2015浙江中考试题研究数学精品复习课件第4讲 分式及其运算
- 格式:ppt
- 大小:630.00 KB
- 文档页数:32
适用标准文档初中数学复习第四讲——整式与分式一、知识构造代数式分式整式整数分式的分式分式因式整式的运整式的指数运算的基的意分解算〔加、相关概幂的〔加、天性义减、乘、念运算减、乘、质除、乘方〕除〕说明:在本局部,代数式分为整式和分式议论。
在实数范围内,代数式分为有理式和无理式,有理式分为整式和分式,整式分为单项式和多项式。
二、知识点梳理1.代数式:用运算符号和括号把数或表示数的字母连结而成的式子叫做代数式。
用数值取代代数式里的字母,依据代数式中的运算关系计算得出的结果叫做代数式的值。
2.单项式:由数与字母的积或字母与字母的积所构成的代数式叫做单项式〔单独一个数也是单项式〕;单项式中的数字因数叫做这个单项式的系数〔包含符号〕;一个单项式中,全部字母的指数的和叫做这个单项式的次数。
3.多项式:由几个单项式的和构成的代数式叫做多项式;在多项式中的每个单项式叫做多项式的项,不含字母的项叫做常数项;次数最高项的次数就是这个多项式的次数。
4.整式:单项式、多项式统称为整式。
5.分式:两个整式 A、B 相除,即 A÷ B 时,能够表示为A. 假如 B 中含有字母,B那么A叫做分式, A 叫做分式的分子, B 叫做分式的分母。
B6.同类项:所含的字母同样,且同样的字母的指数也同样的单项式叫做同类项。
把多项式中的同类项归并成一项,叫做归并同类项;一个多项式归并后含有几项,这个多项式就叫做几项式。
归并同类项的法那么:把同类项的系数相加的结果作为归并后的系数,字母和字母的指数不变〔归并同类项,法那么不可以忘,只求系数代数和,字母指数不变样〕。
7.整式的加减:整式的加减就是单项式、多项式的加减,可利用去括号法那么和归并同类项来达成整式的加减运算。
去括号法那么:括号前面是“+〞号,去掉“+〞号和括号,括号里的各项不变号;括号前面是“—〞号,去掉“—〞号和括号,括号里的各项都变号。
〔括号前面是“+〞号,去掉括号不变号;括号前面是“—〞号,去掉括号都变号。
第4讲分式及其运算1.分式的概念考试内容考试要求分式概念形如AB(A、B是整式,且B中含有,且B≠0)的式子叫做分式.a 有意义的条件分母不为0.值为零的条件分子为0,且分母不为02.分式的基本性质考试内容考试要求分式的基本性质AB=A×MB×M,AB=A÷MB÷M(M是不为零的整式).c约分把分式的分子和分母中的约去,叫做分式的约分.通分根据分式的,把异分母的分式化为分式,这一过程叫做分式的通分.3.分式的运算考试内容考试要求分式的乘除法ab·cd=acbd,ab÷cd=ab·dc=adbc.c分式的乘方(ab)n=a nb n(n为整数).分式的加减法a c ±bc =a ±b c ,a b ±cd =ad ±bc bd. 分式的混合运算在分式的混合运算中,应先算乘方,再将除法化为乘法,进行约分化简,最后进行加减运算.遇到有括号,先算括号里面的.考试内容考试要求基本方法1.乘方时一定要先确定乘方结果的符号,负数的偶次方为正,负数的奇次方为负.c2.在分式的加减运算中,如需要通分时,一定要先把分母可以分解因式的多项式分解因式后再找最简公分母,分式的乘除运算中,需要约分时,也要先把可以分解因式的多项式分解因式再约分.3.分式求值:可根据所给条件和求值式的特征进行适当的变形、转化和沟通.主要有以下技巧:①整体代入法;②参数法;③平方法;④代入法;⑤倒数法.1.(2015·丽水)分式-11-x可变形为( )A .-1x -1 B .11+x C .-11+x D .1x -12.(2016·台州)化简x 2-y 2(y -x )2的结果是( )A .-1B .1C .x +y y -x D .x +yx -y3.(2017·湖州)要使分式1x -2有意义,x 的取值应满足______________________________.4.