成都市八年级上册半期数学考试卷
- 格式:doc
- 大小:310.50 KB
- 文档页数:10
人教版八年级上册数学期中考试试卷一、单选题1.12月2日是全国交通安全日,你认为下列交通标识不是轴对称图形的是()A .B .C .D .2.若一个三角形的三边长分别为3,7,x ,则x 的值可能是()A .6B .3C .2D .113.点M (1,2)关于x 轴对称的点的坐标为()A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(2,﹣1)4.如图,两个三角形全等,则∠α等于()A .50°B .58°C .60°D .72°5.在下列正多边形瓷砖中,若仅用一种正多边形瓷砖铺地面,则不能将地面密铺的是()A .正三角形B .正四边形C .正六边形D .正八边形6.如图,在ABC 中,AB AC =,D 是BC 的中点,下列结论不一定正确的是()A .BC ∠=∠B .2AB BD =C .12∠=∠D .AD BC ⊥7.如图,已知∠ABC =∠BAD ,再添加一个条件,仍不能判定△ABC ≌△BAD 的是()A .AC =BDB .∠C =∠D C .AD =BC D .∠ABD =∠BAC8.如图,小明从点A 出发,沿直线前进8米后向左转60︒,再沿直线前进8米,又向左转60︒,…,照这样走下去,他第一次回到出发点A时,走过的总路程为()A.48米B.80米C.96米D.无限长9.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS10.如图,AB∥CD,AD∥BC,AE⊥BD,CF⊥BD垂足分别为E、F两点,则图中全等的三角形有()A.1对B.2对C.3对D.4对二、填空题11.八边形的内角和为________度.12.如图,点A、D、B、E在同一直线上,若△ABC≌△EDF,AB=5,BD=3,则AE=____.13.若等腰三角形的周长为13,其中一边长为3,则该等腰三角形的底边长为____.14.如图所示,一艘船从A点出发,沿东北方向航行至点B,再从B点出发沿南偏东15°方向行至点C,则∠ABC=_________度.15.如图,DE是∆ABC的边AB的垂直平分线,点D为垂足,DE交AC于点E,且AC=8,BC=5,则∆BEC的周长是_________.16.如图,把一张长方形的纸沿对角线折叠,若118∠=︒,则BACABC∠=___.三、解答题17.如图,AD是△ABC的BC边上的高,AE平分∠BAC,若∠B=42°,∠C=70°,求∠AEC和∠DAE的度数.18.如图,在△ABC中,D是三角形内一点,连接DA、DB、DC,且∠1=∠2,∠3=∠4,求证:AB=AC.19.如图,在平面直角坐标系中,△ABC位于第二象限,请你按要求在该坐标系中在图中作出:(1)把△ABC向右平移4个单位长度得到的△A1B1C1;(2)再作与△A1B1C1关于x轴对称的△A2B2C2.20.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O.(1)求证:BD=CE;(2)若∠A=80°,求∠BOC的度数.21.如图,已知四边形ABCD是梯形,AD∥BC,∠A=90°,BC=BD,CE⊥BD,垂足为E,(1)求证:△ABD≌△ECB;(2)若∠DBC=50°,求∠DCE的度数.22.如图,在直角坐标系中,点A的坐标为(1,0),以OA为边在第四象限内作等边△AOB,点C为x轴的正半轴上一动点(OC>1),连接BC,以BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.(1)试问△OBC与△ABD全等吗?证明你的结论;(2)求∠CAD的度数;(3)当以点C、A、E为顶点的三角形是等腰三角形,求OC的长.23.如图,C是线段AB的中点,CD=BE,CD∥BE.求证:∠D=∠E.24.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边且BE=CF,AD+EC =AB.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.25.(1)如图1,OC是∠AOB的平分线,P是OC上的一点,PD⊥OA于D,PE⊥OB于E.F 是OC上的另一点,连接DF、EF.求证:OP垂直平分DE;(2)如图1,OC是∠AOB的平分线,P是OC上的一点,PD⊥OA于D,PE⊥OB于E.F 是OC上的另一点,连接DF、EF.求证:DF=EF(3)如图2,若∠PDO+∠PEO=180°,PD=PE,求证:OP平分∠AOB.参考答案1.B【解析】【详解】由轴对称图形的定义:“把一个图形沿着某条直线折叠,直线两旁的部分能够完全重合,这个图形叫做轴对称图形”分析可知,上述四个图形中,A、C、D都是轴对称图形,只有B不是轴对称图形.故选B.2.A【解析】【分析】根据三角形的三边关系列出不等式,即可求出x的取值范围,得到答案.【详解】解:∵三角形的三边长分别为3,7,x,∴7-3<x<7+3,即4<x<10,四个选项中,A中,4<6<10,符合题意.故选:A.【点睛】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.3.C【解析】【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【详解】解:点M(1,2)关于x轴对称的点的坐标为(1,﹣2).故选C.【点睛】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.4.D【解析】【分析】由全等三角形的对应角相等,即可得到答案.【详解】解:根据题意,如图:∵图中的两个三角形是全等三角形,∴第一个三角形中,边长为a的对角是72°,∴在第二个三角形中,边长为a的对角也是72°,∴∠α=72°;故选:D.【点睛】本题考查了全等三角形的性质,解题的关键是掌握全等三角形的对应角相等.5.D【解析】【分析】看哪个正多边形的一个内角的度数不是360°的约数,就不能密铺平面.【详解】解:A.正三角形的一个内角为60°,是360°的约数,能密铺平面,不符合题意;B.正四边形的一个内角度数为180﹣360÷4=90°,是360°的约数,能密铺平面,不符合题意;C.正六边形的一个内角度数为180﹣360÷6=60°,是360°的约数,能密铺平面,不符合题意;D.正八边形的一个内角度数为180﹣360÷8=135°,不是360°的约数,不能密铺平面,符合题意;故选:D.【点睛】本题主要考查平面密铺的问题,解答此题的关键是熟练掌握知识点:一种正多边形能镶嵌平面,这个正多边形的一个内角的度数是360°的约数;正多边形一个内角的度数=180°-360°÷边数.6.B【解析】【分析】根据等腰三角形“三线合一”的性质解答,即可得到A、C、D三项,但得不到B项.【详解】解:∵△ABC中,AB=AC,D是BC中点,∴∠B=∠C(故A正确)∠1=∠2(故C正确)AD⊥BC(故D正确)无法得到AB=2BD,(故B不正确).故选:B.【点睛】此题主要考查了等腰三角形的性质,本题关键熟练运用等腰三角形的三线合一性质.7.A【解析】【分析】根据已知可以得到∠ABC=∠BAD,AB=BA,然后再分别判断各个选项中的条件能否使得△ABC≌△BAD即可.【详解】解:∵∠ABC=∠BAD,AB=BA,∴若添加条件AC=BD,无法判定△ABC≌△BAD,故选项A符合题意;若添加∠C=∠D,则△ABC≌△BAD(AAS),故选项B不符合题意;若添加AD=BC,则△ABC≌△BAD(SAS),故选项C不符合题意;若添加∠ABD=∠BAC,则△ABC≌△BAD(ASA),故选项D不符合题意;故选:A .【点睛】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.8.A【解析】【分析】根据题意,小明走过的路程是正多边形,先用360︒除以60︒求出边数,然后再乘以8米即可.【详解】小明每次都是沿直线前景8米后向左转60度,∴他走过的图形是正多边形,∴边数360606n =︒÷︒=,∴他第一次回到出发点A 时,一共走了6848⨯=(米).故选:A【点睛】本题考查了正多边形的边数的求法,根据题意判断出小明走过的图形是正多边形是解题关键.9.D【解析】【分析】根据全等三角形的判定可作出选择.【详解】解:在△ADC 和△ABC 中,AD AB DC BC AC AC ⎧⎪⎨⎪⎩===,∴△ADC ≌△ABC (SSS ),∴∠DAC=∠BAC ,即∠QAE=∠PAE .∴AE 是∠PRQ 的平分线故选D .【点睛】本题考查全等三角形的判定与性质、角平分线的定义,熟练掌握全等三角形的判定与性质是10.C【解析】【分析】根据全等三角形的判定方法求解即可.判定三角形全等的方法有:SSS ,SAS ,AAS ,ASA ,HL(直角三角形).【详解】解:∵AB ∥CD ,AD ∥BC ,∴ABD CDF ∠=∠,ADB CBD ∠=∠,∴在△ABD 和△CDB 中,BD DB ABD CDB ADB CBD =⎧⎪∠=∠⎨⎪∠=∠⎩∴()ABD CDB ASA △≌△;∴AB CD =,AD BC =,∴在△ABE 和△CDF 中,AB CD ABD CDF AEB CFD =⎧⎪∠=∠⎨⎪∠=∠⎩,∴()ABE CDF AAS △≌△;∴在△ADE 和△CBF 中,AD BC ADB CBD AED CFB =⎧⎪∠=∠⎨⎪∠=∠⎩,∴()AED CFB AAS △≌△,则图中全等的三角形有:△ABE ≌△CDF ,△ADE ≌△CBF ,△ABD ≌△CDB ,共3对.故选:C .【点睛】此题考查了三角形全等的判定,解题的关键是熟练掌握三角形全等的判定方法.判定三角形全等的方法有:SSS ,SAS ,AAS ,ASA ,HL(直角三角形).【解析】【详解】解:八边形的内角和=180(82)1080︒︒⨯-=,故答案为:1080.12.7【解析】【分析】根据△ABC ≌△EDF ,得到AB=ED ,然后求得AD=BE ,根据线段之间的关系即可求出AE 的长度.【详解】∵△ABC ≌△EDF∴AB=ED=5,∴AB-DB=ED-DB∴AD=EB=2∴AE=AB+BE=7.故答案为:7.【点睛】此题考查了三角形全等的性质,解题的关键是熟练掌握三角形全等的性质.全等三角形的性质:全等三角形对应边相等,对应角相等.13.3【解析】【分析】分边长为3的边为腰和边长为3的边为底边两种情况,再根据三角形的周长公式、三角形的三边关系定理即可得.【详解】由题意,分以下两种情况:(1)当边长为3的边为腰时,则这个等腰三角形的底边长为13337--=,337+<,即此时三边长不满足三角形的三边关系定理,∴这个等腰三角形的底边长不能为7;(2)当边长为3的边为底边时,则这个等腰三角形的腰长为1335 2-=,此时355+>,满足三角形的三边关系定理;综上,这个等腰三角形的底边长为3,故答案为:3.【点睛】本题考查了等腰三角形的定义、三角形的三边关系定理,熟练掌握等腰三角形的定义是解题关键.14.60【解析】【详解】如图,由题意可知∠EAB=45°,∠DBC=15°,AE∥BD,∴∠ABD=∠EAB=45°,∴∠ABC=∠ABD+∠DBC=45°+15°=60°.故答案为:60【点睛】解本题需注意两点:(1)东北方向是指北偏东45°方向;(2)在同一平面内,从一个点引出的表示正北方向的射线和从另一个点引出的表示正南方向的射线是互相平行的.15.13【解析】【分析】直接利用线段垂直平分线的性质得出AE=BE,进而得出答案.【详解】解:∵DE 是△ABC 的边AB 的垂直平分线,∴AE=BE ,∵AC=8,BC=5,∴△BEC 的周长是:BE+EC+BC=AE+EC+BC=AC+BC=13.故答案为:13.【点睛】本题主要考查了线段垂直平分线的性质,正确掌握线段垂直平分线的性质是解题关键.16.31°【解析】【分析】根据折叠的性质可以判断出ABC 是等腰三角形,再根据三角形内角和为180°求解即可.【详解】解:将翻折后的图形如图所示:∵四边形ADCF 是长方形,∴CD AF ∥,∴FAC BCA ∠=∠,由折叠的性质得:FAC EAC ∠=∠,∴BAC BCA ∠=∠,∵118ABC ∠=︒∴31BAC BCA ∠=∠=︒故答案为:31︒【点睛】本题考查了等腰三角形的性质和三角形的内角和,正确理解知识点是解题的关键.17.∠DAE =14°,∠AEC =76°.【解析】【分析】由三角形内角和定理可求得∠BAC 的度数,在Rt △ADC 中,可求得∠DAC 的度数,AE 是角平分线,有∠EAC =12∠BAC ,故∠EAD =∠EAC ﹣∠DAC ,∠AEC =90°﹣∠EAD .【详解】解:∵∠B =42°,∠C =70°,∴∠BAC =180°﹣∠B ﹣∠C =68°,∵AE 是角平分线,∴∠EAC =12∠BAC =34°.∵AD 是高,∠C =70°,∴∠DAC =90°﹣∠C =20°,∴∠EAD =∠EAC ﹣∠DAC =34°﹣20°=14°,∠AEC =90°﹣14°=76°.【点睛】本题考查了三角形内角和定理、角平分线的定义,属于简单题,熟悉三角形的内角和是180°是解题关键.18.见解析.【解析】【分析】根据等角对等边,可得DB =CD ,从而可利用SAS 证得△ABD ≌△ACD ,即可求证.【详解】证明:∵∠1=∠2,∴DB =CD ,在△ABD 和△ACD 中,34AD AD BD CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACD (SAS ),∴AB=AC.【点睛】本题主要考查了等腰三角形的判定,全等三角形的判定和性质,熟练掌握等腰三角形的判定定理,全等三角形的判定定理和性质定理是解题的关键.19.(1)作图见解析;(2)作图见解析.【解析】【分析】(1)利用平移的性质可画出图形;(2)利用关于x轴对称的点的性质画出图形即可.【详解】(1)如图所示:△A1B1C1即为所求:(2)如图所示:△A2B2C2即为所求:【点睛】本题考查了平移的性质及轴对称的性质,解题的关键是掌握变换的规律.20.(1)见解析;(2)100°.【解析】【分析】(1)只要证明△ABD≌△ACE(AAS),即可证明BD=CE;(2)利用四边形内角和定理即可解决问题.【详解】(1)证明:∵BD、CE是高,∴∠ADB=∠AEC=90°,在△ABD和△ACE中,A A ADB AEC AB AC ∠∠⎧⎪∠∠⎨⎪⎩===∴△ABD△ACE(AAS),∴BD=CE.(2)∵∠A=80°,∠ADB=∠AEC=90°,∴∠BOC=360°-80°-90°-90°=100°.【点睛】本题考查全等三角形的判定和性质、四边形内角和定理等知识,解题的关键是正确寻找全等三角形解决问题.21.(1)见解析(2)25°【解析】【分析】(1)因为这两个三角形是直角三角形,BC=BD ,因为AD ∥BC ,还能推出∠ADB=∠EBC ,从而能证明:△ABD ≌△ECB .(2)因为∠DBC=50°,BC=BD ,可求出∠BDC 的度数,进而求出∠DCE 的度数.【详解】(1)证明:∵AD ∥BC ,∴∠ADB=∠EBC .∵CE ⊥BD ,∠A=90°,∴∠A=∠CEB ,又∵BC=BD ,∴△ABD ≌△ECB ;(2)解:∵∠DBC=50°,BC=BD ,∴∠EDC=12(180°-50°)=65°,又∵CE ⊥BD ,∴∠CED=90°,∴∠DCE=90°-∠EDC=90°-65°=25°.22.(1)△OBC ≌△ABD ,证明见解析;(2)∠CAD=60°;(3)当OC 等于3时,以点C 、A 、E 为顶点的三角形AEC 是等腰三角形.