正方形的判定和性质
- 格式:docx
- 大小:109.49 KB
- 文档页数:8
专题5.3 正方形的性质与判定【十大题型】【浙教版】【题型1 正方形的性质(求角的度数)】 (1)【题型2 正方形的性质(求线段的长度)】 (3)【题型3 正方形的性质(求面积、周长)】 (4)【题型4 正方形的性质(探究数量关系)】 (6)【题型5 判定正方形成立的条件】 (10)【题型6 正方形判定的证明】 (12)【题型7 正方形的判定与性质综合】 (16)【题型8 探究正方形中的最值问题】 (19)【题型9 正方形在坐标系中的运用】 (20)【题型10 正方形中的多结论问题】 (23)【题型1 正方形的性质(求角的度数)】【例1】(2022春•建阳区期中)如图,在正方形ABCD中有一个点E,使三角形BCE是正三角形,求:(1)∠BAE的大小(2)∠AED的大小.【变式1-1】如图,已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点,以AE为边在直线MN上方作正方形AEFG.(1)连接GD,求证:△ADG≌△ABE;(2)连接FC,观察并猜测∠FCN的度数,并说明理由.【变式1-2】(2022•武威模拟)如图,在正方形ABCD中,点E是对角线AC上的一点,点F在BC的延长线上,且BE=EF,EF交CD于点G.(1)求证:DE=EF;(2)求∠DEF的度数.【变式1-3】(2022春•新市区校级期末)如图,在给定的正方形ABCD中,点E从点B出发,沿边BC方向向终点C运动,DF⊥AE交AB于点F,以FD,FE为邻边构造平行四边形DFEP,连接CP,则∠DFE+∠EPC的度数的变化情况是()A.一直减小B.一直减小后增大C.一直不变D.先增大后减小【题型2 正方形的性质(求线段的长度)】【例2】(2022春•牡丹江期末)如图,正方形ABCD的边长为10,点E,F在正方形内部,AE=CF=8,BE=DF=6,则线段EF的长为()A.2√2B.4C.4−√2D.4+√2【变式2-1】(2022春•巴南区期末)如图,四边形ABCD是边长为4的正方形,点E在边CD上,且DE =1,作EF∥BC分别交AC、AB于点G、F,P、H分别是AG,BE的中点,则PH的长是()A.2B.2.5C.3D.4【变式2-2】(2022•越秀区一模)将正方形ABCD与正方形BEFG按如图方式放置,点F、B、C在同一直线上,已知BG=√2,BC=3,连接DF,M是DF的中点,连接AM,则AM的长是()A.√102B.√3C.√132D.32【变式2-3】(2022春•吴中区校级期末)如图,在正方形ABCD中,AB=4√5.E、F分别为边AB、BC的中点,连接AF、DE,点N、M分别为AF、DE的中点,连接MN,则MN的长度为.【题型3 正方形的性质(求面积、周长)】【例3】(2022春•鄞州区期末)有两个正方形A,B.现将B放在A的内部得图甲,将A,B构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,若三个正方形A和两个正方形B得图丙,则阴影部分的面积为()A.28B.29C.30D.31【变式3-1】(2022春•工业园区校级期中)如图,四边形ABCD为正方形,O为AC、BD的交点,△DCE 为Rt△,∠CED=90°,OE=2√2,若CE•DE=3,则正方形ABCD的面积为()A.5B.6C.8D.10【变式3-2】(2022•台州)如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G.若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为.【变式3-3】(2022•江北区一模)如图,以Rt△ABC的各边为边分别向外作正方形,∠BAC=90°,连结DG,点H为DG的中点,连结HB,HN,若要求出△HBN的面积,只需知道()A.△ABC的面积B.正方形ADEB的面积C.正方形ACFG的面积D.正方形BNMC的面积【题型4 正方形的性质(探究数量关系)】【例4】(2022秋•中原区校级月考)如图,线段AB=4,射线BG⊥AB,P为射线BG上一点,以AP为边作正方形APCD,且点C、D与点B在AP两侧,在线段DP上取一点E,使∠EAP=∠BAP,直线CE 与线段AB相交于点F(点F与点A、B不重合).(1)求证:△AEP≌△CEP;(2)判断CF与AB的位置关系,并说明理由;(3)请直接写出△AEF的周长.【变式4-1】(2022春•雁塔区校级期末)在正方形ABCD中,∠MAN=45°,该角可以绕点A转动,∠MAN的两边分别交射线CB,DC于点M,N.(1)当点M,N分别在正方形的边CB和DC上时(如图1),线段BM,DN,MN之间有怎样的数量关系?你的猜想是:,并加以证明.(2)当点M,N分别在正方形的边CB和DC的延长线上时(如图2),线段BM,DN,MN之间的数量关系会发生变化吗?证明你的结论.【变式4-2】(2022春•莆田期末)如图,已知正方形ABCD中,E为CB延长线上一点,且BE=AB,M、N分别为AE、BC的中点,连DE交AB于O,MN交,ED于H点.(1)求证:AO=BO;(2)求证:∠HEB=∠HNB;(3)过A作AP⊥ED于P点,连BP,则PE−PA的值.PB【变式4-3】(2022春•鼓楼区校级期中)如图,正方形ABCD的对角线相交于点O.