∥BC,∴∠A=∠C,又AD=BC,∴△ADF≌△CBE(SAS),∴∠B=∠D.【点评】本题与命题联系在一起,归根到底主要还是考查了全等三角形的判定及性质问题,应熟练掌握.28.若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.【考点】AE:配方法的应用;1F:非负数的性质:偶次方.【分析】根据x2+y2﹣4x+2y+5=0,可以求得x、y的值,从而可以求得所求式子的值.【解答】解:∵x2+y2﹣4x+2y+5=0,∴x2﹣4x+4+y2+2y+1=0,∴(x﹣2)2+(y+1)2=0,∴x﹣2=0,y+1=0,解得,x=2,y=﹣1,∴()2010+y2010==1+1=2.【点评】本题考查配方法的应用、非负数的性质,解题的关键是明确题意,找出所求问题需要的条件.29.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;R2:旋转的性质.【分析】(1)在MB的延长线上截取BE=DN,连接AE,根据正方形性质得出AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,证△ABE≌△ADN推出AE=AN;∠EAB=∠NAD,求出∠EAM=∠MAN,根据SAS证△AEM≌△ANM,推出ME=MN即可;(2)在DN上截取DE=MB,连接AE,证△ABM≌△ADE,推出AM=AE;∠MAB=∠EAD,求出∠EAN=∠MAN,根据SAS证△AMN≌△AEN,推出MN=EN即可.【解答】解:(1)图1中的结论仍然成立,即BM+DN=MN,理由为:如图2,在MB的延长线上截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,∵在△ABE和△ADN中,∴△ABE≌△ADN(SAS).∴AE=AN;∠EAB=∠NAD,∵∠DAB=90°,∠MAN=45°,∴∠DAN+∠BAM=45°,∴∠EAM=∠BAM+∠EAB=45°=∠MAN,∵在△AEM和△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∴MN=ME=BE+BM=DN+BM,即DN+BM=MN;(2)猜想:线段BM,DN和MN之间的等量关系为:DN﹣BM=MN.证明:如图3,在DN上截取DE=MB,连接AE,∵由(1)知:AD=AB,∠D=∠ABM=90°,BM=DE,∴△ABM≌△ADE(SAS).∴AM=AE;∠MAB=∠EAD,∵∠MAN=45°=∠MAB+∠BAN,∴∠DAE+∠BAN=45°,∴∠EAN=90°﹣45°=45°=∠MAN,∵在△AMN和△AEN中,∴△AMN≌△AEN(SAS),∴MN=EN,∵DN﹣DE=EN,∴DN﹣BM=MN.【点评】本题考查了正方形性质和全等三角形的性质和判定的应用,题目具有一定的代表性,是一道比较好的题目,证明过程类似,培养了学生的猜想能力和分析归纳能力.30.已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.【考点】KD:全等三角形的判定与性质;KF:角平分线的性质.【分析】分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.利用CE是角平分线,角平分线的性质定理,得EF=EH,再证明∠ABD=∠EBF,同理可证:EF=EG,根据HL证明Rt△EDH≌Rt△EDG,根据全等三角形的性质和角的和差关系可求∠CED.【解答】解:分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.∵CE是角平分线,∴EF=EH.∠ABC=100°,∠DBC=20°,∴∠ABD=80°,又∵∠EBF=80°,∴∠ABD=∠EBF,∴EF=EG,∴EH=EG,在Rt△EDH与Rt△EDG中,,∴Rt△EDH≌Rt△EDG(HL),∴∠EDH=∠EDG,∴∠CED=∠EDH﹣∠ECD=(∠BDH﹣∠BCA)=×20°=10°.【点评】本题考查了全等三角形的判定与性质,角的平分线的性质定理和逆定理,本题的关键是作出辅助线,以及角的平分线性质定理的应用.人教版八年级上学期期中考试数学试卷(二)一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣212.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE5.在下列图案中,不是轴对称图形的是()A.B.C.D.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD7.下列等式成立的是()A.B.C.D.8.如图,△ABC≌△BAD,点A和点B,点C和点D是对应点,如果AB=6cm,BD=5cm,AD=4cm,那么BC的长是()A.4 B.5 C.6 D.无法确定9.如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角形板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是()A.16 B.12 C.8 D.410.