【解析】(1)根据等边三角形的性质得到OB=AB ,BC=BD ,然后根据SAS 证明三角形全等的方法即可证明△OBC ≌△ABD ;(2)根据(1)中证明的△OBC ≌△ABD ,可得OCB ADB ∠=∠,然后根据三角形内角和即可求得60CAD CBD ∠=∠=︒;(3)根据(2)求得的60CAD ∠=︒可得60OAE ∠=︒,然后根据OA 的长度和30°角直角三角形的性质可求得AE=2,然后根据△AEC 是等腰三角形求出AC 的长度,即可求出OC 的长.【详解】(1)△OBC ≌△ABD理由如下:∵△OAB 与△CBD 是等边三角形∴OB =AB ,BC =BD ,∠OBA =∠CBD =60°∴∠OBA+∠ABC =∠CBD+∠ABC ,即∠OBC =∠ABD∴在△OBC 与△ABD 中,OB AB OBC ABD BC BD =⎧⎪∠=∠⎨⎪=⎩∴△OBC ≌△ABD(SAS),(2)如图所示,设AD 交BC 于点F,解:∵△OBC ≌△ABD ,∴OCB ADB ∠=∠,又∵AFC BFD ∠=∠,∴∠CAD=∠CBD=60°;(3)解:∵60OAE CAD ∠=∠=︒∴∠EAC=120°,30OEA ∠=︒,∴22AE OA ==,∴以A ,E ,C 为顶点的三角形是等腰三角形时,只能是以AE 和AC 为腰∴AC=AE=2,∴OC=OA+AC=1+2=3,所以当OC 等于3时,三角形AEC 是等腰三角形.【点睛】此题考查了三角形全等的性质和判定,30°角直角三角形的性质和等腰三角形的性质等知识,解题的关键是根据题意证明出△OBC ≌△ABD .23.见解析【解析】【分析】由CD ∥BE ,可证得∠ACD=∠B ,然后由C 是线段AB 的中点,CD=BE ,利用SAS 即可证得△ACD ≌△CBE ,证得结论.【详解】∵C 是线段AB 的中点,∴AC=CB ,∵CD ∥BE ,∴∠ACD=∠B ,在△ACD 和△CBE 中,∵AC=CB ,∠ACD=∠B ,CD=BE ,∴△ACD ≌△CBE (SAS ),∴∠D=∠E .24.(1)见解析;(2)∠DEF =70°.【解析】【分析】(1)求出EC=DB ,∠B=∠C ,根据SAS 推出△BED ≌△CFE ,根据全等三角形的性质得出DE=EF 即可;(2)根据三角形内角和定理求出∠B=∠C=70°,根据全等得出∠BDE=∠FEC ,求出∠DEB+∠FEC=110°,即可得出答案;【详解】(1)证明:∵AB =AC ,∴∠B =∠C ,∵AB =AD+BD ,AB =AD+EC ,∴BD =EC ,在△DBE 和△ECF 中,BE CF B C BD EC =⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△ECF (SAS )∴DE =EF ,∴△DEF 是等腰三角形;(2)∵∠A =40°,∴∠B =∠C =1(18040)2- =70°,∴∠BDE+∠DEB =110°,又∵△DBE ≌△ECF ,∴∠BDE =∠FEC ,∴∠FEC+∠DEB =110°,∴∠DEF =70°.25.(1)见解析;(2)见解析;(3)见解析.【解析】(1)根据HL 证明Rt △OPD ≌Rt △OPE ,得OD=OE 可得结论;(2)根据SAS 证明△ODF ≌△OEF 即可;(3)先过点P 作PM ⊥OA ,PN ⊥OE ,证明△PMD ≌△PNE ,根据全等三角形的性质即可解决问题.【详解】(1)证明:∵OC 是∠AOB 的平分线,PD ⊥OA ,PE ⊥OB ,∴PD =PE ,在Rt △OPD 和Rt △OPE 中,OP OP PD PE =⎧⎨=⎩,21∴Rt △OPD ≌Rt △OPE (HL ),∴OD=OE ,∴OP 垂直平分DE ,(2)由(1)知Rt △OPD ≌Rt △OPE ∴OD =OE ,在△ODF 和△OEF 中,PD PEDPF EPF PF PF=⎧⎪∠=∠⎨⎪=⎩,∴△ODF ≌△OEF (SAS ),∴DF =EF .(3)过点P 作PM ⊥OA ,PN ⊥OB,∵∠PDO+∠PEO=180°,∠PDO+∠PDM=180°∴∠PDM=∠PEN;在△PMD 和△PNE 中,PMD PNEPDM PEN PD PE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△PMD ≌△PNE (AAS )∴PM=PN ;∵PM ⊥OA ,PN ⊥OB,∴OP 平分∠AOB。
人教版八年级上册数学期中考试试题一、单选题1.下列图形中,是轴对称图形的是()A.B.C.D.2.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17B.15C.13D.13或173.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=()A.180°B.360°C.270°D.540°4.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30°B.36°C.40°D.45°5.如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为()A.3:2B.6:4C.2:3D.不能确定6.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个7.若一个图形上所有点的纵坐标不变,横坐标乘以-1,则所得图形与原图形的关系为()A.关于x轴成轴对称图形B.关于y轴成轴对称图形C.关于原点成中心对称图形D.无法确定8.如图,将两根钢条AA',BB'的中点O连在一起,使AA',BB'可绕点O自由转动,就△≌△的理由是()做成了一个测量工件,则A B''的长等于内槽宽AB,那么判定OAB OA B''A.边角边B.角边角C.边边边D.角角边9.如图,已知Rt△OAB,∠OAB=50°,∠AOB=90°,O点与坐标系原点重合,若点P在x轴上,且△APB是等腰三角形,则点P的坐标可能有()A.1个B.2个C.3个D.4个10.等腰三角形一腰上的高与另一腰的夹角为30°,则底角的度数为()A.60°B.120°C.60°或120°D.60°或30°二、填空题11.如图,C、D点在BE上,∠1=∠2,BD=EC,请补充一个条件:____________,使△ABC ≌△FED .12.在ABC 中,AB =6,AC =10,那么中线AD 边的取值范围是___.13.如图,∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD=___.14.如图,在△ABC 中,10AB AC ==,120BAC ∠=︒,AD 是△ABC 的中线,AE 是∠BAD 的角平分线,DF//AB 交AE 的延长线于点F ,则DF 的长为______________.15.如图,在△ABC 中,AB=AC ,∠BAC=36°,(1)作出AB 边的垂直平分线DE ,交AC 于点D ,交AB 于点E ,连接BD ;(2)下列结论正确的是:①BD 平分∠ABC ;②AD=BD=BC ;③△BDC 的周长等于AB+BC ;④D 点是AC 中点;16.如图,等腰△ABC 中,AB=AC,∠A=20°,线段AB 的垂直平分线交AB 于D ,交AC 于E ,连接BE ,则∠EBC=__________度.17.如图,AD,BE在AB的同侧,AD=4,BE=4,AB=8,点C为AB的中点,若∠DCE =120°,则DE的最大值是_____.三、解答题18.如图,点B,F,C,E在一条直线上,FB=CE,AB∥ED,AC∥FD.求证:AB=DE.19.在日常生活中,观察各种建筑物的地板,你就能发现地板常用各种正多边形地砖铺砌成美丽的图案,也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌),这显然与正多边形的内角大小有关,当围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.(1)如图,请根据下列图形,填写表中空格:正多边形边数3456…n正多边形每个内角的度数(2)如果限于一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形?(3)从正三角形、正方形、正六边形中选一种,再在其它正多边形中选一种,请画出用这两种不同的正多边形镶嵌成一个平面图,并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.20.如图,△ABC中,∠BAC=90°,AB=AC,O为BC的中点,点E、D分别为边AB、AC上的点,且满足OE⊥OD,求证:OE=OD.21.如图,点A、B、C在同一直线上,△ABD,△BCE都是等边三角形.(1)求证:AE=CD;(2)若M,N分别是AE,CD的中点,试判断△BMN的形状,并证明你的结论.22.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.23.如图,线段AB=8,射线BG⊥AB,P为射线BG上一点,以AP为边作正方形APCD,且点C、D与点B在AP两侧,在线段DP上取一点E,使∠EAP=∠BAP,直线CE与线段AB相交于点F(点F与点A、B不重合).(1)求证:△AEP≌△CEP;(2)判断CF与AB的位置关系,并说明理由;(3)求△AEF的周长.24.如图,''',使它与△ABC关于直线l对称;(1)利用网格线画△A B C'''的面积;(2)若每个小正方形的边长为1,请直接写出△A B C(3)若建立直角坐标系后,点A(m-1,3)与点Q(-2,n+1)关于x轴对称,求m2+n的值.25.如图,AC和BD相交于点E,AB//CD,BE=DE.求证:△ABE≌△CDE.26.如图,点M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P.(1)求证:△ABM≌△BCN;(2)求∠APN的度数.参考答案1.B2.A3.B4.B5.A6.C7.B8.A9.D10.D11.AC=DF(或∠A=∠F或∠B=∠E)【解析】【详解】∵BD=CE,∴BD-CD=CE-CD,∴BC=DE,①条件是AC=DF 时,在△ABC 和△FED 中,12AC DF BC DE ⎧⎪∠∠⎨⎪⎩===∴△ABC ≌△FED (SAS );②当∠A=∠F 时,12A F BC DE ∠=∠⎧⎪∠∠⎨⎪⎩==∴△ABC ≌△FED (AAS );③当∠B=∠E 时,12BC DE B E ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△FED (ASA )故答案为AC=DF (或∠A=∠F 或∠B=∠E ).12.28AD <<【解析】【分析】延长AD 到点E ,使AD DE =,连接CE ,得出ADB EDC ≌,推出6CE AB ==,再根据三角形三边关系定理即可得出答案.【详解】解:如图,延长AD 到点E ,使AD DE =,连接CE,AD 是ABC 中线,BD CD ∴=,在ADB △和EDC △中,AD DE ADB EDC BD DC =⎧⎪∠=∠⎨⎪=⎩,()ADB EDC SAS ∴△≌△,6AB EC ∴==,∵在ACE 中,AC CE AE AC CE -<<+,∴106106AE -<<+,4216AD ∴<<,28AD ∴<<,故答案为:28AD <<.【点睛】本题考查了三角形三边关系定理,全等三角形的性质和判定的应用,主要考查学生的推理能力.13.2【解析】【分析】过P 点作PE ⊥OB 于E ,如图,根据角平分线的性质得到PE=PD ,再利用平行线的性质得到∠PCE=∠AOB=30°,接着根据含30度的直角三角形三边的关系得到PE=12PC=2,从而得到PD 的长.【详解】解:过P 点作PE ⊥OB 于E,如图,∵∠AOP=∠BOP=15°,∴OP 平分∠AOB ,∠AOB=30°,而PD ⊥OA ,PE ⊥OB ,∴PE=PD ,∵PC ∥OA ,∴∠PCE=∠AOB=30°,∴PE=12PC=12×4=2,∴PD=2.故答案为:2.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了含30度的直角三角形的性质和平行线的性质.14.5【解析】【分析】根据等腰三角形三线合一的性质可得AD⊥BC,∠BAD=∠CAD,求出∠DAE=∠EAB=30°,根据平行线的性质求出∠F=∠BAE=30°,从而得到∠DAE=∠F,根据等角对等边求出AD=DF,求出∠B=30°,根据直角三角形30°角所对的直角边等于斜边的一半解答.【详解】解:∵AB=AC,AD是△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=12∠BAC=12×120°=60°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=12∠BAD=12×60°=30°,∵DF∥AB,∴∠F=∠BAE=30°,∴∠DAE=∠F=30°,∴AD=DF,∵∠B=90°-60°=30°,∴AD=12AB=12×10=5,∴DF=5.故答案为:5.【点睛】本题考查的是含30°角的直角三角形的性质,等腰三角形的判定和性质,平行线的性质,掌握直角三角形30°角所对的直角边等于斜边的一半的性质是解题的关键.15.(1)详见解析;(2)①②③.【解析】【分析】根据线段的垂直平分线的性质(线段垂直平分线上的点与线段两个端点的距离相等)求解即可求得答案,(1)利用线段垂直平分线的作法进而得出即可.(2)由在△ABC中,AB=AC,∠A=36°,根据等边对等角与三角形内角和定理,即可求得∠ABC 与∠C的度数,又由AB的垂直平分线是DE,根据线段垂直平分线的性质,即可求得AD=BD,继而求得∠ABD的度数,则可知BD平分∠ABC,可得△BCD的周长等于AB+BC,又可求得∠BDC的度数,,求得AD=BD=BC,则可求得答案,注意排除法在解选择题中的应用.【详解】(1)(2)∵在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵AB的垂直平分线是DE,∴AD=BD,∴∠ABD=∠A=36°,∴∠DBC=∠ABC-∠ABD=72°-36°=36°=∠ABD,∴BD平分∠ABC,故①正确,∴△BCD的周长为:BC+CD+BD=BC+CD+AD=BC+AC=BC+AB,故③正确;∵∠DBC=36°,∠C=72°,∴∠BDC=180°-∠DBC-∠C=72°,∴∠BDC=∠C,∴BD=BC,∴AD=BD=BC,故②正确;∵BD>CD,∴AD>CD,∴点D不是线段AC的中点,故④错误,故答案为:①②③.【点睛】本题主要考查了等腰三角形的性质,线段垂直平分线的性质以及三角形内角和定理等知识,解决本题的关键是注意数形结合思想的应用,注意等腰三角形的性质与等量代换.16.60°.【解析】【分析】先根据△ABC中,AB=AC,∠A=20°求出∠ABC的度数,再根据线段垂直平分线的性质可求出AE=BE,即∠A=∠ABE=20°即可解答.【详解】解:∵等腰△ABC中,AB=AC,∠A=20°,∴∠ABC=180-202=80°,∵DE是线段AB垂直平分线的交点,∴AE=BE,∠A=∠ABE=20°,∴∠CBE=∠ABC-∠ABE=80°-20°=60°.故填:60°.【点睛】此题主要考查线段的垂直平分线及等腰三角形的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.17.12【解析】【分析】如图,作点A关于直线CD的对称点M,作点B关于直线CE的对称点N,连接DM,CM,CN,MN,NE.证明△CMN是等边三角形,再根据DE≤DM+MN+EN,当D,M,N,E 共线时,DE的值最大.