点E是线段DO上一点,连接CE.点F是∠OCE的平分线上一点,且BF⊥CF与CO相交于点G.点H是线段CE上一点,且CO=CH.(1)若OF=5,求FH的长;(2)求证:BF=OH+CF.【题型5 判定正方形成立的条件】【例5】(2022春•海淀区校级期中)已知四边形ABCD为凸四边形,点M、N、P、Q分别为AB、BC、CD、DA上的点(不与端点重合),下列说法正确的是(填序号).①对于任意凸四边形ABCD,一定存在无数个四边形MNPQ是平行四边形;②如果四边形ABCD为任意平行四边形,那么一定存在无数个四边形MNPQ是矩形;③如果四边形ABCD为任意矩形,那么一定存在一个四边形为正方形;④如果四边形ABCD为任意菱形,那么一定存在一个四边形为正方形.【变式5-1】(2022春•岳麓区校级月考)如图,E、F、G、H分别是AB、BC、CD、DA的中点.要使四边形EFGH是正方形,BD、AC应满足的条件是.【变式5-2】(2022春•汉寿县期中)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F在AC 上,且OE=OF,连接DE并延长至点M,使DE=ME,连接MF,DF,BE.(1)当DF=MF时,证明:四边形EMBF是矩形;(2)当△DMF满足什么条件时,四边形EMBF是正方形?请说明理由.【变式5-3】(2022春•沛县期中)已知在△ABC中,D为边BC延长线上一点,点O是边AC上的一个动点,过O作直线MN∥BC,设MN与∠BCA的平分线相交于点E,与∠ACD的平分线相交于点F.(1)求证:OE=OF;(2)试确定点O在边AC上的位置,使四边形AECF是矩形,并加以证明.(3)在(2)的条件下,且△ABC满足条件时,矩形AECF是正方形?.【题型6 正方形判定的证明】【例6】(2022春•虹口区期末)如图,在四边形ABCD中,AB∥CD,AD=CD,E是对角线BD上的一点,且AE=CE.(1)求证:四边形ABCD是菱形;(2)如果AB=BE,且∠ABE=2∠DCE,求证:四边形ABCD是正方形.【变式6-1】(2022春•宜城市期末)如图,四边形ABCD是平行四边形,连接对角线AC,过点D作DE ∥AC与BC的延长线交于点E,连接AE交DC于F.(1)求证:BC=CE;(2)连接BF,若∠DAF=∠FBE,且AD=2CF,求证:四边形ABCD是正方形.【变式6-2】(2022秋•市南区期末)已知:在平行四边形ABCD中,分别延长BA,DC到点E,H,使得BE=2AB,DH=2CD.连接EH,分别交AD,BC于点F,G.(1)求证:AF=CG;(2)连接BD交EH于点O,若EH⊥BD,则当线段AB与线段AD满足什么数量关系时,四边形BEDH 是正方形?【变式6-3】(2022•上海)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.【题型7 正方形的判定与性质综合】【例7】(2022•威海)如图1,在正方形ABCD中,E,F,G,H分别为边AB,BC,CD,DA上的点,HA=EB=FC=GD,连接EG,FH,交点为O.(1)如图2,连接EF,FG,GH,HE,试判断四边形EFGH的形状,并证明你的结论;(2)将正方形ABCD沿线段EG,HF剪开,再把得到的四个四边形按图3的方式拼接成一个四边形.若正方形ABCD的边长为3cm,HA=EB=FC=GD=1cm,则图3中阴影部分的面积为cm2.【变式7-1】(2022•萧山区模拟)如图,P为正方形ABCD内的一点,画▱P AHD,▱PBEA,▱PCFB,▱PDGC,请证明:以E,F,G,H为顶点的四边形是正方形.【变式7-2】(2022•萧山区模拟)已知:如图,边长为4的菱形ABCD的对角线AC与BD相交于点O,若∠CAD=∠DBC.(1)求证:四边形ABCD是正方形.(2)E是OB上一点,BE=1,且DH⊥CE,垂足为H,DH与OC相交于点F,求线段OF的长.【变式7-3】(2022春•潜山市期末)如图,已知四边形ABCD为正方形,AB=3√2,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.【题型8 探究正方形中的最值问题】【例8】(2022春•沙坪坝区校级月考)如图,在正方形ABCD中,M,N是边AB上的动点,且AM=BN,连接MD交对角线AC于点E,连接BE交CN于点F,若AB=3,则AF长度的最小值为.【变式8-1】(2022•泰山区一模)如图,M、N是正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为2,则线段CF的最小值是()A.2B.1C.√5−1D.√5−2【变式8-2】(2022•青山区模拟)已知矩形ABCD,AB=2,AD=4AB=8,E为线段AD上一动点,以CE 为边向上构造正方形CEFG,连接BF,则BF的最小值是.【变式8-3】(2022•郧阳区模拟)如图,P A=2√2,PB=4√2,以AB为边作正方形ABCD,使得P、D两点落在直线AB的两侧,当∠APB变化时,则PD的最大值为.【题型9 正方形在坐标系中的运用】【例9】(2022春•市中区期末)在平面直角坐标系中,对于两个点P、Q和图形W,如果在图形W上存在点M、N(M、N可以重合)使得PM=QN,那么称点P与点Q是图形W的一对平衡点.已知正方形的边长为2,一边平行于x轴,对角线的交点为点O,点D的坐标为(2,0).