如图,将一张正方形纸片经两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是()A.B.C.D.二.细心填一填(每小题2分,共20分)11.一种细菌的半径为0.000407m,用科学记数法表示为m.12.当x= 时,分式没有意义;当x= 时,分式的值为0.13.计算(﹣)3÷(﹣)2的结果是.14.计算+的结果是.15.若x2+mx+16是完全平方式,则m= .16.如图,在△ABC和△DEF 中,AB=DE,AC=DF.请再添加一个条件,使△ABC 和△DFE全等.添加的条件是(填写一个即可):,理由是.17.如图,把△ABC绕C点顺时针旋转30°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=80°,则∠A=°.18.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D 到线段AB的距离是cm.19.如图,△ABC中,AB=AC,AB的垂直平分线交AC于P点.(1)若∠A=35°,则∠BPC=;(2)若AB=5cm,BC=3cm,则△PBC的周长= .20.探究:观察下列各式,,,…请你根据以上式子的规律填写: = ;= .三.精心解一解:(21,22每小题2分,23,24,25每小题2分,共16分)21.因式分解:2mx2﹣4mx+2m= .22.因式分解:x2y﹣9y= .23.化简:﹣+.24.先化简,再求值:(1﹣)÷,其中x=2.25.解分式方程:四.耐心想一想:(本小题4分)26.四川5.12特大地震受灾地区急需大量赈灾帐篷,某帐篷生产企业接到生产任务后,加大生产投入,提高生产效率,实际每天生产帐篷比原计划多200顶,已知现在生产3000顶帐篷所用的时间与原计划生产2000顶的时间相同.现在该企业每天能生产多少顶帐篷?五.精确作一作:作图题(本小题4分)27.某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)六.耐心看一看(每小题6分)28.如图,△ABC中A(﹣2,3),B(﹣31),C(﹣1,2).(1)画出△ABC关于x轴对称的△A1B1C1;并写出△A1B1C1三个顶点坐标:,,.(2)画出△ABC关于y轴对称的△A2B2C2;并写出△A2B2C2三个顶点坐标:,,.七.严密推一推(每小题4分,共20分)29.已知:如图,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.30.如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.31.已知:AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)AO=BO.32.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.33.已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.八.挑战自我(选做本题4分)34.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,试判断AB﹣AD 与CD﹣CB的大小关系,并证明你的结论.解:结论:证明:参考答案与试题解析一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣21【考点】负整数指数幂.【分析】根据负整数指数为正整数指数的倒数进行计算即可.【解答】解:原式=(﹣7)3=﹣343.故选:C.【点评】此题主要考查了负整数指数幂、乘方,关键是掌握负整数指数为正整数指数的倒数.2.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2 C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<【考点】负整数指数幂;有理数的乘方;零指数幂.【分析】分别根据零指数幂,负整数指数幂和平方的运法则进行计算,再比较大小即可.【解答】解:∵=6,(﹣2)0=1,(﹣3)2=9,又∵1<6<9,∴(﹣2)0<<(﹣3)2.故选A.【点评】主要考查了零指数幂,负整数指数幂和平方的运算.负整数指数幂为相应的正整数指数幂的倒数;任何非0数的0次幂等于1.3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、把一个多项式转化成几个整式积的形式,故A正确;B、每把一个多项式转化成几个整式积的形式,故B错误;C、是整式的乘法,故C错误;D、把一个多项式转化成几个整式积的形式,故D正确;故选:D.【点评】本题考查了因式分解的意义,利用了因式分解的意义.4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE【考点】全等三角形的判定.【分析】△ADC和△AEB中,已知的条件有AB=AC,∠A=∠A;要判定两三角形全等只需条件:一组对应角相等,或AD=AE即可.