(2017·舟山)若分式2x -4x +1的值为0,则x 的值为____________________.5.(2015·湖州)计算:a 2a -b -b2a -b.【问题】(1)从三个代数式:①a 2-2ab +b 2,②3a -3b ,③a 2-b 2中任意选择两个代数式构造成分式,然后进行化简,并求当a =6,b =3时该分式的值.(2)通过对(1)的解答,你能想到与分式相关的哪些信息.【归纳】通过开放式问题,归纳、疏理分式概念,以及分式相关的性质,探究分式化简方法.类型一 分式的概念例1 分式2x +6x 2-9.(1)若分式有意义,则x 的取值范围是________; (2)若分式的值为0,则x 的值为________; (3)把分式化为最简分式________.【解后感悟】分式有意义,首先求出使分母等于0的字母的值,然后让未知数不等于这些值,便可使分式有意义;分式的值为0的条件是:首先求出使分子为0的字母的值,再检验这个字母的值是否使分母的值为0,当它使分母的值不为0时,这就是所要求的字母的值;化为最简分式是分母、分子因式分解,再约分.1.已知分式x 2-4x -2,若分式无意义,则x 的取值范围是____________________;若分式的值为零,则x =____________________.2.(2016·滨州)下列分式中,最简分式是( ) A .x 2-1x 2+1 B .x +1x 2-1 C .x 2-2xy +y 2x 2-xy D .x 2-362x +12类型二 分式的约分和通分例2 计算:(1)(2016·淄博)1-4a22a +1=________;(2)2x x -1+x +11-x =________; (3)2x +1-x -2x 2-1=________; (4)1-a -1a -1=________.【解后感悟】分式化简关键是约分,约分的关键是找公因式,若分子和分母有多项式,先将其因式分解,然后将相同的因式约去即可.分式的加减运算关键是通分,通分的关键是找最简公分母.3.(1)(2016·丽水)1a +1b的运算结果正确的是( )A .1a +b B .2a +b C .a +b abD .a +b (2)(2015·绍兴)化简x 2x -1+11-x的结果是( )A .x +1B .1x +1 C .x -1 D .x x -1(3)若a 、b 都是正实数,且1a -1b =2a +b ,则aba 2-b 2=____________________.(4)(2016·荆州)当a =2+1,b =2-1时,代数式a 2-2ab +b2a 2-b2的值是 .(5)(2015·台州)先化简,再求值:1a +1-a(a +1)2,其中a =2-1.类型三 分式的运算与求值例3 (1)(2016·内江)化简:⎝ ⎛⎭⎪⎫a 2a -3+93-a ÷a +3a =________.(2)(2015·黄冈)化简:b a 2-b 2÷⎝ ⎛⎭⎪⎫1-a a +b =________. (3)(2015·衢州)先化简,再求值:(x 2-9)÷x -3x ,其中x =-1.(4)先化简,再求值:⎝ ⎛⎭⎪⎫x 2x -1-x +1÷4x 2-4x +11-x ,其中x 满足x 2+x -2=0.【解后感悟】(1)解决这类题关键是把握好通分与约分.分式加减的本质是通分,乘除的本质是约分.(2)熟知分式混合运算的法则是解答此题的关键.化简求值题要将原式化为最简后再代值,从求出x 的两个数中选一个数代入求值,但要注意分式成立的条件.4.(2015·成都)化简:(a a +2+1a 2-4)÷a -1a +2.5.先化简,再求值:x 2-4x +42x ÷x 2-2xx 2+1,在0,1,2,三个数中选一个合适的,代入求值.