若点E(x,2)与点D是正方形的一对平衡点,则x的取值范围为()A.﹣3≤x≤3B.﹣4≤x≤4C.﹣2≤x≤2D.﹣5≤x≤5【变式9-1】(2022秋•永新县期末)如图,在平面直角坐标系中,四边形ABCD的顶点坐标分别是A(﹣2,0)、B(0,﹣2)、C(2,0)、D(0,2),求证:四边形ABCD是正方形.【变式9-2】(2022春•顺城区期末)如图,在平面直角坐标系xOy中,直线OC:yOC=3x与直线AC:yAC=﹣x+8相交于点C(2,6).(1)点M从点O出发以每秒1个单位长度的速度沿x轴向右运动,点N从点A出发以每秒3个单位长度的速度沿x轴向左运动,两点同时出发.分别过点M,N作x轴的垂线,分别交直线OC,AC于点P,Q,请你在图1中画出图形,猜想四边形PMNQ的形状(点M,N重合时除外),并证明你的猜想;(2)在(1)的条件下,当点M运动秒时,四边形PMNQ是正方形(直接写出结论).【变式9-3】(2022•河南模拟)如图,正方形OABC 中,点A (4,0),点D 为AB 上一点,且BD =1,连接OD ,过点C 作CE ⊥OD 交OA 于点E ,过点D 作MN ∥CE ,交x 轴于点M ,交BC 于点N ,则点M 的坐标为( )A .(5,0)B .(6,0)C .(254,0)D .(274,0) 【题型10 正方形中的多结论问题】【例10】(2022春•慈溪市期末)如图,正方形ABCD 中,点P 为BD 延长线上任一点,连结P A ,过点P 作PE ⊥P A ,交BC 的延长线于点E ,过点E 作EF ⊥BP 于点F .下列结论:(1)P A =PE ; (2)BD =2PF ;(3)CE =√2PD ; (4)若BP =BE ,则PF =(√2+1)DF .其中正确的个数为( )A .1B .2C .3D .4【变式10-1】(2022春•渝中区校级期中)如图,正方形ABCD 的边长为a ,点E 在边AB 上运动(不与点A ,B 重合),∠DAM =45°,点F 在射线AM 上,且AF =√2BE ,CF 与AD 相交于点G .连接EC 、EF 、EG .下列结论:①∠ECF =45°;②△AEG 的周长为(1+√22)a ;③BE 2+DG 2=EG 2;④当G 是线段AD的中点时,BE =13a .正确的个数是( )A.1个B.2个C.3个D.4个【变式10-2】(2022秋•三水区月考)如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G,下列结论:①HF=2HG;②∠GDH=∠GHD;③图中有8个等腰三角形;④S△CDG=S△DHF.其中正确的结论个数是()A.1个B.2个C.3个D.4个【变式10-3】(2022春•玉林期末)如图,正方形ABCD中,点E在边CD上,过点A作AF⊥AE交CB的延长线于点F,连接EF,AG平分∠F AE,AG分别交BC、EF于点G、H,连接EG、DH.则下列结论中:①BF=DE;②∠EGC=2∠BAG;③AD+DE=√3DH;④DE+BG=EH;⑤若DE=CE,则CE:CG:EG=3:4:5,其中正确的结论有.。
小学数学知识归纳正方形的性质与判定正方形是小学数学中常见的几何图形之一,它有其独特的性质与判定方法。
本文将对正方形的性质进行归纳,并介绍判定一个图形是否为正方形的方法。
一、正方形的性质正方形是具有以下性质的四边形:1. 边长相等:正方形的四条边长都相等。
2. 角度相等:正方形的四个内角都是直角(即90度),所以角度也相等。
3. 对角线相等:正方形的两条对角线互相垂直且长度相等。
4. 对称性:正方形具有对称性,即以中心为对称点旋转180度,正方形仍然保持不变。
二、判定一个图形是否为正方形的方法在数学中,我们可以通过以下方法来判定一个图形是否为正方形:1. 角度判定法:如果一个四边形的四个内角都等于90度,则这个四边形是正方形。
这是因为正方形的角度都相等,并且每个角度都是90度。
2. 边长判定法:如果一个四边形的四条边长都相等,则这个四边形是正方形。
这是因为正方形的边长都相等,所以四边形的四条边长也应该相等。
3. 对角线判定法:如果一个四边形的两条对角线互相垂直且长度相等,则这个四边形是正方形。
这是因为正方形的对角线具有这样的性质。
除了以上三种方法外,我们还可以通过其他相关性质来判定一个图形是否为正方形,比如对称性等。
三、归纳小结正方形是一种具有特殊性质的四边形,其性质包括边长相等、角度相等、对角线相等和对称性等。
判定一个图形是否为正方形可以通过角度判定法、边长判定法、对角线判定法等方法进行验证。
通过学习和掌握正方形的性质与判定方法,小学生可以更好地理解和应用正方形相关的数学知识。
正方形在几何学中有着重要的应用,如建筑设计、图案制作等。
因此,对正方形的深入了解对于小学生的数学学习和发展非常重要。
希望本文对读者对小学数学中正方形的性质与判定方法有所帮助,能够为小学生的数学学习提供一定的指导。
同时也希望读者能够继续学习和探索更多有关几何图形的知识,提升数学水平。