【详解】解:如图,作点A关于直线CD的对称点M,作点B关于直线CE的对称点N,连接DM,CM,CN,MN,NE.由题意AD=EB=4,AC=CB=4,DM=CM=CN=EN=4,∴∠ACD=∠ADC,∠BCE=∠BEC,∵∠DCE=120°,∴∠ACD+∠BCE=60°,∵∠DCA=∠DCM,∠BCE=∠ECN,∴∠ACM+∠BCN=120°,∴∠MCN=60°,∵CM=CN=4,∴△CMN是等边三角形,∴MN=4,∵DE≤DM+MN+EN,∴DE≤12,∴当D,M,N,E共线时,DE的值最大,最大值为12,故答案为:12.【点睛】本题考查轴对称的性质,两点之间线段最短,等边三角形的判定和性质等知识,解题的关键是学会利用轴对称解决问题,属于中考填空题中的压轴题.18.见详解【解析】【分析】先根据条件求出BC=EF,根据平行线性质求出∠B=∠E,∠ACB=∠DFE,根据ASA推出△ABC≌△DEF即可.【详解】∵FB=CE,∴FB+FC=FC+CE ,即BC=FE ,又∵AB ∥ED ,AC ∥FD ,∴∠B=∠E ,∠ACB=∠DFE ,在△ABC 和△DEF 中,B E BC FE ACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DEF (ASA )∴AB=DE .【点睛】本题考查了平行线的性质和全等三角形的性质和判定的应用,主要考查学生的推理论证能力.19.(1)60°,90°,108°,120°,…(n-2)•180°÷n ;(2)正三角形、正四边形(或正方形)、正六边形都能镶嵌成一个平面图形;(3)答案见详解.【解析】【分析】(1)利用正多边形一个内角=180°-360n°求解;(2)进行平面镶嵌就是在同一顶点处的几个多边形的内角和应为360°,因此我们只需验证360°是不是上面所给的几个正多边形的一个内角度数的整数倍;(3)常见的两种正多边形的密铺组合有:正三角形和正四边形能密铺,正六边形只能和正三角形密铺.所以要从正三角形、正四边形、正六边形中选一种,只能选择正四边形.【详解】解:(1)由正n 边形的内角的性质可分别求得正三角形、正方形、正五边形、正六边形…正n 边形的每一个内角为:60°,90°,108°,120°,…(n-2)•180°÷n ,故答案为60°,90°,108°,120°,…,()2180n n -∙︒;(2)如限于用一种正多边形镶嵌,则由一顶点的周围角的和等于360°得正三角形、正四边形(或正方形)、正六边形都能镶嵌成一个平面图形;(3)正方形和正八边形(如下图所示),理由:设在一个顶点周围有m个正方形的角,n个正八边形的角,那么m,n应是方程m·90+n·135=360的正整数解,即2m+3n=8的正整数解,只有12mn=⎧⎨=⎩一组,∴符合条件的图形只有一种.【点睛】本题主要考查了多边形内角和的知识点,求正多边形一个内角度数,可先求出这个外角度数,让180减去即可.一种正多边形的镶嵌应符合一个内角度数能整除360°;两种或两种以上几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.20.见解析.【分析】连接AO,证明△BEO≌△ADO即可.【详解】证明:如图,连接AO,∵∠BAC=90°,AB=AC,O为BC的中点,∴AO=BO,∠OAD=∠B=45°,∵AO⊥BO,OE⊥OD,∴∠AOE+∠BOE=∠AOE+∠AOD=90°,∴∠AOD=∠BOE,∴△AOD≌△BOE,∴OE=OD.本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键,即SSS 、SAS 、ASA 、AAS 和HL .21.(1)证明见解析;(2)△MBN 是等边三角形.【解析】【分析】(1)利用SAS 证明△AOC ≌△BOD ,则有AE =CD ;(2)由△ABE ≌△DBC ,可证△ABM ≌△DBN ,从而得BM =BN ,∠MBN =60°.【详解】(1)证明:∵△ABD 、△BCE 都是等边三角形,∴AB =BD ,BC =BE ,∠ABD =∠CBE =60°,∴∠ABD +∠DBE =∠DBE +∠CBE 即∠ABE =∠DBC ,∴在△ABE 和△DBC 中,AB DBABE DBC BE BC=⎧⎪∠=∠⎨⎪=⎩△ABE ≌△DBC(SAS).∴AE =CD .(2)解:△MBN 是等边三角形,理由如下:∵△ABE ≌△DBC ,∴∠BAE =∠BDC .∵AE =CD ,M 、N 分别是AE 、CD 的中点,∴AM =DN ;又∵AB =DB .∴△ABM ≌△DBN .∴BM =BN ,∠ABM =∠DBN .∴∠DBM +∠DBN =∠DBM +∠ABM =∠ABD =60°.∴△MBN 是等边三角形.22.(1)证明见解析(2)等腰三角形,理由见解析【详解】证明:(1)∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE .又∵∠A =∠D ,∠B =∠C ,∴△ABF ≌△DCE (AAS ),∴AB =DC .(2)△OEF 为等腰三角形理由如下:∵△ABF ≌△DCE ,∴∠AFB=∠DEC .∴OE=OF .∴△OEF 为等腰三角形.23.(1)见解析;(2)CF ⊥AB ,理由见解析;(3)16【解析】【分析】(1)四边形APCD 正方形,则PD 平分∠APC ,PC=PA ,∠APD=∠CPD=45°,即可求解;(2)由△AEP ≌△CEP ,则∠EAP=∠ECP ,而∠EAP=∠BAP ,则∠BAP=∠FCP ,又∠FCP+∠CMP=90°,则∠AMF+∠PAB=90°即可求解;(3)过点C 作CN ⊥BG ,垂足为N ,证明△PCN ≌△APB (AAS ),则CN=PB=BF ,PN=AB ,即可求解.【详解】(1)证明:∵四边形APCD 为正方形∴PD 平分∠APC ,∠APC=90°,PC=PA∴∠APD=∠CPD=45°在△AEP 和△CEP 中,EP EP EPC EPAPC PA =⎧⎪∠=∠⎨⎪=⎩∴△AEP ≌△CEP(SAS)(2)CF ⊥AB .理由如下:∵△AEP≌△CEP,∴∠EAP=∠ECP∵∠EAP=∠BAP∴∠BAP=∠FCP∵∠FCP+∠CMP=90°,∠AMF=∠CMP ∴∠AMF+∠PAB=90°∴∠AFM=90°∴CF⊥AB(3)过点C作CN⊥BG,垂足为N∵CF⊥AB,BG⊥AB∴四边形BFCN为矩形,FC∥BN∴∠CPN=∠PCF=∠EAP=∠PAB又AP=CP,∠ABP=∠CNP=90°∴△PCN≌△APB(AAS)∴CN=PB=BF,PN=AB∵△AEP≌△CEP∴AE=CE∴AE+EF+AF=CE+EF+AF=BN+AF=PN+PB+AF=AB+BF+AF=2AB=16【点睛】本题为四边形综合题,涉及到正方形的性质、三角形全等等知识点,其中(3),证明△PCN ≌△APB (AAS ),是本题的关键.24.(1)见解析;(2)2;(3)-3.【解析】【分析】(1)根据成轴对称图形的性质画出图象即可;(2)用割补法求出三角形的面积;(3)根据点A 与点Q 的对称关系,求出m ,n 的值,再计算最后结果.【详解】(1)如图为所作,略;(2)111232213112222A B C S '''=⨯-⨯⨯-⨯⨯-⨯⨯=△;(3)∵点A(m -1,3)与点Q(-2,n+1)关于x 轴对称∴m -1=-2,n+1=-3解得m=-1,n=-4∴m 2+n 的=(-1)2+(-4)=-3.【点睛】本题考查了轴对称图形的画法及面积计算,坐标计算,熟知轴对称图形的性质是解题的关键.25.见解析【解析】【分析】先观察要证的线段分别在哪两个三角形,再证出全等即可.【详解】证明:∵AB ∥CD ,∴∠B=∠D ,∠A=∠C ,在△ABE 和△CDE 中,∠B=∠D ,∠A=∠C ,BE=DE ,∴△ABE ≌△CDE (AAS ).【点睛】本题考查全等三角形的全等的判定问题,关键掌握全等三角形的证明方法,一般采用证三角形全等来证线段或角相等,这是一种很重要的方法.26.(1)证明见解析;(2)∠APN 的度数为108°.【解析】【分析】(1)利用正五边形的性质得出AB=BC ,∠ABM=∠C ,再利用全等三角形的判定得出即可;(2)利用全等三角形的性质得出∠BAM+∠ABP=∠APN ,进而得出∠CBN+∠ABP=∠APN=∠ABC 即可得出答案.【详解】证明:(1)∵正五边形ABCDE ,∴AB=BC ,∠ABM=∠C ,∴在△ABM 和△BCN 中AB BC ABM C BM CN =⎧⎪∠=∠⎨⎪=⎩,∴△ABM ≌△BCN (SAS );(2)∵△ABM ≌△BCN ,∴∠BAM=∠CBN ,∵∠BAM+∠ABP=∠APN ,∴∠CBN+∠ABP=∠APN=∠ABC=()521805-⨯ =108°.即∠APN 的度数为108°.。
人教版八年级上册数学期中考试试题一、单选题1.下列图形中,其中不是轴对称图形的是()A .B .C .D .2.若正多边形的一个外角是60°,则该正多边形的边数是()A .4B .5C .6D .73.如图,△ABC 中BC 边上的高是()A .BDB .AEC .BED .CF4.若△ABC ≌△DEF ,AB =2,AC =4,且△DEF 的周长为奇数,则EF 的值为()A .3B .4C .3或5D .3或4或55.如图,在△ABC 中,点D 为BC 边上一点,连接AD ,取AD 的中点P ,连接BP ,CP .若△ABC 的面积为4cm 2,则△BPC 的面积为()A .4cm 2B .3cm 2C .2cm 2D .1cm 26.如图,在ABC 中,D 、E 分别为AB 、AC 边上的点,DA DE =,DB BE EC ==.若130ABC ∠=︒,则C ∠的度数为()A .20︒B .22.5︒C .25︒D .30°7.如图,将一副含30°,45°的直角三角板如图摆放,则∠1+∠2等于()A.200°B.210°C.180°D.225°8.如图,在△ABD与△ACD中,已知∠CAD=∠BAD,在不添加任何辅助线的前提下,依据“ASA”证明△ABD≌△ACD,需再添加一个条件,正确的是()A.∠B=∠C B.∠BDE=∠CDE C.AB=AC D.BD=CD9.在△ABC中,∠A=40°,∠B=60°,则∠C=()A.40°B.80°C.60°D.100°10.如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC二、填空题11.若三角形三个内角度数的比为2:3:4,则此三角形是______三角形(填锐角、直角或钝角).12.已知ABC∆是等腰三角形,若它的周长为18,一条边的长为4,则它的腰长为__________.13.若△ABC的边AB、BC的长是方程组93x yx y+=⎧⎨-=⎩的解,设边AC的长为m,则m的取值范围是_____.14.如图,在△ABC 中,∠ACB =90º,∠ABC =60º,CD ⊥AB ,垂足为D ,若BD =1,则AD 的长为___________.15.如图,△ABC ≌△ADE ,且点E 在BC 上,若∠DAB =30°,则∠CED =_____.16.如图,ABC 为等边三角形,以边AC 为腰作等腰ACD △,使AC CD =,连接BD ,若32ABD ∠=︒,则CAD ∠=__________°.三、解答题17.如图,已知CD 为ACB ∠的平分线,AM CD ⊥于,46,8M B BAM ∠=︒∠=︒,求ACB ∠的度数.18.如图,∠C =∠E ,AC =AE ,点D 在BC 边上,∠1=∠2,AC 和DE 相交于点O .求证:△ABC ≌△ADE .19.如图,已知△ABC.(1)用直尺和圆规,作出边AC的垂直平分线,交AC于点E,BC于点D,(不写作法,保留作图痕迹)(2)在(1)的基础上,连接AD,若AE=5,△ABD的周长为20,则△ABC的周长是_______.20.已知a、b、c是三角形的三边长,①化简:|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a﹣b|;②若a+b=11,b+c=9,a+c=10,求这个三角形的各边.21.如图,在△ABC中,∠ACB=90°,D是AC上的一点,且AD=BC,DE⊥AC于D,AB=AE.求证:(1)AE⊥AB;(2)CD=DE﹣BC.22.如图,在△ABC中,∠ABC=45°,CD⊥AB于点D,AC的垂直平分线BE与CD交于点F,与AC交于点E.(1)判断△DBC的形状并证明你的结论.(2)求证:BF=AC.(3)试说明CE=12 BF.23.如图,在△ABC中,AB=AC,∠BAC=90°,点D、E分别在AB、BC上,∠EAD=∠EDA,点F为DE的延长线与AC的延长线的交点.(1)求证:DE=EF.(2)判断BD和CF的数量关系,并说明理由.24.如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作△BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).25.如图1,在平面直角坐标系中,AB⊥x轴于B,AC⊥y轴于C,点C(0,4),A(4,4),过C点作∠ECF分别交线段AB、OB于E、F两点.(1)若OF+BE=AB,求证:CF=CE.(2)如图2,∠ECF=45°,S△ECF=6,求S△BEF的值.参考答案1.A【解析】根据轴对称图形的定义:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,就可得到答案。