类型四 与分式有关的变形和应用例4 观察下列等式:第1个等式:a 1=11×3=12×(1-13);第2个等式:a 2=13×5=12×(13-15);第3个等式:a 3=15×7=12×(15-17);第4个等式:a 4=17×9=12×(17-19);…请解答下列问题:(1)按以上规律列出第5个等式:a 5=______=______;(2)用含有n 的代数式表示第n 个等式:a n =________=________(n 为正整数); (3)求a 1+a 2+a 3+a 4+…+a 100的值.【解后感悟】本题是数字变化规律,要求首先分析题意,通过观察、分类归纳、抽象出数列的规律,并进行推导得出答案.6.(1)如图,设k =甲图中阴影部分面积乙图中阴影部分面积(a >b >0),则有( )A .k >2B .1<k <2C .12<k <1 D .0<k <12(2)一种商品原来的销售利润率是47%.现在由于进价提高了5%,而售价没变,所以该商品的销售利润率变成了____________________%.【注:销售利润率=(售价-进价)÷进价】.【探索规律题】(2015·巴中)a 是不为1的数,我们把11-a 称为a 的差倒数,如:2的差倒数为11-2=-1;-1的差倒数是11-(-1)=12;已知a 1=-12,a 2是a 1的差倒数,a 3是a 2的差倒数.a 4是a 3的差倒数,…依此类推,则a 2015=________.【方法与对策】此题是找规律的题目,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,找出规律是解题的关键,该题型是中考的热点.【分式的分母不能为零,除数不能为零】 分式x 2-4x 2-x -2的值是0,则x 的值为________.参考答案第4讲 分式及其运算【考点概要】1.字母 2.公因式 基本性质 同分母 【考题体验】1.D 2.D 3.x≠2 4.2 5.a +b. 【知识引擎】【解析】(1)答案不唯一.选取①、②得a 2-2ab +b 23a -3b =(a -b )23(a -b )=a -b3,当a =6,b=3时,原式=6-33=1(有6种情况). (2)分式概念、运算法则,注意点等.【例题精析】例1 (1)x≠±3;(2)无解;(3)2x -3. 例2 (1)1-2a ;(2)1;(3)x x 2-1;(4)a 2-2a +21-a例3 (1)a ;(2)1a -b ;(3)原式=(x +3)(x -3)·x x -3=x(x +3)=x 2+3x ,当x =-1时,原式=(-1)2+3×(-1)=-2;(4)原式=x 2-(x -1)(x -1)x -1·1-x(2x -1)2=2x -1x -1·1-x (2x -1)2=11-2x.由x 2+x -2=0,解得x 1=-2,x 2=1,∵x ≠1,∴当x =-2时,原式=11-2×(-2)=15. 例4 (1)19×11,12×(19-111);(2)1()2n -1×()2n +1,12×(12n -1-12n +1).(3)a 1+a 2+a 3+a 4+…+a 100=12×(1-13)+12×(13-15)+12×(15-17)+…+12×(1199-1201)=12×⎝ ⎛⎭⎪⎫1-13+13-15+15-17+…+1199-1201=12×⎝ ⎛⎭⎪⎫1-1201=12×200201=100201. 【变式拓展】 1.x =2 -2 2. A3. (1)C (2)A (3)-12 (4)22 (5)1(a +1)2,12.4. a -1a -2. 5.x 2.当x =1时,原式=12. 6.(1)B (2)40 【热点题型】【分析与解】a 1=-12,a 2是a 1的差倒数,即a 2=11-(-12)=23,a 3是a 2的差倒数,即a 3=11-23=3,a 4是a 3的差倒数,即a 4=11-3=-12,…依此类推,∵2015÷3=671……2,∴a 2015=a 2=23.故答案为:23.【错误警示】当x 2-4x 2-x -2=0时,x 2-4=0且x 2-x -2≠0,∴x =-2.故答案为-2.。