正方形的性质与判定1.定义:四条边都相等,四个角都是直角的四边形叫做正方形.2.性质:(1)对边平行;(2)四条边都相等;(3)四个角都是直角;(4)对角线互相垂直平分且相等,对角线平分对角;(5) 两条对角线把正方形分成四个全等的等腰直角三角形;(6)中心对称图形,轴对称图形.3.面积:=S 正方形边长×边长=12×对角线×对角线 4.判定:(1)有一个角是直角的菱形是正方形;(2)对角线相等的菱形是正方形;(3)一组邻边相等的矩形是正方形(4)对角线互相垂直的矩形是正方形; (5)对角线互相垂直平分且相等的四边形是正方形;(6)四条边都相等,四个角都是直角的四边形是正方形随堂练习1.菱形、矩形、正方形都具有的性质是( )A .对角线相等B .对角线互相垂直C .对角线互相平分D .对角线平分一组对角2. 已知四边形ABCD 是平行四边形,再从①AB =BC ,②∠ABC =90°,③AC =BD ,④AC ⊥BD 四个条件中,选两个作为补充条件后,使得四边形ABCD 是正方形,现有下列四种选法,其中错误的是( )A .选①②B .选②③C .选①③D .选②④3.如图,在△ABC 中,∠ACB =90°,BC 的垂直平分线EF 交BC 于点D ,交AB 于点E ,且BE =BF ,添加一个条件,仍不能证明四边形BECF 为正方形的是( )A .BC =ACB .CF ⊥BFC .BD =DF D .AC =BF第3题 第4题 第5题 第6题4.如图,在正方形ABCD 的外侧,作等边三角形ADE ,AC 、BE 相交于点F ,则∠BFC 为( )A .45°B .55°C .60°D .75°5.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,A 的坐标为(1,),则点B 的坐标为( )A .(1﹣, +1)B .(﹣, +1)C .(﹣1,+1) D .(﹣1,)6.如图,已知正方形ABCD的边长为1,连结AC、BD,CE平分∠ACD交BD于点E,则DE长()A. B. C.1 D.1﹣7.正方形ABCD中E为线段BC上的动点如图①,过A作AF⊥DE,F为垂足,延长AF交DC于G如图②,①求证:AG=DE②连接BF,当E为BC中点时,求证:AB=FB.巩固提升1.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①② B.②③C.①③ D.②④2.如图,E为边长为2的正方形ABCD的对角线上一点,BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BE于R,则PQ+PR的值为()A. B. C.D.第2题第3题第4题3.如图,正方形ABCD的面积为4,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.2B.3C.23 D 34.一组正方形按如图所示的方式放置,其中顶点B1在y轴上,顶点C1、E1、E2、C2、E3、E4、C3 (x)上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3…,则正方形A 2019B 2019C 2019D 2019的边长是( )A.()201821B .()201921C .()201833D .()2019335.如图,正方形CEFG 的边GC 在正方形ABCD 的边CD 上,延长CD 到H ,使DH =CE ,K 在BC 边上,且BK =CE ,求证:四边形AKFH 为正方形.。
正方形的性质与判定正方形是一种特殊的四边形,具有特定的性质和判定条件。
本文将对正方形的性质进行分析,并介绍如何判定一个四边形是否为正方形。
一、正方形的定义和性质正方形是一种具有四条相等边和四个直角的四边形。
以下是正方形的一些性质:1. 边长相等:正方形的四条边长度相等,记为a。
2. 直角:正方形的四个角都是直角,即90度。
3. 对角线相等:正方形的对角线相等,记为d。
4. 对角线垂直:正方形的对角线互相垂直,即两条对角线的夹角是直角。
二、正方形的判定条件如何判定一个四边形是否为正方形呢?下面是几种常见的判定条件:1. 边长相等且对角线相等:如果一个四边形的四条边长度相等且对角线相等,则这个四边形是正方形。
2. 边长相等且对角线互相垂直:如果一个四边形的四条边长度相等且对角线互相垂直,则这个四边形是正方形。
3. 内角相等且边长相等:如果一个四边形的四个内角都是直角(90度),且四条边长度相等,则这个四边形是正方形。
三、应用举例1. 例1:已知一个四边形的边长都是5厘米,并且对角线相等,判断这个四边形是否是正方形。
根据判定条件1,边长相等且对角线相等,则可以判断这个四边形是正方形。
2. 例2:已知一个四边形的边长都是4厘米,并且对角线互相垂直,判断这个四边形是否是正方形。
根据判定条件2,边长相等且对角线互相垂直,则可以判断这个四边形是正方形。
3. 例3:已知一个四边形的内角都是直角,且边长相等,判断这个四边形是否是正方形。
根据判定条件3,内角都是直角且边长相等,则可以判断这个四边形是正方形。
四、正方形的应用领域正方形作为一种特殊的四边形,具有独特的性质,在很多领域都有广泛的应用:1. 建筑设计:正方形的对称性使得它在建筑设计中常用于布局规划,例如正方形的房间、庭院等。
2. 绘画和艺术:正方形作为一种几何图形,在绘画和艺术作品中常常被用作构图元素,营造平衡和和谐感。
3. 数学研究:正方形是数学研究中的重要对象,与其他几何形状有着密切的联系,深入研究正方形的性质可以推广到其他领域。
正方形的判定与性质引言正方形是一种特殊的四边形,具有许多独特的性质和特征。
本文将介绍如何判定一个四边形是否是正方形以及正方形的性质。