成都市八年级上册半期数学考试卷考试范围(1勾股章,2实数章,3方程组章,4位置坐标章,5一次函数章)A 卷100分一选择题(3分x10=30分)1、如图所示为一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②,…,依此类推,若正方形①的面积为64,则正方形⑤的面积为( )A2 B4 C8 D162、如图,在Rt ABC ∆中, 090ACB ∠=,AB=4.分别以AC,BC 为直径作半圆,面积分别记为12,S S ,则12S S +的值等于( )A 2πB 3πC 4πD 8π3、方程x +2y =5的非负整数解有 ( ) A.3组 B.2组 C.1 组 D.0组4、一质点P 从距原点1个单位的M 点处向原点方向跳动,第一次跳动到OM 的中点3M 处,第二次从3M 跳到3OM 的中点2M 处,第三次从点2M 跳到2OM 的中点1M 处,如此不断跳动下去,则第n 次跳动后,该质点到原点O 的距离为( ).A.12nB.112n - C.112n +⎛⎫⎪⎝⎭D. 12n5、若定义新运算:(,)(+1f a b a =,-b), (,)(g m n m =,n-2) 则[(2,3)]f g -=( ) A(2,-3) B(2,-5) C (3,5) D(3,-5)6、今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t (分钟),所走的路程为s(米),s与t之间的函数关系如图所示.下列说法错误的是().A: 小明中途休息用了20分钟B: 小明休息前爬山的平均速度为每分钟70米C: 小明在上述过程中所走的路程为6600米D: 小明休息前爬山的平均速度大于休息后爬山的平均速度7、一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x,十位数字为y,所列方程组正确的是().A.818x yxy yx+=⎧⎨+=⎩ B.8101810x yx y x y+=⎧⎨++=+⎩ C.81018x yx y xy+=⎧⎨++=⎩ D.810()x yx y xy+=⎧⎨+=⎩8、若方程组2371x yax by+=⎧⎨-=⎩与方程组7453ax byx y+=⎧⎨-=⎩有相同的解,则a,b的值为( )A、a=2, b=1B、a=2, b=3C、a=2.5, b=1D、a=4, b=-5,9、如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是()A(0,0) B(0,1) C(0,2) D(0,3)10、勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=900 ,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为().A90 B100 C110 D121二填空题(4分x4=16分)11、已知2)0=,则24)的值是____________12、三个同学对问题“若方程组111222a xb y ca xb y c+=⎧⎨+=⎩的解是34xy=⎧⎨=⎩,求方程组111223a x2b y5c3a x2b y5c+=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是____________13、已知一次函数y=kx+b,k从2,﹣3中随机取一个值,b从1,﹣1,﹣2中随机取一个值,求该一次函数的图象经过二、三、四象限的概率____________.14、在平面直角坐标系中,已知点A(1,0)和点B(0,,点C在坐标平面内.若以A,B,C为顶点构成的三角形是等腰三角形,且底角为300,则满足条件的点C有_______个.三计算题解方程15、(每小题5分共10分)(1)、计算:÷(2) 、解方程①24(1)25x-=16解方程组(每小题5分共10分)①275322344y xx y zx z=-⎧⎪++=⎨⎪-=⎩. ②22(1)2(2)+x yx-=-⎧⎨-⎩(y-1)=5四解答题17、(8分)为了参加2015年中海国际铁人三项(游泳、自行车、长跑)系列赛业余组的比赛,李明针对自行车和长跑项目进行专项训练.某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟.求自行车路段和长跑路段的长度.18、(8分)一名考生步行前往考场,5分钟走了总路程的16,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图所示(假定总路程为1,出租车匀速),则他到达考场所花的时间比一直步行提前了多少分钟?19、(8分)(2014秋•泾阳县期末)如图,将长方形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD于点E.(1)试判断△BDE的形状,并说明理由;(2)若AB=4,AD=8,求△BDE的面积.20、(10分)某文具商店销售功能相同的A 、B 两种品牌的计算器,购买2个A 品牌和3个B 品牌的计算器共需156元;购买3个A 品牌和1个B 品牌的计算器共需122元. (1)求这两种品牌计算器的单价.(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A 品牌计算器按原价的八折销售,B 品牌计算器5个以上超出部分按原价的七折销售,设购买x 个A 品牌的计算器需要1y 元,购买x 个B 品牌的计算器需要2y 元,分别求出1y 、2y 关于X 的函数关系式.(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.B 组(50分)五填空题(每小题4分共20分)21、己知224250a b a b +--+=,2+=____________22、在△ABC 中,BC=a,AC=b,AB=c,设c 为最长边,当a 2+b 2=c 2时,△ABC 是直角三角形;当a 2+b 2≠c 2时,利用代数式a 2+b 2和c 2的大小关系,探究△ABC 的形状(按角分类).(1)当△ABC 三边分别为6、8、9时,△ABC 为 三角形;当△ABC 三边分别为6、8、11时,△ABC 为 三角形.(2)猜想,当a 2+b 2 c 2时,△ABC 为锐角三角形;当a 2+b 2 c 2时,△ABC 为钝角三角形. (3)判断当a=2,b=4时,△ABC 的形状,并求出对应的c 的取值范围.23、小丽想用一块面积为4002cm 的正方形纸片,沿着边的方向裁出一块面积为3002cm 的长方形纸片,使它的长宽之比为3:2.不知道能否裁出来(填能、不能),理由是长要______________,24、已知实数x,y,z满足9x y z =+++,则xyz 的值=______,25、,某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y (元)与印刷份数x (份)之间的关系如图所示.(1)填空:甲种收费的函数关系式是_____ ;乙种收费的函数关系式是_____ .(2)该校某年级每次需印制100---450(含100和450)份学案,① 当印制___份至___份时选_____较合算; ② 当印制___份至___份时选_____都一样; ③当印制___份至___份时选_____较合算;26、(9分)如图,点N 是△ABC 的边BC 延长线上的一点, ∠CAN=2∠BAC ,过点A 作AC 的垂线交CN 于点P. (1)若∠APC=300, 求证:AB=AP; (2)若AP=8,BP=16,求AC 的长;(3)若点P 在BC 的延长线上运动, ∠APB 的平分线交AB 于点M.你认为∠AMP 的大小是否发生变化?若变化,请说明理由;若不变化,求出∠AMP 的大小.27、(10分)已知一次函数y=2x-4的图象与x 轴、y 轴分别相交于点A 、B,点P 在该函数的图象上,P 到X 轴、Y 轴的距离分别为1d 、2d .(1)当P 为线段AB 的中点时,求1d +2d 的值.(2)直接写出1d +2d 的范围,并求当1d +2d =3时点p 的坐标.28、(11分)如图,已知一次函数y kx b =+的图象经过A(-2,-1),B(1,3)两点,并且交x 轴于点C,交y 轴于点D. (1)求该一次函数的解析式;(2)求△AOB 的面积S ; (3)求证:∠AOB=1350.适应于成都市中考要求的八年级上册半期数学考试卷答案考试范围(1勾股章,2实数章,3方程组章,4位置坐标章,5一次函数章)A卷100分一选择题(3分x10=30分)1、B2、A3、A4、D5、C6、C7、B8、B9、D 10、C二填空题(4分x4=16分)11、3612、510xy=⎧⎨=⎩13、1314、6三计算题解方程15、(每小题5分共10分) (1)、(2) 、172x=232x=-16解方程组(每小题5分共10分)①2312xyz⎧⎪=⎪=-⎨⎪⎪=⎩②42xy=⎧⎨=⎩四解答题17、自行车路段长度为3千米,长跑路段长度为2千米18 20分钟( 有1263y x =-得6分)19、(8分)(2014秋•泾阳县期末)如图,将长方形ABCD 沿着对角线BD 折叠,使点C 落在C′处,BC′ 交AD 于点E .(1)试判断△BDE 的形状,并说明理由;(2)若AB=4,AD=8,求△BDE 的面积.解:(1)△BDE 是等腰三角形.由折叠可知,∠CBD=∠EBD,∵AD ∥BC,∴∠CBD=∠EDB,∴∠EBD=∠EDB,∴BE=DE,即△BDE 是等腰三角形;(2)设DE=x,则BE=x,AE=8﹣x,在Rt △ABE 中,由勾股定理得:AB 2+AE 2=BE 2即42+(8﹣x )2=x 2,解得:x=5, 所以S △BDE =DE×AB=×5×4=10.20、(10分)某文具商店销售功能相同的A 、B 两种品牌的计算器,购买2个A 品牌和3个B 品牌的计算器共需156元;购买3个A 品牌和1个B 品牌的计算器共需122元. (1)求这两种品牌计算器的单价.(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A 品牌计算器按原价的八折销售,B 品牌计算器5个以上超出部分按原价的七折销售,设购买x 个A 品牌的计算器需要1y 元,购买x 个B 品牌的计算器需要2y 元,分别求出1y 、2y 关于X 的函数关系式.(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.(1)故A 类品牌计算器的单价为30元,B 类品牌计算器的单价为32元 (2)(3)若购买计算器的数量超过5 ,①当时,即,解得:,故时,购买A 品牌的计算器更合算.②当时,即,解得:,购买计算器的数量为30个,购买A 品牌的计算器和购买B 品牌的计算器花费相同.③当时,即,化简可得:,解得:,购买计算器的数量超过30个,购买B 品牌的计算器更合算.B 组(50分)五填空题(每小题4分共20分)21、12+22、解:(1)锐角;钝角. (2)>;<.(3)①当4≤c < 2 时,这个三角形是锐角三角形;②当c=2时,这个三角形是直角三角形;③当 2<c <6时,这个三角形是钝角三角形..23、不能,长要>24、12025、(1)填空:甲种收费的函数关系式是_0.16y x =+甲_ ;乙种收费的函数关系式是_0.12y x=乙_ .(2)该校某年级每次需印制100---450(含100和450)份学案,① 当印制_0__份至_300_份时选_乙_较合算; ② 当印制_300___份时选_甲、乙__都一样; ③当印制_300__份至__450_份时选__甲___较合算;26、(9分)如图,点N 是△ABC 的边BC 延长线上的一点, ∠CAN=2∠BAC ,过点A 作AC 的垂线交CN 于点P. (1)若∠APC=300, 求证:AB=AP; (2)若AP=8,BP=16,求AC 的长;(3)若点P 在BC 的延长线上运动, ∠APB 的平分线交AB 于点M.你认为∠AMP 的大小是否发生变化?若变化,请说明理由;若不变化,求出∠AMP 的大小.(2)设ac=x,在Rt ACP ∆中,由勾股定理建立方程得2228(16)x x +=-计算得出x=6, 所以AC=6;(3)的大小不发生变化,理由如下:,,27、(10分)已知一次函数y=2x-4的图象与x 轴、y 轴分别相交于点A 、B,点P 在该函数的图象上,P 到X 轴、Y 轴的距离分别为1d 、2d .(1)当P 为线段AB 的中点时,求1d +2d 的值.(2)直接写出1d +2d 的范围,并求当1d +2d =3时点p 的坐标.(1)P(1,-2) 1d +2d =3(2)的范围为.因为点P 在一次函数的图象上,故设点,所以.由题当时,根据可分析, 即当时,,此时解得,所以根据点,得点.当时,同理,,解得,所以根据点,得点.当时,,解得,即不符合,故此时不存在点P.综上所述,当时点P 的坐标为点、.28、(11分)如图,已知一次函数y kx b =+的图象经过A(-2,-1),B(1,3)两点,并且交x 轴于点C,交y 轴于点D. (1)求该一次函数的解析式;(2)求△AOB 的面积S ; (3)求证:∠AOB=1350.(1)4533y x =+ (2)S=52(3)取点A 关于原点的对称点,则问题转化为求证.由勾股定理可得,,,,∵,∴△EOB 是等腰直角三角形.∴. ∴.。
初中数学试卷半期考数学试卷时间:100分钟满分:100分3分,共30分)、以下列各组线段为边,能组成三角形的是(),3 cm,5 cm B. 3 cm,3 cm,6 cm,8 cm,2 cm D. 4 cm,5 cm,6 cm、下列说法正确的是()、形状相同的两个三角形全等 B、能完全重合的两个三角形全等、两个等腰直角三角形全等 D、面积相等的两个三角形全等.下列图形中,是轴对称图形的是()【A.B.C.D.[4、如果点M(a,-4),N(-7,b)关于x轴对称,则a、b的值分别为()A、-7 ,4 ;B、-7,-4 ;C、7,4 ;D、7,-4 ;5、等腰三角形的两边长分别是3cm和7cm,则它的周长是()A、13cmB、 17cm或13cm C 、17cm D、以上都不对^6.如图所示,已知∠1=∠2,若添加一个条件使△ABC≌△ADC,则添加错误的是()A、 AB=AD;B、∠B=∠D;C、BC=DC.D、∠BCA=∠DCA;)2第6题图7、如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A. 40°B.30°C.35°D.25°8.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为()A.1 B.2 C.3 D.49、如图,在△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=4cm,求BC的长()、.A.8cm, B.12cm, C.15cm, D .16cm,10、如图所示,l是四边形ABCD的对称轴,AD∥BC,lOCB DA现给出下列结论:①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有( ) A :1个 B :2个 C :3个 D :4个二、填空(每题2分,共16分)11.如图,∠ACD 是△ABC 的外角, ∠ACD=80°,\∠B=30°,则∠A 的度数为 __________ .12. 为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是___________________.13.如图11,△ABC 中,∠C =90°,AD 平分∠BAC ,AB =6,CD =2,则△ABD 的面积是______。