可据此进行判断,两边及一边的对角相等是不能判定两个三角形全等的.【解答】解:A、当∠B=∠C时,符合ASA的判定条件,故A正确;B、当AD=AE时,符合SAS的判定条件,故B正确;C、当∠ADC=∠AEB时,符合AAS的判定条件,故C正确;D、当DC=BE时,给出的条件是SSA,不能判定两个三角形全等,故D错误;故选:D.【点评】本题主要考查的是全等三角形的判定方法,需注意的是SSA和AAA不能作为判定两个三角形全等的依据.5.在下列图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、B、C都是轴对称图形,D不是轴对称图形,故选:D.【点评】此题主要考查了轴对称图形,关键是正确找出对称轴的位置.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD【考点】角平分线的性质.。
A
B
D C
E F
G
第一学期期中考试试卷
八年级数学
班级__________座号_________姓名____________成绩_________-
一、选择题:(每小题3分,共30分)每小题有四个答案,其中只有一个答案是正确的,请您将正确答
案的字母代号填在答题表内相应的题号下,否则不给分
.....。
1、A 、0.9 B 、±0.9 C 、0.09 D 、±0.09 2、下列计算正确的是( )
A 、552332=+;
B 、228=÷ ;
C 、652535=⨯;
D 、2
1
2214= 3、如果一个数的平方根与它的立方根相同,那么这个数是( )
A 、±1
B 、0
C 、1
D 、0和1 4、下列各组数中不能作为直角三角形的三边长的是( ) A 、3、5、7 B 、5、12、13 C 、1、1、2 D 、6、8、10 5、如图1,数轴上点N 表示的数可能是 ( )
A .10
B .5
C .3
D .2 6、一个直角三角形的两边长是3和4,那么第三边的长是( ) A 、5 B 、7 C 、75或 D 、25或7
7、在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是 ( )
A .测量对角线是否相互平分
B .测量两组对边是否分别相等
C .测量对角线是否相等
D .测量其中四个角是否都为直角 8、如图(2),在等腰直角△ABC 中,∠B =90,将△ABC 绕
顶点A 逆时针方向旋转60后得到△AB ’C ’则'BAC ∠等于( ) (A) 60
(B) 105 (C) 120 (D) 135
9、下列说法错误..的是( ). A . 四条边都相等的四边形是菱形; B . 有三个角是直角的四边形是矩形;
C .对角线互相垂直平分且相等的四边形是正方形;
D .一组对边平行,另一组对边相等的四边形是等腰梯形. 10、如图,在正方形ABCD 中,点
E 、
F 分别在CD 、BC 上,且BF=CE ,
连结
图(2)
C '
B ' C
B A
图 1
BE 、AF 相交于点G ,则下列结论不正确的是( )
A 、BE=AF
B 、∠DAF=∠BE
C C 、∠AFB+∠BEC=90°
D 、AG ⊥BE
二、填空题:(每小题3分,共15分)请您将正确答案填在答题表相应题号下,否则不给分
.....。
1112、写出两个和为2的无理数: 。
13、一个多边形的内角和为02160,则这个多边形的边数
是: 。
14、如图,AD=BC ,要使四边形ABCD 是平行四边形,还需补 充的一个条件是:
15、如图,已知圆柱体底面圆的半径为π
2
,高为2,AB 、CD 分别是两底
面的直径,若一只小虫从A 点出发,从侧面爬行到C 点,则小虫爬行的最短路线的长度是 ________ (结果保留根式).
三、解答题:(8小题,第16题20分,第17小题7分,第19、20、21小题各8
分,第18小题6分,共55分) 16、计算:(1)
13
312-- (2)8
1
6
3)2426(-⨯- 解:原式= 解:原式=
(3)
(
)
10
2332---+- (4)22
1
3
32+- 解:原式= 解:原式=
17、(7分)如图,在正方形网格中,每个小正方形的边长均为单位1,将△ABC 向右平移
4个单位,得到△A ′B ′C ′,再把△A ′B ′C
′绕点
A ′逆时针旋转90°,得到△A ″
B ″
C ″.请你画出△A ′
B ′
C ′和△A
″B ″C ″.
1. 18、(6分)一个木工做一个矩形的桌面,完工
后,量得桌面的长为60厘米 ,宽为32厘米,对角线为68厘米,这个桌面是合格的吗?请说明理由。
60cm
19、(8分)如图, △ABC 中, ∠BAC=90度,AD 是△ABC 的角平分线,
再作DE ∥AC,DF ∥AB.问:
(1)四边形AEDF 是矩形吗?请说明理由。
(2)四边形AEDF 是正方形吗? 请说明理由。
20、(8分)如图,在梯形ABCD 中,AD ∥BC ,AB=DC ,∠
B=60º,
DE ∥AB 。
求证:(1)DE=DC ;
(2) △DEC 是等边三角形。
C
21、(8分)如图,四边形ABCD是菱形,E是AB的中点,且AB
DE⊥,AB=6cm,(1)求:ABC
∠的度数;
(2)求AC的长和菱形ABCD的面积。
C。