判定正方形判定一个四边形是否是正方形可以从不同角度进行考虑。
以下是几种常见的判定方法:1.边长相等一个四边形的四条边长度相等是判定其是否为正方形的一个重要条件。
如果一个四边形的4条边都相等,则可以认为它是正方形。
2.角度相等正方形的特征之一是它的四个角都是直角(90度)。
因此,如果一个四边形的四个角都是90度,则可以判定它是正方形。
3.对角线相等正方形的两条对角线相等且互相平分对方,也是判定一个四边形为正方形的条件之一。
如果一个四边形的对角线相等且平分对方,则可以认为它是正方形。
正方形的性质除了以上的判定条件外,正方形还具有许多独特的性质和特征。
以下是一些常见的正方形性质:1.对称性正方形具有4个对称轴,分别为水平轴、垂直轴和两条对角线。
这意味着正方形可以通过沿着这些轴进行翻转而保持不变。
2.面积和周长正方形的面积等于边长的平方,周长等于4倍边长。
这是正方形最基本的面积和周长公式。
3.相似性正方形与自身全等且相似。
这意味着可以通过变换、旋转和缩放等操作得到无数个相似的正方形。
4.内角和外角正方形的内角都是90度,外角则是270度。
这是正方形内角和外角之间的关系。
结论正方形的判定和性质是数学中的基础知识,对于理解几何形状和解决实际问题都非常重要。
通过判定其边长、角度和对角线是否满足特定条件,我们可以判断一个四边形是否是正方形。
正方形具有对称性、特定的面积和周长公式,以及内角和外角的特征。
通过研究正方形的性质,我们可以深入理解几何形状和它们之间的关系。
正方形的性质与判定正方形是一种特殊的四边形,它具有独特的性质和判定方法。
本文将详细介绍正方形的性质,并探讨如何准确地判定一个四边形是否为正方形。
一、正方形的性质1.四边相等:正方形的四条边长相等,即AB = BC = CD = DA。
2.四个角相等:正方形的四个内角都是直角,即∠A = ∠B = ∠C = ∠D = 90°。
3.对角线相等:正方形的对角线互相垂直且相等,即AC = BD。
4.对角线平分角:正方形的对角线将内角平分,即∠BAD = ∠BCD = 45°。
5.对角线平分边:正方形的对角线平分相邻边,即AB = BC = CD = DA = AC = BD。
二、判定一个四边形是否为正方形判定一个四边形是否为正方形通常有两种方法,包括几何性质判定和长度关系判定。
1.几何性质判定若一个四边形满足以下条件之一,那么它是一个正方形:(1)四边相等且四个角都是直角;(2)对角线相等且相互垂直。
2.长度关系判定若一个四边形满足以下条件之一,那么它是一个正方形:(1)四边相等且其中一条对角线的平方等于两条相邻边长度的平方之和;(2)对角线相等且任意一条边的平方等于对角线长度的平方的一半。
三、应用案例案例一:判定四边形ABCD是否为正方形,已知AB = 5cm,∠A = ∠B = 90°。
解析:根据正方形的性质可知,当四边相等且四个角都是直角时,该四边形为正方形。
由已知条件可知AB = BC = CD = DA,并且∠A = ∠B = ∠C = ∠D = 90°。
因此,四边形ABCD是一个正方形。
案例二:判定四边形EFGH是否为正方形,已知EF = 7cm,GH = 4cm,EG = FH = 5cm。
解析:根据正方形的判定方法可知,当四边相等且其中一条对角线的平方等于两条相邻边长度的平方之和时,该四边形为正方形。
由已知条件可知EF = FG = GH = HE = 5cm,且EG = FH = 5cm。
正方形的性质及判定【知识梳理】1.正方形的定义:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形. 2.正方形的性质正方形是特殊的平行四边形、矩形、菱形.它具有前三者的所有性质: ① 边的性质:对边平行,四条边都相等. ② 角的性质:四个角都是直角.③ 对角线性质:两条对角线互相垂直平分且相等,•每条对角线平分一组对角. ④ 对称性:正方形是中心对称图形,也是轴对称图形. 平行四边形、矩形、菱形和正方形的关系:(如图)3.正方形的判定判定①:有一组邻边相等的矩形是正方形. 判定②:有一个角是直角的菱形是正方形.【例题精讲】1 正方形具有而矩形不一定具有的性质是( )A .四个角都是直角B .对角线互相平分C .对角相等D .对角线互相垂直2、正方形具有而菱形不一定具有的性质是( ) A.对角线相等 B.对角线互相垂直平分 C.四条边相等 D.一条对角线平分一组对角3、如图,在正方形ABCD 中,对角线AC 与BD 相交于点O,图中有( )个等腰三角形. A.4 B.6 C.8 D.10一、正方形的性质1、若正方形的一条对角线长为2,则它的边长是 .2、若正方形的面积是9,则它的对角线长是 .3、如图,在正方形ABCD 的边BC 的延长线上取一点E,使CE=CA,连接AE 交CD 于F,则∠AFD= °.4、如图,E 是正方形ABCD 内一点,如果△ABE 为等边三角形,那么 ∠DCE= ____.正方形菱形矩形平行四边形ODCBA第3题图AB C DE第4题图F D CB A E 第3题图究线段DE 、BF 、EF 之间的数量关系.6如图,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,连接,BE DG ,求证:BE DG =.GC FEDBA7 如图,已知平行四边形ABCD 中,对角线AC 、BD 交于点O ,E 是BD 延长线上的点,且ACE ∆是等边三角形.