人教版八年级上册数学期中考试试题一、单选题1.下列平面图形中,不是轴对称图形的是()A .B .C .D .2.如图所示,如果将一副三角板按如图方式叠放,那么∠1等于()A .120︒B .105︒C .60︒D .45︒3.每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A .3cm ,4cm ,8cmB .8cm ,7cm ,15cmC .13cm ,12cm ,20cmD .5cm ,5cm ,11cm4.下列条件可以判断两个三角形全等的是()A .三个角对应相等B .三条边对应相等C .形状相同D .面积相等,周长相等5.在平面直角坐标系内点(),1P a 与点()5,B b 关于y 轴对称,则a b +的值为()A .4B .4-C .5D .5-6.十二边形的外角和...为()A .30°B .150︒C .360︒D .1800︒7.如图,//AB CD ,点C 是BE 的中点,直接应用“ASA ”定理证明 ≌ABC DCE 还需要的条件是()A .AB CD =B .ACB E ∠=∠C .AD ∠=∠D .AC DE=8.如图,OP 平分AOB ∠,PC OA ⊥,点D 是OB 上的动点,若5PC cm =,则PD 的长可以是()A .2cmB .3cmC .4cmD .6cm9.如图,AD 和BE 是ABC 的中线,AD 与BE 交于点,O 下列结论正确的有()个.(1)ABE ABDS S = (2)2AO OD=(3)ABOS = S 四边形DOECA .0个B .1个C .2个D .3个10.如图,在△ABC 和△DEF 中,∠B =∠DEF ,AB =DE ,若添加下列一个条件后,仍然不能证明△ABC ≌△DEF ,则这个条件是()A .∠A =∠DB .BC =EF C .∠ACB =∠FD .AC =DF二、填空题11.点(1,2)A -关于x 轴对称点的坐标是___.12.如果一个正多边形的外角为30°,那么这个正多边形的边数是_____.13.自行车的三角形车架可以固定,利用的原理是___.14.如图,在ABC 中,10cm AB AC ==,AB 的垂直平分线交AC 于点D ,且BCD △的周长为17cm ,则BC =________cm .15.已知a ,b ,c 是三角形的三条边,化简简|a-b+c|+|a-b-c|=________.16.如图,在ABC 中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,DE AB ⊥,垂足为E ,若7BC =,3DE =,则BD 的长为______.17.如图,在Rt △ABC 中,AB =AC ,点D 为BC 中点,点E 在AB 边上,连接DE ,过点D 作DE 的垂线,交AC 于点F .下列结论:①△BDE ≌△ADF ;②AE =CF ;③BE+CF =EF ;④S 四边形AEDF =12AD 2,其中正确的结论是__________(填序号).三、解答题18.如图,若AB CD ∥,AB CD =且CE BF =,求证:AE DF =.19.如图所示,∠BAC=90°,BF 平分∠ABC 交AC 于点F ,∠BFC=100°,求∠C 的度数.20.如图,在ABC 中,求作:BAC ∠的角平分线AD 交BC 于点D .(要求:尺规作图,不写作法,保留作图痕迹)21.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形ABC (顶点是网格线的交点的三角形)的顶点A ,C 的坐标分别为()4,5-,()1,3-.(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出ABC 关于y 轴对称的111A B C △;(3)写出点1B 的坐标;(4)求ABC 的面积.22.如图,已知AB ⊥AC ,AD ⊥AE ,AB =AC ,AD =AE .(1)求证△ADB ≌△AEC ;(2)DB ⊥EC .23.如图,在△ABC中,AB=AC,∠BAC=90°,分别过点B,C向过点A的直线作垂线,垂足分别为点E,F.求证:(1)△ABE≌△CAF;(2)EF=BE+CF.24.如图所示,已知AB∥CD,AB=CD,BF=CE,求证:△ABE≌△DCF.25.如图1,点A、B分别在射线OM、ON上运动(不与点O重合),AC、BC分别是∠BAO 和∠ABO的角平分线,BC延长线交OM于点G.(1)若∠MON=60°,则∠ACG=;(直接写出答案)(2)若∠MON=n°,求出∠ACG的度数;(用含n的代数式表示)(3)如图2,若∠MON=80°,过点C作CF∥OA交AB于点F,求∠BGO与∠ACF的数量关系.参考答案1.A【详解】解:根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.故选:A.2.B【详解】∠=︒-︒=︒,解:如图,2904545由三角形的外角性质得,1260∠=∠+︒,=︒+︒,4560105=︒.故选:B.3.C 【详解】解:A 、3+4<8,不能组成三角形,故该选项不符合题意;B 、8+7=15,不能组成三角形,故该选项不符合题意;C 、13+12>20,能够组成三角形,故该选项符合题意;D 、5+5<11,不能组成三角形,故该选项不符合题意.故选C .4.B 【详解】解:A 、三个角对应相等的三角形,有可能是相似图形,选项错误;B 、三条边对应相等,两个三角形全等,答案正确;C 、形状相同、大小也相同的两个三角形全等,选项错误;D 、面积相等、周长相等的两个三角形不一定全等,选项错误.故选:B 【点睛】本题考查三角形全等的概念和性质,根据知识点解题是关键.5.B 【解析】【分析】直接利用关于y 轴对称点的性质得出a ,b 的值,进而得出答案.【详解】解:∵点(),1P a 与点()5,B b 关于y 轴对称,∴a=-5,b=1,∴a+b=-5+1=-4,故答案选:B .【点睛】本题考查关于y 轴对称点的坐标特点,关键是掌握点的坐标的变化规律.6.C 【解析】【分析】根据多边形的外角和为360°进行解答即可.【详解】解:∵多边形的外角和为360°∴十二边形的外角和是360°.故选:C.【点睛】本题考查多边形的内角和与外角和的求法,掌握多边形的外角和为360°是解题的关键.7.B【解析】【分析】根据平行线的性质推出∠B=∠DCE,再根据全等三角形的判定进行判断即可.【详解】解:∵点C是BE的中点,∴BC=CE,∵AB∥CD,∴∠B=∠DCE,A、根据SAS证△ABC≌△DCE,故本选项错误;B、∵∠ACB=∠E,CB=CE,∠B=∠DCE,∴△ABC≌△DCE(ASA),故本选项正确;C、根据AAS证三角形全等,故本选项错误;D、根据条件不能证△ABC和△DCE全等,故本选项错误.故选:B.【点睛】本题考查了平行线的性质,全等三角形的判定,灵活运用全等三角形的判定定理进行推理是解此题的关键.8.D【解析】【分析】过P作PD⊥OB于D,则此时PD长最小,根据角平分线的性质求出此时PD的长度,再逐个判断即可.【详解】解:过P 作PD ⊥OB 于D ,则此时PD 长最小,∵OP 平分∠AOB ,PC ⊥OA ,∴PD=PC ,∵PC=5cm ,∴PD=5(cm ),即PD 的最小值是5cm ,∴选项A 、选项B 、选项C 都不符合题意,只有选项D 符合题意,故选:D .【点睛】本题考查了角平分线的性质和垂线段最短,注意:垂线段最短,角平分线上的点到角两边的距离相等.9.D 【解析】【分析】(1)根据三角形中线的性质可直接得出;(2)连接CO ,利用中线性质及各三角形面积间的关系,得出2ABO BOD DOEC S S S ∆∆==四边形,然后利用三角形等高及面积比,即可证明;(3)根据(2)即可得.【详解】(1)∵AD 和BE 是ABC ∆的中线,∴12ABE ABC S S ∆∆=,12ABD ABC S S ∆∆=,∴ABE ABD S S ∆∆=,故(1)正确;(2)连接CO ,∵E 是AC 中点,∴AOECOE S S ∆∆=,又∵12ABE ABD ABC S S S ∆∆∆==,∴BOD AOE COD S S S ∆∆∆==,∴COD COE DOEC S S S ∆∆=+四边形,又∵12ABE ADC ABC S S S ∆∆∆==,∴ABE AOE ADC AOE S S S S ∆∆∆∆-=-,即:2ABO BOD DOEC S S S ∆∆==四边形,∵ABO ∆与BOD ∆等高,面积比为2:1,∴三角形的底边比,即:AO :OD=2:1,∴2AO OD =,故(2)正确;(3)在(2)中已经证明,故(3)正确.故选:D .【点睛】题目主要考察三角形中线的性质,理解中线的性质及理清题中各面积间的关系是解题关键.10.D 【解析】【详解】解:∵∠B=∠DEF ,AB=DE ,∴添加∠A=∠D ,利用ASA 可得△ABC ≌△DEF ;∴添加BC=EF ,利用SAS 可得△ABC ≌△DEF ;∴添加∠ACB=∠F ,利用AAS 可得△ABC ≌△DEF ;故选:D.【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.--11.(1,2)【解析】【分析】利用平面直角坐标系点对称的性质求解.【详解】解:关于x轴对称点的坐标是横坐标不变纵坐标变为原来的相反数可知,A-关于x轴对称点的坐标是(1,2)(1,2)--.--.故答案是:(1,2)【点睛】本题考查点对称的性质,解题的关键是掌握坐标关于x轴对称的变化规律,即关于x轴对称点的坐标是横坐标不变纵坐标变为原来的相反数.12.12.【解析】【分析】正多边形的外角和是360°,这个正多边形的每个外角相等,因而用360°除以外角的度数,就得到外角的个数,外角的个数就是多边形的边数.【详解】解:这个正多边形的边数:360°÷30°=12.故答案为:12.【点睛】本题考查了多边形的内角与外角的关系,熟记正多边形的边数与外角的关系是解题的关键.13.稳定性【解析】【分析】当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.【详解】解:根据题意可得,自行车的三角形车架,这是利用了三角形的稳定性,故答案为:稳定性.【点睛】本题考查了三角形的稳定性的应用,解题的关键是掌握三角形具有稳定性,这一特性主要应用在实际生活中.14.7【解析】【分析】根据DE 是AB 的垂直平分线可得AD BD =,结合BCD △的周长为17cm 可得结论.【详解】∵DE 是AB 的垂直平分线,∴AD BD =,∵BCD △的周长为17cm ,∴17(cm)BC CD BD BC CD AD BC AC ++=++=+=,又∵10cm AB AC ==,∴()17107cm BC =-=.故答案为:7.【点睛】本题考查了垂直平分线的性质,熟知垂直平分线上的任意一点到两端点的距离相等是解题的关键.15.2c【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,得到0a b c -+>,0a b c --<,再根据绝对值的性质进行化简计算.【详解】解:根据三角形的三边关系,得a cb +>,a b c-<0a b c ∴-+>,0a b c --<∴原式()2a b c a b c c=-+---=故答案为:2c16.4【解析】由角平分线的性质可知CD=DE=3,根据线段的和差即可得到结论.【详解】解:∵AD 平分∠BAC ,DE ⊥AB ,∠C=90°,∴CD=DE ,∵DE=3,∴CD=3,∴BD=BC-CD=7-3=4.故答案为:4.17.①②④【解析】由ASA 证明BDE ADF ∆≅∆,得出BE=AF ,DE=DF ,可判断出①②正确;再根据BE+CF=AF+AE,利用三角形两边之和大于第三边,即可判定③错误;根据全等三角形的面积相等可得BDE ADF S S ∆∆≅,从而求出S 四边形AEDF =21122ABC S AD ∆=,判断出④正确.【详解】∵在Rt △ABC 中,AB =AC ,点D 为BC 中点∴45,B DAC AD BD CD∠=∠=︒==∵90MDN ∠=︒90BDE ADE ADF ADE ∴∠+∠=∠+∠=︒∴DDE ADF∠=∠∴()BDE ADF ASA ∆≅∆,故①正确∴BE AF=∴AE CF =,故②正确∴BE CF BE AE AB +=+==∵,EF BD ED=>∴BE CF EF +>,故③错误∵BDE ADF∆≅∆∴S 四边形AEDF =21111112222222ABC S BC AD AD AD AD ∆=⨯⨯⨯=⨯⨯⨯=,故④正确;故答案为①②④18.见解析【解析】由AB ∥CD ,推出ABE DCF ∠=∠,再证明BE CF =,即可依据SAS 证明ABE △≌DFC △,由此得到结论.【详解】证明:∵AB ∥CD ,∴ABE DCF ∠=∠,∵CE BF=∴CE EF BF EF +=+,即BE CF =,在ABE △和DFC △中,AB CD ABE DCF BE CF =⎧⎪∠=∠⎨⎪=⎩,∴()ABE DFC SAS ≌△△,∴AE DF =.19.70°【解析】根据外角的性质,得出∠ABF ,再由角平分线的定义得出∠CBF 的度数,根据三角形的内角和定理得出∠C 的度数.【详解】解:∵BF 平分∠ABC 交AC 于点F ,∴∠ABF=∠CBF ,∵∠BAC=90°,∠BFC=100°,∴∠ABF=100°-90°=10°,∴∠CBF=10°,∴∠C=180°-100°-10°=70°.20.见解析【解析】首先以A 点为圆心,适当长为半径作圆弧,交边AC 和AB 于两点,再分别以这两点为圆心,大于其长度一半的距离为半径作圆弧,交于∠BAC 内部一点,最后连接A 点和此点的射线交BC 边于D 点,线段AD 即为所求.【详解】解:如图所示,线段AD 即为所求.【点睛】本题考查作三角形的角平分线,理解并掌握角平分线的画法和原理是解题关键.21.(1)见解析(2)见解析(3)()12,1B (4)4【解析】【分析】(1)直接根据点A ,C 的坐标分别为()4,5-,()1,3-,建立坐标系即可;(2)先画出ABC 各顶点关于y 轴的对称点,然后顺次连接各点即可;(3)结合已经作出的坐标轴,直接写出点坐标即可;(4)运用割补法求解即可.(1)如图所示,(2)如图所示,(3)由图可知,()12,1B ;(4)11134242123124134222ABC S =⨯-⨯⨯-⨯⨯-⨯=---=△【点睛】本题考查建立平面直角坐标系,以及坐标系中的轴对称变化等,掌握根据两点建立平面直角坐标系的方法,以及轴对称变化的性质和特点是解题关键.22.(1)见详解;(2)见详解【解析】【分析】(1)由题意得出∠BAD =∠CAE ,根据SAS 可得出△AEC ≌△ADB ;(2)由全等三角形的性质得出∠ACE =∠ABD ,则可得出结论.【详解】(1)证明:∵AB ⊥AC ,AD ⊥AE ,∴∠BAC =∠DAE=90°,∴∠BAC +∠BAE =∠DAE +∠BAE ,∴∠BAD =∠CAE ,在△BAD 与△CAE 中,AB ACBAD CAE AD AE⎧⎪∠∠⎨⎪⎩===,∴△ADB ≌△AEC(SAS);(2)如图,设BD 和CE 交于点F .由(1)知,△ADB ≌△AEC ,∴∠ACE =∠ABD ,∵∠BAC =90°,∴∠CBD +∠BCE =∠ABC +∠ACB =90°,∴∠BFC =90°,∴DB ⊥EC.【点睛】本题考查了全等三角形的判定和性质,判断出△ADB ≌△AEC 是解本题的关键.23.(1)见解析;(2)见解析【解析】【分析】(1)根据“AAS”即可证明△ABE ≌△CAF ;(2)利用全等三角形的性质-对应边相等就可以证明题目的结论.【详解】证明:(1)∵BE ⊥EA ,CF ⊥AF ,∴∠BAC=∠BEA=∠AFC=90°,∴∠EAB+∠CAF=90°,∠EBA+∠EAB=90°,∴∠CAF=∠EBA ,在△BEA 和△AFC 中,90BEA AFC EBA CAF AB AC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CAF (AAS );(2)由(1)知△ABE ≌△CAF ,∴EA=FC ,BE=AF .∴EF=AE+EA=BE+CF .【点睛】本题主要考查了全等三角形的性质与判定,利用它们解决问题,经常用全等来证线段和的问题.24.证明见解析.【解析】【分析】根据平行线性质求出∠B=∠C ,再求出BE=CF ,根据SAS 推出两三角形全等即可.【详解】证明:∵AB ∥CD∴∠B =∠C∵BF=CE∴BE=C F在△ABC 和△DCB 中AB CD B C BE C F ==⎧⎪∠∠⎨⎪=⎩∴△ABE ≌△DCF (SAS)【点睛】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.25.(1)60°;(2)90°-12n°;(3)∠BGO-∠ACF=50°【解析】【分析】(1)根据三角形内角和定理求出∠BAO+∠ABO,根据角平分线的定义、三角形的外角性质计算,得到答案;(2)仿照(1)的解法解答;(3)根据平行线的性质得到∠ACF=∠CAG,根据(2)的结论解答.【详解】解:(1)∵∠MON=60°,∴∠BAO+∠ABO=120°,∵AC、BC分别是∠BAO和∠ABO的角平分线,∴∠CBA=12∠ABO,∠CAB=12∠BAO,∴∠CBA+∠CAB=12(∠ABO+∠BAO)=60°,∴∠ACG=∠CBA+∠CAB=60°,故答案为:60°;(2)∵∠MON=n°,∴∠BAO+∠ABO=180°-n°,∵AC、BC分别是∠BAO和∠ABO的角平分线,∴∠CBA=12∠ABO,∠CAB=12∠BAO,∴∠CBA+∠CAB=12(∠ABO+∠BAO)=90°-12n°,∴∠ACG=∠CBA+∠CAB=90°-12 n°;(3)∵CF∥OA,∴∠ACF=∠CAG,∴∠BGO-∠ACF=∠BGO-∠CAG=∠ACG,由(2)得:∠ACG=90°-12×80°=50°.∴∠BGO-∠ACF=50°.【点睛】本题考查的是角平分线的定义、平行线的性质、三角形的外角性质,掌握两直线平行、内错角相等是解题的关键.。
