第5讲 分式及其运算
- 格式:ppt
- 大小:1.96 MB
- 文档页数:32
数学八下分式
八年级下册数学课程中有关分式的主题主要包括分式的运算、分式的化简、分式方程等内容。
以下是八年级下册数学中关于分式的一些常见知识点:
1. 分式的乘法和除法:学习如何进行分式的乘法和除法运算,包括分子乘法、分母乘法、分子除法和分母除法等。
2. 分式的加法和减法:掌握分式的加法和减法运算规则,包括通分、合并同类项等操作。
3. 分式的化简:学习如何化简分式,包括约分、提取公因式、分子分母同乘同除等方法,使分式的表达更简洁。
4. 分式方程:解决涉及分式的方程,包括一元一次分式方程和一元二次分式方程等,掌握解题的方法和技巧。
5. 分式的应用:了解分式在实际问题中的应用,如物品分配、比例关系、时间速度等问题,通过分式运算解决实际生活中的计算问题。
八年级下册数学中的分式知识是数学学习中的重要内容,需要通过练习和实践来加深理解和掌握。
建议学生多做练习题,加强对分式运算规则的理解和掌握,提高解决问题的能力和技巧。
分式及其运算
一、分式的概念
分式是用一个数除以另一个非零数所得的商。
分式由分子和分母两部分组成,用斜线"/"或水平线"—"隔开,如3/5或3—5。
其中,分子是被除数,分母是除数。
二、分式的基本运算
1. 分式的加减法
- 同分母分式的加减法:只需将分子相加或相减,分母保持不变。
- 异分母分式的加减法:先通分,使分母相同,再将分子相加或相减。
2. 分式的乘法
- 分式相乘时,分子相乘,分母相乘。
3. 分式的除法
- 分式除法可以通过乘以另一个分式的倒数来实现。
4. 分式的化简
- 分子和分母都除以它们的最大公因数,可以化简分式。
三、分式的应用
分式在日常生活和学习中有广泛的应用,例如:
1. 计算比例和百分比
2. 表示概率
3. 解决实际问题(如分配任务、计算利息等)
通过掌握分式的运算规则和应用技巧,我们可以更好地理解和处理涉及分数的各种情况。
学生做题前请先回答以下问题问题1:当_____________时,分式无意义?问题2:分式无意义与分式值为0有什么不同?问题3:分式的基本性质是什么?问题4:分式的乘除运算法则和加减运算法则分别是什么?问题5:在进行分式的运算前,要先把分式的分子和分母__________.分式的乘除要_______,加减要_________,最后的结果要化成_________.分式的基本性质及其运算(北师版)一、单选题(共18道,每道5分)1.要使分式有意义,则x的取值范围是( )A.x≠-1B.x≠3C.x≠-1且x≠3D.x≠-1或x≠3答案:C解题思路:试题难度:三颗星知识点:分式有意义的条件2.若分式的值为0,则x的值是( )A.1B.0C.-1D.±1答案:A解题思路:试题难度:三颗星知识点:分式的值为零3.当a=-1时,分式( )A.没有意义B.等于零C.等于1D.等于-1答案:A解题思路:试题难度:三颗星知识点:分式的值为零4.不改变分式的值,如果把其分子和分母中的各项系数都化为整数,那么所得的正确结果为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:分式的基本性质5.若分式(a,b均为正数)中每个字母的值都扩大为原来的3倍,则分式的值( )A.扩大为原来3倍B.缩小为原来的C.不变D.缩小为原来的答案:B解题思路:试题难度:三颗星知识点:分式的基本性质6.将分式约分,其结果为( )A. B.C. D.解题思路:试题难度:三颗星知识点:分式的基本性质7.若使分式的值为0,则x=( )A.9B.±3C.-3D.3答案:D解题思路:试题难度:三颗星知识点:分式的值为零8.下列选项错误的是( )A. B.C. D.答案:D试题难度:三颗星知识点:分式基本性质9.化简的结果为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:分式的乘除运算10.化简的结果为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:分式的乘除运算11.化简的结果为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:分式的乘除运算12.的最简公分母是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:最简公分母13.化简的结果为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:分式的加减运算14.( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:分式的加减运算15.( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:分式的混合运算16.( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:分式的混合运算17.已知,分式的分子分母都加上1,所得分式的值相比( )A.增大B.减小C.不变D.