⑴ 求证:四边形ABCD 是菱形;⑵ 若2AED EAD ∠=∠,求证:四边形ABCD 是正方形.OEDCBA【综合训练】1.已知:如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作第7题图GE F DCBAAE 的垂线交DE 于点P .若AE =AP =1,PB = 5 .下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为 2 ;③EB ⊥ED ;④S △APD +S △APB =1+ 6 ;⑤S 正方形ABCD =4+ 6 .其中正确结论的序号是( )A .①③④B .①②⑤C .③④⑤D .①③⑤2下列说法不正确的是A .一组邻边相等的矩形是正方形B .对角线相等的菱形是正方形C .对角线互相垂直的矩形是正方形D .有一个角是直角的平行四边形是正方形3.边长为1的正方形ABCD 绕点A 逆时针旋转30°得到正方形AB ′C ′D ′,两图叠成一个“蝶形风筝”(如图所示阴影部分),则这个风筝的面积是( )。
正方形的性质与判定正方形是几何学中常见的一个形状,具有许多独特的性质和特点。
本文将探讨正方形的性质与判定方法。
一、正方形的定义正方形是一种四边相等且四个角均为直角的特殊四边形。
它既是矩形,也是菱形,同时也是正多边形。
正方形的特点使其在几何学中具有重要的地位。
二、正方形的性质1. 边长性质正方形的四条边长度相等,即AB=BC=CD=DA。
2. 角度性质正方形的四个内角均为直角,即∠BAD=∠ABC=∠BCD=∠CDA=90°。
3. 对称性质正方形具有各种对称性质。
其中包括中心对称、对角线对称和轴对称。
正方形可绕其中心旋转180°得到一模一样的图形。
4. 对角线性质正方形的对角线相等且垂直平分对方的角。
即AC=BD=2r,且AC⊥BD。
5. 对应边平行性质正方形的对边是平行的,即AB∥CD,BC∥AD。
三、正方形的判定方法确定一个四边形是否是正方形可以根据以下几种常见的判定方法。
1. 边长判定如果一个四边形的四条边长度均相等,则可以判定为正方形。
2. 角度判定如果一个四边形的四个内角均为直角,则可以判定为正方形。
3. 对角线判定如果一个四边形的对角线相等且垂直平分对方的角,则可以判定为正方形。
4. 组合判定可以结合使用边长、角度和对角线的性质来判定一个四边形是否是正方形。
例如,如果一个四边形的对边平行且相等,并且对角线垂直且相等,则可以判定为正方形。
四、应用举例正方形的性质和判定方法在几何学中有广泛的应用。
以下是一些常见的应用场景。
1. 建筑设计在建筑设计中,正方形的对称性和稳定性使其成为设计方案中常见的形状之一。
例如,一些公共广场的地面铺装常采用正方形的铺砖方式。
2. 基础几何证明正方形的性质经常被用于解决数学几何证明问题。
例如,可以利用正方形的对角线性质证明勾股定理。
3. 计算机图形学在计算机图形学中,正方形常被用作显示屏幕的基本像素单位,通过在像素网格中填充正方形像素来构建图像。
18.2.3 正方形lg_整体设対经历正方形的定义及其性质和判定定理的探究过程 ,丰富认识图形的经验,进一步发展学生的逻辑推理能力和表达能力 .让学生在发现、归纳、概括中逐步提高思维能力 ,培养用数学的思想和方法来思考和分析问题的习惯.♦教学重难点【重点】 正方形性质和判定定理的应用【难点】 正方形与平行四边形、矩形、菱形的区别与联系.⑥教学准备【教师准备】 教学中出示的教学插图、问题和例题.【学生准备】 复习平行四边形、矩形、菱形的定义、性质和判定L 新课导入导入一:[过渡语]前面我们研究了平行四边形、矩形、菱形的定义、性质和判定 ,现在请同学们回忆学过的内容,回答下面的问题.(i )教具(几何画板)演示:如图所示,改变/ B 的大小,平行四边形ABC'D'的形状随之发生变化.当/ B 为直角时,这时 的图形是 _________ 形;我们平移边CD 改变BC 的大小,矩形ABCD 勺形状随之发生变化.当 BC'=C'D'时,图形是 _______ 形.(2)如图所示,我们平移边CD 改变BC 的大小,平行四边形ABCD 勺形状随之发生变化.当 BC'=C'D'时,图形是 _______ 形;改变/ B 的大小,菱形ABC'D'的形状随之发生变化.当/ B 为 直角时,图形是 ________ 形.教学目标1. 理解并运用正方形的定义计算和证明 .2. 理解并运用正方形的性质、判定进行计算和证明,理解一般与特殊的关系教学过程学生观察教具变化情况,结合所学菱形、矩形知识,回答上面的问题•[设计意图]正方形是学生熟悉的几何图形,小学已经学过,这里让学生从动态的角度出发认识正方形,体会正方形与平行四边形、矩形、菱形的联系与区别,感受特殊与一般的关系导入二:八年级(2)班的简兰同学想买一条方纱巾•有一天她在商店里看到一块漂亮的纱巾,非常想买,但她拿起来看时感觉纱巾不太方,商店老板看她犹豫不决的样子,马上过来拉起一组对角让她看另一组对角是否对齐,她还有些疑惑,老板又拉起另一组对角让她检验,她终于买下这块纱巾,你认为她买的这块纱巾是正方形的吗?当时采用什么方法可以检验出来?学了这节后,你就会做出准确的判断了•[设计意图]将数学问题融入生活情境,拉近了学生与数学之间的距离,激发学生研究正方形的积极性•陋新知构建1. 