四川省成都市金牛实验中学2024-2025学年上学期八年级半期考试数学试题一、单选题1.式子:①35<;②450x +>;③3x =;④2x x +;⑤4x ≠-;⑥21x x +≥+.其中是不等式的有().A .2个B .3个C .4个D .5个2.金沙遗址陈列馆有5个展厅,分别是第一展厅:远古家园;第二展厅:王都剪影;第三展厅:天地不绝;第四展厅:千载遗珍;第五展厅:解读金沙.某班同学分小组到以上五个展厅进行研学活动,人数分别为:9,11,8,11,10(单位:人),这组数据的众数和中位数分别是()A .11人,10人B .11人,8人C .11人,9人D .9人,8人3.若x >y ,则下列各式正确的是()A .x +2<y +2B .x ﹣2<y ﹣2C .﹣2x <﹣2yD .1122x y <4.在平面直角坐标系中,已知点(,)M a b ,(4,7)N ,//MN x 轴,则一定有()A .4a =B .4a =-C .7b =-D .7b =5.不等式3(x +1)>2x +1的解集在数轴上表示为()A .B .C .D .6.下表中记录了甲、乙、丙、丁四名运动员跳远选拔赛成绩(单位:cm )的平均数和方差,要从中选择一名成绩较高且发挥稳定的运动员参加决赛,最合适的运动员是()甲乙丙丁平均数x 376350376350方差2s 12.513.52.45.4A .甲B .乙C .丙D .丁7.下列图象中,可以表示一次函数y kx b =+与正比例函数y kbx =(k ,b 为常数,且0kb ≠)的图象的是()A .B .C .D .8.乐乐和姐姐一起出去运动,两人同时从家出发.沿相同路线前行,途中姐姐有事返回,乐乐继续前行,5分钟后也原路返回,两人恰好同时到家,乐乐和姐姐在整个运动过程中离家的路程1y (米),2y (米)与运动时间x (分)之间的函数关系如图所示.下列结论中错误的是()A .两人前行过程中的速度为180米/分B .m 的值是15,n 的值是2700C .姐姐返回时的速度为90米/分D .运动18分钟时,两人相距800米二、填空题9.若()120mx x ++>是关于x 的一元一次不等式,则m =.10.某校在期末考核学生的体育成绩时,将早锻炼及体育课外活动表现占成绩的20%,体育理论测试占30%,体育技能测试占50%.小颖的上述成绩分别为92分、80分、84分,则小颖这学期的体育成绩是分11.直角坐标系中,点P (x ,y )在第三象限,且P 到x 轴和y 轴的距离分别为3,4,则点P 的坐标为.12.如图,在平面直角坐标系中,直线21y x =+与直线3y x m =-+相交于点P ,若点P 的横坐标为1,则关于,x y 的二元一次方程组213y x y x m =+⎧⎨=-+⎩的解是.13.如图,一次函数y kx b =+(k 、b 为常数,且0k ≠)与正比例函数y ax =(a 为常数,且0a ≠)相交于点P ,则不等式kx b ax +≤的解集是.三、解答题14.计算(1)112202432-⎛⎫+-- ⎪⎝⎭;(3)11324(25)11x y x y +⎧-=⎪⎨⎪--=⎩①②;(4)解不等式组()214131132x xx x ⎧+≥⎪⎨-++>⎪⎩,并将解集在数轴上表示出来.15.某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:(1)上表中众数m 的值为;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.16.如图,在平面直角坐标系中,(2,4)(3,1)(2,1)A B C --,,.(1)在图中作出ABC V 关于x 轴的对称图形111A B C △,并直接写出点1C 的坐标;(2)求ABC V 的面积;(3)点(,2)P a a -与点Q 关于x 轴对称,若8PQ =,直接写出点P 的坐标.17.某市自来水公司为鼓励居民节约用水,采取按月用水量分段收费办法,若某户居民应交水费y (元)与用水量x (吨)的函数关系如图所示.(1)分别写出当015x ≤≤和15x >时,y 与x 的函数关系式;(2)若某用户十月份用水量为10吨,则应交水费多少元?若该用户十一月份交了51元的水费,则他该月用水多少吨18.直线3AB y x =+:分别与x ,y 轴交于A ,B 两点、过点B 的直线交x 轴正半轴于点C ,且:3:1OB OC =.(1)直接写出点A 、B 、C 的坐标;(2)在线段OB 上存在点P ,使点P 到B ,C 的距离相等,求出点P 的坐标:(3)在第一象限内是否存在一点E ,使得BCE 为等腰直角三角形,若存在,直接写出E 点坐标;若不存在,说明理由.四、填空题19.若点(),m n 在函数34y x =-的图象上,则62m n -的值是.20.若关于x 的不等式23335x x x a -⎧⎨-≥⎩>只有两个整数解,则a 的取值范围是.21.对于实数a b ,,定义运算“※”:())ab a b a a b <⎧=≥※,例如23-※,因为23-<,所以23236-=-⨯=-※.若,x y 满足方程组48229x y x y -=-⎧⎨+=⎩,则x y =※.22.如图,在平面直角坐标系中,点C 的坐标是(0,4),作点C 关于直线AB :y =+1的对称点D ,则点D 的坐标是.23.如图六边形ABCDEF 是正六边形,曲线123456FA A A A A A …叫做正六边形的渐开线,满足1AA AF =,21BA BA =,32CA CA =,43DA DA =…;点B 、点A 与点1A 共线,点C 、点B 与点2A 共线,点D 、点C 与点3A 共线…,当点A 坐标为()1,0,点B 坐标为()0,0时,点2021A 的坐标是.五、解答题24.定义:如果一元一次方程的解是一元一次不等式组的解,则称该一元一次方程为该不等式组的【相伴方程】.(1)在下列方程中:①10x -=;;②2103x +=;③()315x x -+=-,与不等式组25312x x x x -+>-⎧⎨->-+⎩是【相伴方程】的是;(填序号)(2)若不等式组312332x x x ⎧-<⎪⎨⎪-+>-+⎩的一个【相伴方程】的解是整数,则这个【相伴方程】可以是;(写出一个即可)(3)若方程32x -=,1322x x ⎛⎫+=+ ⎪⎝⎭都是关于x 的不等式组2312x x m x m ≤-⎧⎨-≤⎩的【相伴方程】,求m 的取值范围.25.某服装店准备购进甲、乙两种服装出售,甲种每件售价120元,乙种每件售价90元.每件甲服装的进价比乙服装的进价贵20元,购进3件甲服装的费用和购进4件乙服装的费用相等,现计划购进两种服装共100件,其中甲种服装不少于65件.(1)甲种服装进价为多少元/件?乙种服装进价为多少元/件?(2)若购进这100件服装的费用不得超过7500元:①求甲种服装最多购进多少件?②该服装店对甲种服装每件降价a (020)a <<元,乙种服装价格不变,如果这100件服装都可售完,那么该服装店如何进货才能获得最大利润?26.如图1,已知直线l1:y=kx+b与直线l2:y=43x交于点M,直线l1与坐标轴分别交于A,C两点,且点A坐标为(0,7),点C坐标为(7,0).(1)求直线l1的函数表达式;(2)在直线l2上是否存在点D,使△ADM的面积等于△AOM面积的2倍,若存在,请求出点D的坐标,若不存在,请说明理由;(3)若点P是线段OM上的一动点(不与端点重合),过点P作PB∥x轴交CM于点B,设点P的纵坐标为m,以点P为直角顶点作等腰直角△PBF(点F在直线PB下方),设△PBF 与△MOC重叠部分的面积为S,求S与m之间的函数关系式,并写出相应m的取值范围.。
成都市八年级上册半期数学考试卷考试范围(1勾股章,2实数章,3方程组章,4位置坐标章,5一次函数章)A 卷100分一选择题(3分x10=30分)1、如图所示为一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②,…,依此类推,若正方形①的面积为64,则正方形⑤的面积为( )A2 B4 C8 D162、如图,在Rt ABC ∆中, 090ACB ∠=,AB=4.分别以AC,BC 为直径作半圆,面积分别记为12,S S ,则12S S +的值等于( )A 2πB 3πC 4πD 8π3、方程x +2y =5的非负整数解有 ( ) A.3组 B.2组 C.1 组 D.0组4、一质点P 从距原点1个单位的M 点处向原点方向跳动,第一次跳动到OM 的中点3M 处,第二次从3M 跳到3OM 的中点2M 处,第三次从点2M 跳到2OM 的中点1M 处,如此不断跳动下去,则第n 次跳动后,该质点到原点O 的距离为( )。
A.12nB.112n - C.112n +⎛⎫ ⎪⎝⎭D. 12n5、若定义新运算:(,)(+1f a b a =,-b), (,)(g m n m =,n-2) 则[(2,3)]f g -=( ) A(2,-3) B(2,-5) C (3,5) D(3,-5)6、今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间。
设他从山脚出发后所用时间为t (分钟),所走的路程为s(米),s与t之间的函数关系如图所示。
下列说法错误的是()。
A: 小明中途休息用了20分钟B: 小明休息前爬山的平均速度为每分钟70米C: 小明在上述过程中所走的路程为6600米D: 小明休息前爬山的平均速度大于休息后爬山的平均速度7、一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数。
八年级上期期末数学测试卷(天府卷)(满分:150分时间:120分钟)班级________ 姓名________ 学号________ 得分A 卷(共100分)第I 卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.9的算术平方根是()A.81B.-81C.3D.-32.在平面直角坐标系中,点A 关于原点对称的点在第三象限,则点A 在( )A.第一象限 B.第二象限C.第三象限D.第四象限3.下列各式中,计算正确的是()B.D.4.下列各组数中,是勾股数的是( )A.5,6,7 B.3,4,5 C.1,2, D.0.6,0.8,15.在某促销活动前期,商场卖鞋商家对市场进行了一次调研,那么商家应最重视鞋码的()A.方差 B.众数 C.中位数D.平均数6.如图,由下列条件能判定的是()A. B.C. D.7.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安.问:几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发.问:多久后甲、乙相逢?设甲出发日,乙出发日后甲、乙相逢,则所列方程组正确的是( )A. B.5=-(22=-3=±2=±AB CD ∥BAC ACB∠=∠DAC ACB ∠=∠BAC DCA ∠=∠180D DCB ∠+∠=︒x y 2,11175x y x y -=⎧⎪⎨+=⎪⎩2,11175x y x y +=⎧⎪⎨+=⎪⎩C. D.8.关于一次函数,下列结论正确的是()A.图象不经过第二象限B.图象与轴的交点是(0,3)C.将一次函数的图象向上平移3个单位长度后,所得图象的函数表达式为D.点和在一次函数的图象上,若,则第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9.比较大小:(填“>”“<”或“=”)10.有意义,则的取值范围是________.11.平面直角坐标系中,点A在第二象限,且到x轴的距离是2,到y轴的距离是3,则点A的坐标是_________.12.如图,直线:与直线:相交于点,则关于x,y的方程组的解为_________.13.如图,在中,按以下步骤作图:①以点B为圆心,任意长为半径作弧,分别交AB,BC于点D和E;②分别以点D,E为圆心,以大于的长为半径作弧,两弧相交于点F;③作射线BF交AC于点G;④过点G作交AB于点H.若,则的度数是___________.2,11157x yx y-=⎧⎪⎨+=⎪⎩2,11157x yx y+=⎧⎪⎨+=⎪⎩23y x=-+x23y x=-+26y x=-+()11,x y()22,x y23y x=-+12x x<12y y<x1l1y x=+2l y kx b=+()1,P m1,y xy kx b=+⎧⎨=+⎩ABC△12DEGH BC∥35ABG∠=︒BHG∠三、解答题(本大题共5个小题,共48分)14.(本小题满分12分,每题6分)(1)计算:;(2)解方程组:15.(本小题满分8分)如图,在平面直角坐标系中,各顶点的坐标分别为,,.(1)作出与关于轴对称的图形;(2)已知点,直线轴,求点P 的坐标.16.(本小题满分8分)2022年11月29日23时08分,随着“神舟十五号”成功发射,拥有“三室三厅”的中国“天宫”也创下首次同时容纳6名航天员的纪录.对此,天府新区某学校想了解本校八年级学生对中国空间站相关知识的了解情况,组织开展了“中国空间站知多少”知识竞赛,现随机抽取部分学生的成绩分成五个等级(A :90~100分;B :80~89分;C :70~79分;D :60~69分;E :59分及以下)进行统计,并绘制成如图所示的两幅不完整的统计图.(021--+2317,2.2x y x y y +=⎧⎪⎨+=-⎪⎩ABC △()3,4A ()5,1B -()1,2C ABC △x 111A B C △()23,1P a a -+-1PB x ∥请根据图中提供的信息,解答下列问题:(1)本次调查共抽取了_________名学生的成绩;(2)补全条形统计图;(3)若该校有800名学生参加此次竞赛,竞赛成绩为80分及其以上为优秀,请估计该校竞赛成绩为优秀的学生共有多少名.17.(本小题满分10分)如图,已知正方形ABCD ,分别以AB ,CD 为斜边在正方形ABCD 内作直角和直角,且.(1)求证:;(2)连接EF ,猜想线段EF 与线段BC 之间的位置关系,并说明理由.18.(本小题满分10分)如图,在平面直角坐标系中,点M ,N 的坐标分别为(2,0),(0,6),在x 轴的负半轴上有一点A ,且满足,连接MN ,AN .(1)求直线AN 的函数表达式.(2)将线段MN 沿y 轴方向平移至,连接,'.①当线段MN 向下平移2个单位长度时(如图所示),求的面积;②当为直角三角形时,求点的坐标.ABE △CDF △BAE CDF ∠=∠EAD FDA ≌△△4OA OM =M N ''AM 'AN 'AM N ''△AM N ''△M 'B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19.已知关于x ,y 的二元一次方程组为则的值为_________.20.已知x ,y 是实数,且,则_________.21.如图是由五个边长为1的小正方形组成的十字形,小明说只剪两刀就可以拼成一个没有缝隙的大正方形,则剪完后拼成的大正方形的边长是_________.22.如图,中,,分别以AC ,AB 为直角边在外作等腰直角和等腰直角,且,连接DE .若,,则的面积为__________.23.如图,AE 和AD 分别为的角平分线和高线,已知,且,,则AC 的长为_________.二、解答题(本大题共3个小题,共30分)24.