无法确定答案:A解题思路:试题难度:三颗星知识点:分式的加减运算18.先化简,然后从的范围内选取一个合适的整数作为的值代入,所求结果为( )A. B.C. D.以上都对答案:B解题思路:试题难度:三颗星知识点:分式化简求值学生做题后建议通过以下问题总结反思问题1:分式的化简应遵循的运算顺序是什么?问题2:(第18题)先化简,然后从的范围内选取一个合适的整数作为的值代入,所求结果为( )这道题中如何从的范围内选取一个合适的整数作为的值代入?问题3:当_____________时,分式无意义?问题4:分式无意义与分式值为0有什么不同?问题5:分式的基本性质是什么?问题6:分式的乘除运算法则和加减运算法则分别是什么?问题7:在进行分式的运算前,要先把分式的分子和分母__________.分式的乘除要_______,加减要_________,最后的结果要化成_________.。
初中数学分式教案一、教学目标:1. 让学生理解分式的概念,掌握分式的基本性质和运算法则。
2. 培养学生运用分式解决实际问题的能力。
3. 提高学生的逻辑思维能力和团队合作能力。
二、教学内容:1. 分式的概念:分式是形如 a/b 的表达式,其中 a 和 b 是整式,b 不为零。
2. 分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为零的整式,分式的值不变。
3. 分式的运算法则:(1)分式的加减法:分母相同,分子相加(减);分母不同,通分后相加(减)。
(2)分式的乘除法:分子乘(除)以分子,分母乘(除)以分母。
4. 分式在实际问题中的应用。
三、教学重点与难点:1. 重点:分式的概念,基本性质和运算法则。
2. 难点:分式的运算法则的应用,分式在实际问题中的解决。
四、教学过程:1. 导入:通过展示实际问题,引导学生思考如何用数学方法解决这些问题。
2. 新课讲解:(1)介绍分式的概念,通过示例让学生理解分式的含义。
(2)讲解分式的基本性质,让学生通过实际操作验证这些性质。
(3)讲解分式的运算法则,引导学生通过例子理解和掌握这些法则。
3. 课堂练习:布置一些简单的分式题目,让学生独立完成,巩固所学知识。
4. 应用拓展:展示一些实际问题,引导学生运用分式解决这些问题。
5. 总结:对本节课的内容进行总结,强调重点和难点。
五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度,理解程度和表现。
2. 作业完成情况:检查学生作业的完成质量,对学生的学习效果进行评估。
3. 实际问题解决能力:通过课后实践,观察学生运用分式解决实际问题的能力。
六、教学反思:在教学过程中,要注意引导学生理解和掌握分式的基本性质和运算法则,通过实际例子让学生学会如何运用分式解决实际问题。
同时,要关注学生的学习进度,及时解答学生的疑问,提高学生的学习效果。
分式概念形如?(A、B是整式,B中含有字母)的式子叫做分式。
其中A叫做分式的分子,B叫做分式的分母。
且当分式的分子的次数低于分母的次数时,我们把这个分式叫做真分式;当分式的分子的次数高于分母的次数时,我们把这个分式叫做假分式。
注意:判断一个式子是否是分式,不要看式子是否是的形式,关键要满足:分式的分母中必须含有字母,分子分母均为整式。
无需考虑该分式是否有意义,即分母是否为零。
由于字母可以表示不同的数,所以分式比分数更具有一般性。
方法:数看结果,式看形。
分式条件:1.分式有意义条件:分母不为0。
2.分式值为0条件:分子为0且分母不为0。
3.分式值为正(负)数条件:分子分母同号得正,异号得负。
4.分式值为1的条件:分子=分母≠0。
5.分式值为-1的条件:分子分母互为相反数,且都不为0。
代数式分类整式和分式统称为有理式。
带有根号且根号下含有字母的式子叫做无理式。
无理式和有理式统称代数式。
分式的基本性质分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。
用式子表示为:?(A,B,C为整式,且B、C≠0)运算法则约分根据分式基本性质,可以把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。
约分的关键是确定分式中分子与分母的公因式。
约分步骤:1.如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去。
2.分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。
公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式。
最简分式:一个分式不能约分时,这个分式称为最简分式。
约分时,一般将一个分式化为最简分式。
通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。
分式的乘法法则:(1)两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
(2)两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。