正方形的认识思路一[过渡语]结合上面的演示,请同学们回答下面的问题:(1) 什么样的图形是平行四边形?(2) 什么样的图形是矩形?(3) 什么样的图形是菱形?(4) 什么样的图形是正方形?学生讨论,回答•在学生回答的基础上,教师引导学生归纳:正方形是有一组邻边相等,有一个角是直角的平行四边形•追问:正方形与矩形、菱形之间有什么关系呢?学生思考,回答:正方形既是矩形,又是菱形•[设计意图]结合图形的演示,让学生回忆学过的平行四边形、矩形、菱形的定义、性质及判定.在此基础上尝试归纳正方形的定义,理解正方形的定义,体会它们之间的联系与区别感受特殊与一般的关系.思路二心[过渡语]前面我们学习了平行四边形、矩形、菱形的性质和判定,小学认识过了正方形,请同学们回答下面的问题.(1) 正方形与矩形有怎样的关系?(2) 正方形与菱形有怎样的关系?(3) 正方形、平行四边形、矩形、菱形有怎样的关系?学生观察、思考、交流.生1:正方形是特殊的矩形,即有一组邻边相等的矩形是正方形•生2:正方形是特殊的菱形,即有一个角是直角的菱形是正方形.1. HA ------------------------------------- ? &/rnp---------苣济无:—LJ—I_匸-h fl L5 --------------------------- 口r t教师画图说明,正方形、平行四边形、矩形、菱形的关系如图总结:正方形、矩形、菱形都是特殊的平行四边形.你能根据正方形、平行四边形、矩形、菱形的关系,解释下面的问题吗?(1) 把一张长方形纸片按如图所示的方式折一下 ,就可以裁出正方形纸片•为什么? (2) 如何从一块长方形纸片中裁出一块最大的正方形纸片呢 ? 学生动手折叠、思考、交流 •(1) 由折叠得所得的四边形有三个直角 ,且一组邻边相等•有三个角是直角的四边形是矩形 有一组邻边相等的矩形是正方形,所以裁出的纸片是正方形.(2) 要使裁出的四边形是最大的正方形 ,只要让四边形(正方形)的边长等于长方形的宽即 可.教师总结:正方形既是特殊的矩形,又是特殊的菱形.[设计意图]结合图形的折叠,让学生归纳得出有一组邻边相等的矩形是正方形 ;有一个 角是直角的菱形是正方形.从矩形、菱形的角度出发体会它们之间的关系 ,感受特殊与一般的 关系. [过渡语]上面认识了正方形,下面我们继续研究正方形的性质 . 正方形是特殊的平行四边形 ,它也是特殊的矩形、 特殊的菱形,因此它具有平行四边形、 矩 形、菱形的所有性质.请回忆学过的内容,回答下面的问题(从边、角、对角线、轴对称性四 方面考虑):(1) 平行四边形有哪些性质 ? (2) 矩形有哪些性质? (3) 菱形有哪些性质? (4) 正方形有哪些性质?,,. 思路二正方形是特殊的平行四边形 ,它也是特殊的矩形、 特殊的菱形,因此它具有平行四边形、 矩 形、菱形的所有性质.请把它们写出来,并与同桌交流. 学生梳理总结得: 正方形[设计意图]让学生回忆学过的平行四边形、矩形、菱形的定义和性质 ,体会它们之间的 联系与区别.在此基础上梳理得出正方形的性质 ,有助于这些知识的正确运用 . 3. 正方形的判定 思路一提问:怎样判定一个四边形是正方形呢 ?把你所想的判定方法写出来 . 学生自由发言.教师引导学生总结、归纳得正方形的判定方法 :(1) 定义法:有一个角是直角,有一组邻边相等的平行四边形是正方形 . (2) 矩形法:有一组邻边相等的矩形是正方形 . (3) 菱形法:有一个角是直角的菱形是正方形 . 思路二既然正方形是特殊的图形,那么我们就可以通过一般图形来判定正方形 .请大家考虑: 满足什么条件的矩形是正方形 ?你有哪些方法? 类似地,如何通过菱形和平行四边形来判定正方形 ?教师深入学生中,督促学生积极探索交流,了解学生的思维深度和广度并及时加以校正和 激励. 派学生代表走向讲台进行总结发言,并鼓励其他学生大胆提问. 师进一步归纳正方形的判定方法[知识拓展](1)平行四边形、矩形、菱形和正方形的定义和判定方法如下表 :图形 | 定义 | 判定图形 对边 对角 对角线 对称性 平行四边 形平行、相等相等 互相平分 不是轴对称图形 矩形 平行、相等四个角都是直 角互相平分且相等 轴对称图形,有两条对称 轴 菱形 平行、四条边都相 等 相等 互相垂直且平分,每条 对角线平分一组对角轴对称图形,有两条对称 轴 正方 形 平行、四条边都相 等四个角都是直 角 互相垂直、平分且相等,每条对角线平分一 组对角轴对称图形,有四条对称 轴 [设「意图] 让学生回忆学过的平行四边形、矩形、菱形的定义和性质 .在此基础上理解平行四边形两组对边分别平行的四边形1. 两组对边分别相等的四边形2. 两组对角分别相等的四边形3. 对角线互相平分的四边形4. 一组对边平行且相等的四边形矩形有一个角是直角的平行四边形1. 对角线相等的平行四边形2. 有三个角是直角的四边形菱形有一组邻边相等的平行四边形1. 对角线互相垂直的平行四边形2. 四条边相等的四边形正方形有一个角是直角,有一组邻边相等的平行四边形1. 有一个角是直角的菱形2. 有一组邻边相等的矩形3. 有一个角是直角,有一组邻边相等的平行四边形对角线互相壬直、平分且相等的四边形是止万形4.[过渡语]上面我们研究了正方形的定义、性质和判定,下面我们举例说明它们的应用(教材例5)求证:正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形•学生分析题设和结论,画图,写出已知和求证.已知:如图,四边形ABCD是正方形,对角线ACBD相交于点0.求证:△ ABO△ BCQ A CDQ A DAO是全等的等腰直角三角形.师生分析:利用正方形的性质“对角线互相垂直平分且相等,每条对角线平分一组对角”可以得到四个三角形是全等的等腰直角三角形.学生独立完成解题过程.一生板书:证明:•••四边形ABCD1正方形,••• AC=BDACL BDAO=BO=CODO.•••△ABO△ BCO△ CDO△ DAOTE是等腰直角三角形,并且△ ABO^A BC(^^ CD(^^ DAO. 教师点评,纠正写法上的不足•ABC曲,O是CD的中点,连接AO并延长,交BC的延长线于点E.⑴求证△ AOH EOC(2)连接ACDE当/ B=Z AEB:______ 。