(本小题满分8分)随着疫情防控“新十条”出台,连日来,全国多地优化完善疫情防控措施,成都宣布不再按行政区域开展全员核酸检测,鼓励家庭自备抗原试剂盒.某公司为员工集体采购了一批抗原试剂盒以保证每个员工恰好都能检测一次,采购的抗原试剂盒信息如下:名称规格销售价格抗原试剂盒A25支/盒200元/盒抗原试剂盒B 20支/盒180元/盒已知该公司共有员工5000人,花费42500元.352,222,x y m x y m +=-⎧⎨-=+⎩32x y +1y <+y =Rt ABC △90ABC ∠=︒Rt ABC △ACD △ABE △90DAC BAE ∠=∠=︒13AC =5AB =ADE △ABC △3AD =2B DAE ∠=∠4BD DE =(1)该公司采购了抗原试剂盒A 和抗原试剂盒B 各多少盒?(2)若抗原试剂盒B 在原价的基础上打九折销售,该公司打算再次采购1000盒抗原试剂盒,其中抗原试剂盒A 有m 盒,采购费用为W 元,请写出W 关于m 的函数关系式.25.(本小题满分10分)已知和都是等腰直角三角形,,且A ,D ,E 三点在同一条直线上.(1)当与在如图1所示位置时,连接CE ,求证:;(2)在(1)的条件下,判断AE ,CE ,BD 之间的数量关系,并说明理由;(3)当与在如图2所示的位置时,连接CE ,若BE 平分,,求的面积.26.(本小题满分12分)如图,在平面直角坐标系中,直线:交x 轴于点A ,交y 轴于点B ,点在直线上,直线经过点C 和点.(1)求直线的函数表达式;(2)Q 是直线上一动点,若,求点Q 的坐标;(3)在x 轴上有一动点E ,连接CE ,将沿直线CE 翻折后,点D 的对应点恰好落在直线上,请求出点E 的坐标.BAC △BDE △90BAC BDE ∠=∠=︒ABC △BDE △EBC EAC ∠=∠ABC △BDE △ABC ∠1AD =BCE △1l 26y x =-+(),4C m 1l 2l ()7,0D -2l 2l QAB ABO ∠=∠CDE △D '1l八年级上期期末数学测试卷(天府卷)A 卷1.C2.A3.D4.B5.B6.C7.D8.C9.< 10. 11. 12. 13.110°14.(1)解:原式.(2)解:化简,得②×3+①,得.解得.将代入②,得.解得.∴原方程组的解为15.解:(1)如图,即为所求.(2)∵,点与点B 关于x 轴对称,∴.∵,轴,∴点P 的纵坐标为1,∴,∴,∴,∴点的坐标为.2x ≥-()3,2-12x y =⎧⎨=⎩11=-+=2317,4.x y x y +=⎧⎨-=-⎩①②55x =1x =1x =14y -=-5y =1,5.x y =⎧⎨=⎩111A B C △()5,1B -1B ()15,1B ()23,1P a a -+-1PB x ∥11a -=2a =231a -+=-P ()1,1-16.解:(1)100(2)C 等级的学生为100×20%=20(名).故B 等级的学生为100-26-20-10-4=40(名).补全条形统计图如图所示:(3)(名),即估计该校竞赛成绩为优秀的学生共有528名.17.(1)证明:∵四边形ABCD 是正方形,∴.在和中,∴,∴.在正方形ABCD 中,∵,∴,∴.在和中,∴.(2)解:.理由如下:由(1)可知,,∴,,∴,∴,∴.∵,∴,∴,∴,∴.∵四边形ABCD 是正方形,∴,∴.18.解:(1)∵,∴.2640800528100+⨯=AB DC =ABE △DCF △90,,,AEB DFC BAE CDF AB DC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()AAS ABE DCF ≌△△AE DF =90BAD CDA ∠=∠=︒BAD BAE CDA CDF ∠-∠=∠-∠DAE ADF ∠=∠EAD △FDA △,,,AE DF DAE ADF AD DA =⎧⎪∠=∠⎨⎪=⎩()SAS EAD FDA ≌△△EF BC ∥EAD FDA ≌△△ADE DAF ∠=∠DE AF =AO DO =OE OF =OEF OFE ∠=∠AOD EOF ∠=∠180180AOD EOF ︒-∠=︒-∠22DAO OFE ∠=∠DAO OFE ∠=∠AD EF ∥AD BC ∥EF BC ∥()2,0M 2OM =∵,∴.又∵点A 在x 轴的负半轴上,∴.设直线AN 的函数表达式为.将,代入上式,得解得∴直线的函数表达式为.(2)①∵将线段MN 向下平移2个单位长度,∴,.由,,可得直线的函数表达式为.设直线与y 轴相交于点C ,则.∴.②设将线段MN 沿y 轴方向平移m 个单位长度至,则,.∴,,.当时,,解得,此时,;当时,,解得,此时,;当时,不成立.综上所述,点的坐标为或.4OA OM =8OA =()8,0A -y kx b =+()8,0A -()0,6N 80,6,k b b -+=⎧⎨=⎩3,46.k b ⎧=⎪⎨⎪=⎩AN 364y x =+()2,2M '-()0,4N '()8,0A -()2,2M '-AM '1855y x =--AM '80,5C ⎛⎫- ⎪⎝⎭()184282825AM N S ''⎛⎫=⨯+⨯+= ⎪⎝⎭△M N ''()2,M m '()0,6N m '+22210AM m '=+()22286AN m '=++2222640M N ''=+=90AN M ''∠=︒()2222864010m m +++=+103m =-102,3M ⎛⎫'- ⎪⎝⎭90AM N ''∠=︒()2222104086m m ++=++103m =102,3M ⎛⎫' ⎪⎝⎭90M AN ''∠=︒M '102,3⎛⎫- ⎪⎝⎭102,3⎛⎫ ⎪⎝⎭B 卷19.7【解析】①+②,得.20.1【解析】由题意知,,,∴且,∴,∴,∴,∴.21.1的小正方形组成的十字形的面积为1×1×5=5.∵小明只剪两刀就可以将其拼成一个没有缝隙的大正方形,∴拼成的大正方形的面积为522.30【解析】如图,过点D 作AB 的垂线交BA 的延长线于点H ,交DE 于点F ,则.又∵,∴,∴.又∵,∴,∴,.在中,,,∴,∴.∵是等腰直角三角形,∴,,∴,,∴.又∵,∴,∴,∴.∵,∴.23.【解析】如图,在AD 上截取AG ,使,则,∴.∵,∴.设,,则,.在中,由勾股定理,得,即,化简,得.由AD 是的高线,,易得,即352,222.x y m x y m +=-⎧⎨-=+⎩①②327x y +=0≥0≥10x -≥10x -≥1x =11y <++=10y -<111y y y y y =+-=+-=90H ABC ∠=∠=︒90CAD ABC ∠=∠=︒90DAH CAB ACB CAB ∠+∠=∠+∠=︒DAH ACB ∠=∠AD CA =ADH CAB ≌△△5DH AB ==AH CB =Rt ABC △13AC =5AB =12CB ==12AH =BAE △EA AB =90BAE ∠=︒EA DH =90EAF ∠=︒EAF H ∠=∠AFE HFD ∠=∠AEF HDF ≌△△AEF HDF S S =△△ADE ADF AEF ADF HDF AHD S S S S S S =+=+=△△△△△△111253022AHD S AH DH =⋅=⨯⨯=△30ADE S =△258AG EG =AEG DAE ∠=∠2EGD AEG DAE DAE ∠=∠+∠=∠2B DAE ∠=∠B EGD ∠=∠AG EG m ==DE a =4BD a =3DG AD AG m =-=-Rt EGD △222EG DE DG =+()2223m a m =+-269a m =-ABC △B EGD ∠=∠AD DE BD DG =,∴.联立解得∴,∴,,∴.在中,.设点E 到直线AB 的距离为h ,则,∴.∵AE 是的角平分线,∴点E 到直线AC 的距离为.设,则∵,∴,解得或(舍去),∴.24.解:(1)设该公司采购了抗原试剂盒A x 盒,抗原试剂盒B y 盒.由题意,得,解得故该公司采购了抗原试剂盒A 100盒,抗原试剂盒B 125盒.(2)由题意,得.即W 关于m 的函数关系式为.25.(1)证明:∵和都是等腰直角三角形,∴.如图1,记BC 与AE 相交于点O ,则,∴在和中,.(2)解:.理由如下:如图1,过点C 作于点F .343a a m =-2493a m =-2269,493,a m a m ⎧=-⎨=-⎩25,31.m a ⎧=⎪⎨⎪=⎩1a =1DE =4BD =3BE BD DE =-=Rt ABD △5AB ==1122ABE S BE AD AB h =⋅=⋅△33955BE AD h AB ⋅⨯===ABC △95CD n =AC ==1122AEC S EC AD AC h =⋅=⋅△()9135n +⨯=78n =4n =-258AC ==25205000,20018042500.x y x y +=⎧⎨+=⎩100,125.x y =⎧⎨=⎩()920018010003816200010W m m m =+⨯-=+38162000W m =+ABC △BDE △45BEA BCA ∠=∠=︒BOE AOC ∠=∠BEO △ACO △EBC EAC ∠=∠AE BD =+CF AE ⊥∵,∴.由(1)知,,∴,即.在和中,∴,∴,.在等腰直角中,,∴,∴,∴,∴,∴是等腰直角三角形,∴,∴,即.(3)解:如图2,过点C 作交AE 的延长线于点F.45ABD DBC DBC EBC ∠+∠=∠+∠=︒ABD EBC ∠=∠EBC EAC ∠=∠ABD EAC ∠=∠ABD CAF ∠=∠ABD △CAF △90,,,ADB CFA ABD CAF AB CA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()AAS ABD CAF ≌△△BD AF =AD CF =BDE △BD DE =AF DE =AD DF DF EF +=+AD EF =EF CF =CFE△CF=AE AF EF BD CF BD =+=+=+AE BD =+CF AE ⊥∵,∴.在和中,∴,∴,.又∵,∴,∴,∴,∴,∴是等腰直角三角形,∴,∴.∵平分,而在等腰直角中,,∴,∴,∴,∴,∴,∴.∵,∴∴.在中,.∴.26.解:(1)∵点在直线:上,∴,∴,∴.90ABD BAD BAD CAF ∠+∠=∠+∠=︒ABDCAF ∠=∠ABD△CAF △90,,,D F ABD CAF AB CA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()AAS ABD CAF ≌△△BD AF =AD CF =BD DE =DE AF =AD AE AE EF +=+AD EF =EF CF =CFE △45CEF ∠=︒18090BEC BED CEF ∠=︒-∠-∠=︒BE ABC ∠BAC △45ABC ∠=︒22.5CBE ABE ∠=∠=︒22.5ABD DBE ABE ∠=∠-∠=︒22.5CAF ∠=︒22.5ACE CEF CAF ∠=∠-∠=︒ACE CAF ∠=∠AE CE =1AD =AE CE ====1BD DE AE AD ==+=+Rt BDE △2BE ==+(112122BCE S BE CE =⋅=⨯=△(),4C m 1l 26y x =-+264m -+=1m =()1,4C设直线的函数表达式为.∵点,在直线上,∴,解得∴直线的函数表达式为.(2)由直线:,可知,如图1,分以下两种情况讨论:①当点Q 在线段DC 的延长线上时,∵,∴,∴,∴.②当点Q 在线段DC 上时,在y 轴上取一点M ,使得,则.∵,∴点Q 在直线AM 上.设,则.在中,,∴,解得.∴.由,,可得直线AM 的函数表达式为.2l y kx b =+()1,4C ()7,0D -2l 4,70,k b k b +=⎧⎨-+=⎩1,27.2k b ⎧=⎪⎪⎨⎪=⎪⎩2l 1722y x =+1l 26y x =-+()3,0A ()0,6B QAB ABO ∠=∠OB AQ ∥3Q A x x ==()13,5Q MB MA =MAB ABO ∠=∠QAB ABO ∠=∠()0,M a 6AM BM a ==-Rt AOM △222OA OM AM +=()22236a a +=-94a =90,4M ⎛⎫ ⎪⎝⎭()3,0A 90,4M ⎛⎫ ⎪⎝⎭3944y x =-+联立解得∴.综上所述,点的坐标为或.(3)①当点E 在点A 的左侧时,如图2所示.∵,,,∴,,∴,∴为直角三角形,且.∵将沿直线翻折得到,∴.以为直角边作等腰直角,交射线CE 于点F ,构造,使,可得.设直线CF 的函数表达式为.将,代入上式,得解得∴直线的函数表达式为.令,则,∴.②当点E 在点A 的右侧时,如图3所示.17,2239,44y x y x ⎧=+⎪⎪⎨⎪=-+⎪⎩1,3.x y =-⎧⎨=⎩()21,3Q -Q ()3,5()1,3-()3,0A ()7,0D -()1,4C AC =CD =10AD =222AC CD AD +=ACD △90ACD ∠=︒CDE △CE CD E '△45DCE D CE '∠=∠=︒AC ACF △Rt ACM △Rt ACM Rt FNA ≌△△()1,2F --y ex n =+()1,4C ()1,2F --4,2,e n e n +=⎧⎨-+=-⎩3,1.e n =⎧⎨=⎩CF 31y x =+310y x =+=13x =-1,03E ⎛⎫- ⎪⎝⎭同理可得:.以为直角边作等腰直角,交直线CE 于点F ,构造,使,可得.设直线的函数表达式为.将,代入上式,得解得∴直线的函数表达式为.令,则,∴.综上所述,点的坐标为或.45ACE ∠=︒AC ACF △Rt ACM △Rt ACM Rt FAN ≌△△()7,2F CF y cx d =+()1,4C ()7,2F 72,4,c d c d +=⎧⎨+=⎩1,313.3c d ⎧=-⎪⎪⎨⎪=⎪⎩CF 11333y x =-+113033y x =-+=13x =()13,0E E 1,03⎛⎫- ⎪⎝⎭()13,0。
