第9章 常微分方程初值问题数值解法
- 格式:ppt
- 大小:1.20 MB
- 文档页数:104
第九章常微分方程初值问题的数值解法§1 相关知识§2 几种简单的数值方法§3 Runge–Kutta方法§4 单步法的进一步讨论§5 线性多步法西北工业大学理学院欧阳洁1上述定理称为一阶常微分方程初值问题解的适定性(存在性、惟一性与稳定性)定理。
对所讨论的一阶常微分方程初值问题,本章假设该问题是适定的,即解析解y(x)在区间[a,b]上是存在、惟一,且具有充分的光滑度。
因此f(x,y(x))也充分光滑。
西北工业大学理学院欧阳洁3西北工业大学理学院欧阳洁5常微分方程初值问题的数值解法分为:①单(一)步法:计算时,只用到和,即前一步的值。
1+n y n y n n x x ,1+显式单步法的一般形式为②多步法:计算时,除用到和以外,还用到和,即用到前k 步的值。
p n x −)1;1,2,1(>−=−k k p y p n L 1+n y n y n n x x ,1+对单步法与多步法,有显式与隐式方法之分。
显式、隐式多步法的一般形式类似。
隐式单步法的一般形式为),,(1h y x h y y n n n n ϕ+=+),,,,(111h y x y x h y y n n n n n n ++++=ϕ数值解法建立的过程:通过一定的离散化方法,将连续性问题的求解转化为有限个离散节点上解析解近似值的求解。
常用的离散化方法:Taylor 展开法;差商直接代替微商;数值积分法。
西北工业大学理学院欧阳洁16设一般的单步法为:显式公式隐式公式定义为某一数值方法在处的整体截断误差。
111()n n n e y x y +++=−1n x +五单步法的局部截断误差和阶整体截断误差不仅与这一步的计算有关,还依赖于前面各步的计算。
1+n x 011,,,,x x x x n n L −下面着重分析计算中某一步的误差(局部截断误差),后面将对显式单步法,给出整体截断误差与局部截断误差之间的关系。
常微分方程初值问题数值解法初值问题:即满足初值条件的常微分方程的解y′=f(x,y),x∈[x0,b]y(x0)=y0.定理1(利普希茨条件)若存在正数L,使得对任意,y1,y2,有|f(x,y1)−f(x,y2)|≤L|(y1−y2)|定理2(解存在性)①若函数f在方区域x∈[a,b],y∈R连续,②函数f关于y 满足利普希茨条件,则对任意x∈[a,b],常微分方程存在唯一的连续可微数值解.两类问题:①单步法---计算下一个点的值yn+1只需要用到前面一个点的值yn②多步法---计算下一个点的值yn+1需要用到前面l个点的值yl1、欧拉法---下一个点的计算值等于前一个点的计算值加上步长乘以前一个点的函数值•具体过程一些批注:显式欧拉方程指下一步要计算的值,不在迭代方程中;隐式欧拉方程指下一步要计算的值,在迭代方程中。
怎么计算隐式欧拉方程----要借助显示欧拉迭代计算---一般用迭代法-----迭代---将微分方程在区间[xn,xn+1]进行积分,然后函数f进行近似,即可得到迭代方程-----迭代方程收敛性?由函数关于y满足利普希茨条件,可以推出迭代公式收敛。
•局部截断误差:假设前n步误差为0,我们计算第n+1步的误差,将次误差称为局部截断误差,且局部误差为O(hp+1)•p阶精度:由理论证明:若局部误差阶的时间复杂度为O(hp+1),则整体误差阶为O(hp)我们称公式精度为p。
•显示欧拉法与隐式欧拉法•梯形方法----将显式欧拉迭代方程与隐式欧拉迭代方程做一下加权平均,构造的计算公式.•改进的欧拉方法---思想:因为梯形公式是隐式公式,将显式欧拉公式对下一步的计算值进行预估,用梯形公式对下一步的计算值进行校正.2、龙格-库塔方法思想:根据Lagrange中值定理,下一次的计算值可以用前一次的计算值加上h乘以前一个点的斜率;而这个斜率用该区间上的多个点的斜率的算数平均来逼近。
注意:怎么计算任意斜率Ki?第i个点的斜率Ki有微分方程可以算出f′=f(xn,yn)所以要算的f(xn,yn)值,由欧拉法即可算出, yn+1=yn+hf′•2阶-龙格-库塔方法----类似改进的欧拉法根据Lagrange中值定理,下一次的计算值可以用前一次的计算值加上h乘以斜率;而这个斜率用区间上的端点和中点的斜率的算数平均来逼近。