时,四边形ACED1正方形.请说明理由.师生共同分析:(1)根据题意可得/ ADC/OCE/ DAO Z OECOCOD所以△ AOD^A EOC(2) 当/ B=/AE咅45°时,根据△ AO B^ EOC先证明四边形ACE毘平行四边形,再根据/ COE / BAE=90° ,得到平行四边形ACED是菱形,AB=AEAB=CD故AE=CD从而可知菱形ACED1正方形•学生独立写出过程后,教师重点指导第(2)问的解答过程.证明:(1) T四边形ABCD是平行四边形,••• AD// BC.•••/ ADC/ OCE / DAO/ OEC.又••• O是CD的中点,••• OCOD.AO0A EOC解:(2)如图,当/ B=/ AEB=45°时,四边形ACE[是正方形.理由如下:•/△ AO» EOC•OAOE.又••• OCOD•四边形ACE[是平行四边形.•••/ B=/AEB=45°,•AB=AE / BAE=90°.•••四边形ABCD!平行四边形,•AB// CDAB=CD.•••/ COE/ BAE=90°.•••平行四边形ACED是菱形.(补充)如图,在平行四边形••• AB=AE AB=CD• AE=CD.从而可知菱形ACEDi正方形.[解题策略]探索条件类问题,先看题中的已知条件,根据正方形的判定方法,缺什么就补什么条件,一般从“矩形+—组邻边相等”或“菱形+有一个角是直角”去考虑.[设计意图]运用正方形的性质、判定解决有关的问题,培养运用所学知识解题的意识,提高解题能力.陋课堂小结师生共同归纳小结.本节课,我们学习了正方形的性质和判定,弄清了正方形、平行四边形、矩形、菱形的关系1. 下列命题是真命题的是()A. 矩形的对角线互相垂直B. 菱形的对角线相等C. 正方形的对角线相等且互相垂直D. 四边形的对角线互相平分解析:根据矩形的对角线相等,可判断选项A错;根据菱形的对角线互相垂直,可判断选项B 错;根据正方形的对角线互相垂直、平分且相等,可判断选项C正确;四边形的对角线无特性,可判断选项D错.故选C.2. 在四边形ABCD^,O是对角线的交点,能判定这个四边形是正方形的是()A. AOBDAB// CDAB=CDB. AD// BC / A=/ CC. AO=BO=CO=DOACL BDD.AO=COBO=DOAB=BC解析:根据“对角线相等的平行四边形是矩形”可判定选项A是矩形;根据“两直线平行,同旁内角互补”“等量代换”“同旁内角互补,两直线平行”可判定选项B是平行四边形;根据“对角线互相垂直、平分且相等的四边形是正方形”可判定选项C是正方形;根据“一组邻边相等的平行四边形是菱形”可判定选项D是菱形.故选C.3.如图所示,E是正方形ABC啲边AD上任意一点,EFl BD于点F,EGL AC于点G若AB=10 cm,则四边形EFOG勺周长是___ .解析:先由题意证明四边形EFO(是矩形,进而可知矩形EFO(的周长为OD勺长的2倍,然后根据勾股定理得OD勺长为5 cm.故填10 cm.诙梅书设计18.2.3 正方形1. 正方形的认识2. 正方形的性质3. 正方形的判定4. 例题讲解例1例2筛布盖作业一、教材作业【必做题】教材第59页练习第1,2,3题;教材第61页习题18. 2第7,8题.【选做题】教材第61页习题18. 2第12题.二、课后作业【基础巩固】1. 矩形、正方形、菱形的共同性质是()A. 对角线相等B. 对角线互相垂直C. 对角线互相平分D. 每一条对角线平分一组对角2. (2015 •日照中考)小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC②/ AB(=90° ,③AOBD④Ad BD中选两个作为补充条件,使?ABCD^正方形(如图),现有下列四种选法,你认为其中错误的是()A.①②B.②③C.①③D.②④3.如图,正方形ABC即,CE丄MN/ MCE35° ,那么/ ANM是( )A.45 °B.55 °C.65°D.75°4.如图所示,在四边形ABCD^ ,AB=BC=C!=DA对角线AC与BD相交于点O.若不增加任何字母与辅助线,要使得四边形ABCDI正方形,则还需增加的一个条件是 ______________ .5. 如图,正方形ABC曲,AC是对角线,E是BC延长线上一点【能力提升】6.如图,正方形ABCD勺对角线AC BD交于点O / OCF Z OBE试猜想OE与OF的大小关系,并说明理由.7.如图,在四边形ABC曲,AB=BC对角线BD平分/ ABCP是BD上一点,过点P作PMLADPN 丄CD垂足分别为MN.(1)求证/ ADB/CDB⑵若/ ADC90。