2019年八年级数学上册半期试卷(附答案和解释)距离期中考试越来越近了,半学期即将结束,各位同学们都进入了紧张的复习阶段,对于初二学习的复习,在背诵一些课本知识点的同时还需要做一些练习题,一起来看一下这篇2019年八年级数学上册半期试卷吧!一、选择题(每小题3分,共30分)1.(2019秋阳泉校级期中)下列图案是轴对称图形的有( )A.(1)(3)B.(1)(2)C.(2)(4)D.(2)(3)考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:(1)不是轴对称图形,(2)是轴对称图形,(3)是轴对称图形,(4)不是轴对称图形.2.(2019春东阳市期末)平面内点A(﹣1,2)和点B(﹣1,6)的对称轴是( )A.x轴B.y轴C.直线y=4D.直线x=﹣1考点:坐标与图形变化-对称.分析:观察两坐标的特点,发现横坐标相同,所以对称轴为平行与x轴的直线,即y=纵坐标的平均数.解答:解:∵点A(﹣1,2)和点B(﹣1,6)对称,3.(2019秋博野县期末)下列各组图形中,是全等形的是( )A.两个含60角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形考点:全等图形.分析:综合运用判定方法判断.做题时根据已知条件,结合全等的判定方法逐一验证.解答:解:A、两个含60角的直角三角形,缺少对应边相等,所以不是全等形;B、腰对应相等的两个等腰直角三角形,符合AAS或ASA,或SAS,是全等形;C、边长为3和4的两个等腰三角形有可能是3,3,4或4,4,3不一定全等对应关系不明确不一定全等;D、一个钝角相等的两个等腰三角形.缺少对应边相等,不是全等形.4.(2019秋昆山市校级期末)已知等腰三角形的一个外角等于100,则它的顶角是( )A.80B.20C.80或20D.不能确定考点:等腰三角形的性质.专题:分类讨论.分析:此外角可能是顶角的外角,也可能是底角的外角,需要分情况考虑,再结合三角形的内角和为180,可求出顶角的度数.解答:解:①若100是顶角的外角,则顶角=180﹣100=80 ②若100是底角的外角,则底角=180﹣100=80,那么顶角=180﹣280=20.5.(2019泰山区模拟)已知,Rt△ABC中,C=90,AD平分BAC 交BC于D,若BC=32,且BD:CD=9:7,则D到AB的距离为( )A.18B.16C.14D.12考点:角平分线的性质.分析:首先由线段的比求得CD=16,然后利用角平分线的性质可得D到边AB的距离等于CD的长.解答:解:∵BC=32,BD:DC=9:76.(2019秋广水市校级期中)一个多边形内角和是1080,则这个多边形的对角线条数为( )A.26B.24C.22D.20考点:多边形内角与外角;多边形的对角线.分析:先根据多边形的内角和公式求出边数,然后根据对角线的条数的公式进行计算即可求解.解答:解:设多边形的边数是n,则(n﹣2)180=1080,7.(2019襄阳)以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是( )A.1个B.2个C.3个D.4个考点:三角形三边关系.分析:从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.解答:解:首先可以组合为13,10,5;13,10,7;13,5,7;10,5,7.再根据三角形的三边关系,发现其中的13,5,7不符合,则可以画出的三角形有3个.8.(2019秋天津期末)如图,A=15,AB=BC=CD=DE=EF,则DEF 等于( )A.90B.75C.70D.60考点:等腰三角形的性质;三角形内角和定理;三角形的外角性质.分析:根据已知条件,利用等腰三角形的性质及三角形的内角和外角之间的关系进行计算.解答:解:∵AB=BC=CD=DE=EF,A=15,BCA=A=15,CBD=BDC=BCA+A=15+15=30,BCD=180﹣(CBD+BDC)=180﹣60=120,ECD=CED=180﹣BCD﹣BCA=180﹣120﹣15=45,CDE=180﹣(ECD+CED)=180﹣90=90,EDF=EFD=180﹣CDE﹣BDC=180﹣90﹣30=60,(1)三角形的外角等于与它不相邻的两个内角和;(2)三角形的内角和是180度.求角的度数常常要用到三角形的内角和是180这一隐含的条件.9.(2019秋曲阜市期末)如图,DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为( )厘米.A.16B.28C.26D.18考点:线段垂直平分线的性质.专题:计算题.分析:利用线段垂直平分线的性质得AE=CE,再等量代换即可求得三角形的周长.解答:解:∵DE是△ABC中AC边的垂直平分线10.(2019张家界)把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是( )A. B. C. D.考点:剪纸问题.专题:操作型.分析:把一个正方形的纸片向上对折,向右对折,向右下方对折,从上部剪去一个等腰直角三角形,展开,看得到的图形为选项中的哪个即可.解答:解:从折叠的图形中剪去8个等腰直角三角形,易得将从正方形纸片中剪去4个小正方形,故选C.二、填空题(每题3分,共24分)11.(2019秋渝北区期末)从商场试衣镜中看到某件名牌服装标签上的后5位编码是:则该编码实际上是 BA629 .考点:镜面对称.专题:操作型.分析:根据镜面对称的性质,在平面镜中的像与现实中的事物恰好左右颠倒,且关于镜面对称,分析可得答案.解答:解:根据在平面镜中的像与现实中的事物恰好左右颠倒,12.(2019春泰山区期末)等腰三角形一腰上的高与另一腰的夹角为30,则它的顶角为 60或120 .考点:等腰三角形的性质.专题:计算题;分类讨论.分析:等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.解答:解:当高在三角形内部时,顶角是12013.(2019秋阳泉校级期中)在平面直角坐标系内点P(﹣3,2a+b)与点Q(a﹣b,﹣1)关于y轴对称,则a+b的值为 .考点:关于x轴、y轴对称的点的坐标.分析:根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得,解出a、b的值,进而可得a+b的值.解答:解:∵点P(﹣3,2a+b)与点Q(a﹣b,﹣1)关于y轴对称,14.(2019秋兴化市校级期末)已知等腰三角形的两边长分别为4cm和7cm,则这个三角形的周长为 15cm或18cm .考点:等腰三角形的性质.分析:根据等腰三角形的性质,分两种情况:①当腰长为4cm 时,②当腰长为7cm时,解答出即可.解答:解:根据题意,①当腰长为4cm时,周长=4+4+7=15(cm);15.(2019春金台区期末)如图,△ABC中,A=40,B=72,CE 平分ACB,CDAB于D,DFCE,则CDF= 74 度.考点:三角形内角和定理.分析:利用三角形的内角和外角之间的关系计算.解答:解:∵A=40,B=72,ACB=68,∵CE平分ACB,CDAB于D,BCE=34,BCD=90﹣72=18,16.(2019绵阳)如图,在△ABC中,BC=5cm,BP、CP分别是ABC和ACB的角平分线,且PD∥AB,PE∥AC,则△PDE的周长是 5 cm.考点:等腰三角形的判定与性质;平行线的性质.分析:分别利用角平分线的性质和平行线的判定,求得△DBP 和△ECP为等腰三角形,由等腰三角形的性质得BD=PD,CE=PE,那么△PDE的周长就转化为BC边的长,即为5cm. 解答:解:∵BP、CP分别是ABC和ACB的角平分线,ABP=PBD,ACP=PCE,∵PD∥AB,PE∥AC,ABP=BPD,ACP=CPE,PBD=BPD,PCE=CPE,BD=PD,CE=PE,2019年八年级数学上册半期试卷就分享到这里,希望以上内容对您有所帮助!。
适应于成都市中考要求的八年级上册半期数学考试卷考试范围(1勾股章,2实数章,3方程组章,4位置坐标章,5一次函数章)A 卷100分一选择题(3分x10=30分)1、如图所示为一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②,…,依此类推,若正方形①的面积为64,则正方形⑤的面积为( )A2 B4 C8 D162、如图,在Rt ABC ∆中, 090ACB ∠=,AB=4.分别以AC,BC 为直径作半圆,面积分别记为12,S S ,则12S S +的值等于( )A 2πB 3πC 4πD 8π3、方程x +2y =5的非负整数解有 ( )A.3组B.2组C.1 组D.0组4、一质点P 从距原点1个单位的M 点处向原点方向跳动,第一次跳动到OM 的中点3M 处,第二次从3M 跳到3OM 的中点2M 处,第三次从点2M 跳到2OM 的中点1M 处,如此不断跳动下去,则第n 次跳动后,该质点到原点O 的距离为( )。
A.12nB.112n -C. 112n +⎛⎫ ⎪⎝⎭D. 12n 5、若定义新运算:(,)(+1f a b a =,-b), (,)(g m n m =,n-2) 则[(2,3)]f g -=( ) A(2,-3) B(2,-5) C (3,5) D(3,-5)6、今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间。
设他从山脚出发后所用时间为t (分钟),所走的路程为s (米),s 与t 之间的函数关系如图所示。
下列说法错误的是( )。
A: 小明中途休息用了20分钟 B: 小明休息前爬山的平均速度为每分钟70米C: 小明在上述过程中所走的路程为6600米D: 小明休息前爬山的平均速度大于休息后爬山的平均速度7、一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数。
设个位数字为x ,十位数字为y ,所列方程组正确的是( )。
A. 818x y xy yx +=⎧⎨+=⎩B. 8101810x y x y x y +=⎧⎨++=+⎩C. 81018x y x y xy +=⎧⎨++=⎩D. 810()x y x y xy +=⎧⎨+=⎩8、若方程组2371x y ax by +=⎧⎨-=⎩与方程组7453ax by x y +=⎧⎨-=⎩有相同的解,则a,b 的值为( )A 、a=2, b=1B 、a=2, b=3C 、a=2.5, b=1D 、a=4, b=-5,9、如图,在直角坐标系中,点A 、B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,当△ABC 的周长最小时,点C 的坐标是( )A(0,0) B(0,1) C(0,2) D(0,3)10、勾股定理是几何中的一个重要定理。
在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载。
如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理。
图2是由图1放入矩形内得到的,∠BAC=900,AB=3,AC=4,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为( )。
A90 B100 C110 D121二填空题(4分x4=16分) 11、已知1)(2)0x x =,则24)x 的值是____________12、三个同学对问题“若方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,求方程组111223a x 2b y 5c 3a x 2b y 5c +=⎧⎨+=⎩ 的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是____________13、已知一次函数y=kx+b ,k 从2,﹣3中随机取一个值,b 从1,﹣1,﹣2中随机取一个值,求该一次函数的图象经过二、三、四象限的概率____________。
14、在平面直角坐标系中,已知点A(1,0)和点B(0,),点C 在坐标平面内.若以A,B,C 为顶点构成的三角形是等腰三角形,且底角为300,则满足条件的点C 有_______个.三计算题解方程15、(每小题5分共10分)(1) 、计算:÷ (2) 、解方程①24(1)25x -=16解方程组(每小题5分共10分)① 275322344y x x y z x z =-⎧⎪++=⎨⎪-=⎩. ② 22(1)2(2)+x y x -=-⎧⎨-⎩(y-1)=5四解答题17、(8分)为了参加2015年中海国际铁人三项(游泳、自行车、长跑)系列赛业余组的比赛,李明针对自行车和长跑项目进行专项训练。
某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟。
求自行车路段和长跑路段的长度。
18、(8分)一名考生步行前往考场,5分钟走了总路程的16,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图所示(假定总路程为1,出租车匀速),则他到达考场所花的时间比一直步行提前了多少分钟?19、(8分)(2014秋•泾阳县期末)如图,将长方形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD 于点E.(1)试判断△BDE的形状,并说明理由;(2)若AB=4,AD=8,求△BDE的面积.20、(10分)某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需15 6元;购买3个A品牌和1个B品牌的计算器共需122元。
(1)求这两种品牌计算器的单价。
(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A 品牌计算器按原价的八折销售,B 品牌计算器5个以上超出部分按原价的七折销售,设购买x 个A 品牌的计算器需要1y 元,购买x 个B 品牌的计算器需要2y 元,分别求出1y 、2y 关于X 的函数关系式。
(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由。
B 组(50分)五填空题(每小题4分共20分)21、己知224250a b a b +--+=,2+=____________22、在△ABC 中,BC=a ,AC=b ,AB=c ,设c 为最长边,当a 2+b 2=c 2时,△ABC 是直角三角形;当a 2+b 2≠c 2时,利用代数式a 2+b 2和c 2的大小关系,探究△ABC 的形状(按角分类).(1)当△ABC 三边分别为6、8、9时,△ABC 为 三角形;当△ABC 三边分别为6、8、11时,△ABC 为 三角形.(2)猜想,当a 2+b 2 c 2时,△ABC 为锐角三角形;当a 2+b 2 c 2时,△ABC 为钝角三角形.(3)判断当a=2,b=4时,△ABC 的形状,并求出对应的c 的取值范围.23、小丽想用一块面积为4002cm 的正方形纸片,沿着边的方向裁出一块面积为3002cm 的长方形纸片,使它的长宽之比为3:2.不知道能否裁出来 (填能、不能),理由是长要______________,24、已知实数x,y,z 满足4(12)9x y z x y z +-+-=+++,则xyz 的值=______,25、,某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要。
两种印刷方式的费用y (元)与印刷份数x (份)之间的关系如图所示。
(1)填空:甲种收费的函数关系式是_____ ;乙种收费的函数关系式是_____ 。
(2)该校某年级每次需印制100---450(含100和450)份学案,① 当印制___份至___份时选_____较合算; ② 当印制___份至___份时选_____都一样; ③当印制___份至___份时选_____较合算;26、(9分)如图,点N 是△ABC 的边BC 延长线上的一点, ∠CAN=2∠BAC ,过点A 作AC 的垂线交CN 于点P. (1)若∠A PC=300, 求证:AB=AP; (2)若AP=8,BP=16,求AC 的长;(3)若点P 在BC 的延长线上运动, ∠APB 的平分线交AB 于点M.你认为∠AMP 的大小是否发生变化?若变化,请说明理由;若不变化,求出∠AMP 的大小.27、(10分)已知一次函数y=2x-4的图象与x 轴、y 轴分别相交于点A 、B ,点P 在该函数的图象上,P 到X 轴、Y 轴的距离分别为1d 、2d 。
(1)当P 为线段AB 的中点时,求1d +2d 的值。
(2)直接写出1d +2d 的范围,并求当1d +2d =3时点p 的坐标。
28、(11分)如图,已知一次函数y kx b=+的图象经过A(-2,-1),B(1,3)两点,并且交x轴于点C,交y轴于点D. (1)求该一次函数的解析式;(2)求△AOB的面积S;(3)求证:∠AOB=1350.适应于成都市中考要求的八年级上册半期数学考试卷答案考试范围(1勾股章,2实数章,3方程组章,4位置坐标章,5一次函数章)A卷100分一选择题(3分x10=30分)1、B2、A3、A4、D5、C6、C7、B8、B9、D 10、C二填空题(4分x4=16分)11、3612、510xy=⎧⎨=⎩13、1314、6三计算题解方程。