常微分方程初值问题的数值解法
- 格式:docx
- 大小:90.07 KB
- 文档页数:4
常微分方程初值问题的数值解法在自然科学、工程技术、经济和医学等领域中,常常会遇到一阶常微分方程初值问题:(,),,(),y f x y a x b y a y '=≤≤⎧⎨=⎩ (1) 此处f 为,x y 的已知函数,0y 是给定的初始值。
本章讨论该问题的数值解法,要求f 在区域{(,)|,}G x y a x b y =≤≤<∞内连续,并对y 满足Lipschitz 条件,从而初值问题(1)有唯一的连续可微解()y y x =,且它是适定的。
1 几个简单的数值积分法1.1 Euler 方法(1)向前Euler 公式(显式Euler 公式)10(,),0,1,2,,(),n n n n y y hf x y n y y a +=+=⎧⎨=⎩(2) 其中h 为步长。
由此便可由初值0y 逐步算出一阶常微分方程初值问题(1)的解()y y x =在节点12,,x x 处的近似值12,,y y 。
该公式的局部截断误差为2()O h ,是一阶方法。
(2)向后Euler 公式(隐式Euler 公式)1110(,),0,1,2,,(),n n n n y y hf x y n y y a +++=+=⎧⎨=⎩(3) 这是一个隐格式,也是一阶方法。
这类隐格式的计算比显格式困难,一般采用迭代法求解。
首先用向前Euler 公式提供迭代初值,然后迭代计算:(0)1(1)()111(,),(,),0,1,2,n n n n k k n n n n y y hf x y y y hf x y k +++++⎧=+⎨=+=⎩ (4)1.2 梯形方法1110[(,)(,)],2(),(0,1,2,)n n n n n n h y y f x y f x y y y a n +++⎧=++⎪⎨⎪=⎩= (5) 这也是一个隐格式,是二阶方法。
一般也采用迭代法求解。
迭代公式如下:(0)1(1)()111(,),[(,)(,)],0,1,2,2n n n n k k n n n n n n y y hf x y h y y f x y f x y k +++++⎧=+⎪⎨=++=⎪⎩ (6)1.3 改进的Euler 方法11110(,),[(,)(,)],0,1,2,,2(),n n n n n n n n n n y y hf x y h y y f x y f x y n y y a ++++⎧=+⎪⎪=++=⎨⎪=⎪⎩(7) 为了便于上机编程计算,(7)可改写为110(,),(,),0,1,2,,1(),2(),p n n n cn n p n p c y y hf x y y y hf x y n y y y y y a ++=+⎧⎪=+⎪⎪=⎨=+⎪⎪=⎪⎩(8) 该格式是显式,也是二阶方法。
浅谈常微分方程初值问题数值解法在自然科学、工程技术、甚至社会科学的一些领域中,常常会遇见一阶常微分方程的求解问题:()上述问题,寻求解的具体表达式十分困难,仅对一些特殊形式的才有可能找到解的解析表达式,在大多情况下,初值问题的解不能用初等函数表示出来即使可写出解的解析表达式,但因为这些表达式过于复杂,要计算它在某些点上的函数值也异常困难。
在实际问题中,经常需要的恰是解在某些点上的函数值,因此研究初值问题的数值解法十分必要。
1 常微分方程初值问题的数值解法常微分方程的近似解法大体可分成三大类:一类是图解法和器械法;第二类是解的近似法;第三类是数值解法,即通过离散化的方法直接求出函数在某些点上的近似值,此数值解仅为精确解的近似解。
其基本原理为:一阶常微分方程的初值问题的解是上变量的连续函数,因此求上述问题的数值解,就是在区间上的若干离散点上用离散化的方法将初值问题化成离散变量的相应问题,从而相应问题的解可作为初值问题理论解的近似值。
由常微分方程的理论可知,只要在区域内连续,且关于满足林普希兹条件,则方程的解存在且唯一。
初值问题的数值解法通常采取“步进法”,而“步进法”又可分为“单步法”和“多步法”两类。
(1)单步法。
所谓“单步法”是指在计算时,只用到前一步的有关信息。
其一般形式为:,主要包括下面三种方法:Euler方法,改进的Euler公式-梯形公式和Runge-Kutta法。
(2)线性多步法。
单步法没有用到前几步计算得到的信息,因此为了提高精度,需重新计算多个点处的函数数值,如RK方法,故计算量较大。
线性多步法的基本思想是充分利用前面的已知信息来构造精度高且计算量小的算法来计算。
多步法常用方法是线性多步法,求解公式为:构造的常用方法是Taylor展开和数值积分方法。
常用的线性多步公式有:四阶Adams显式公式:四阶Adams隐式公式:四阶Milne显式公式:三阶Hamming公式:(隐式公式)预测校正系统和预测校正修正法:一般地,同阶的隐式法比显式法精确,而且数值稳定性好,但隐式公式中的求解较难,需要用到迭代法,这就增加了计算量。
常微分方程初值问题的数值解法中三种算法的比较
常微分方程初值问题的数值解法是数学分析中的一个重要的研究内容,众多的
算法都有助于我们更好地求解一般的初值问题,在这里我们将介绍常微分方程初值问题的三种基本算法,它们是欧拉法、改进欧拉法以及四阶龙格-库塔法。
欧拉法是常微分方程初值问题中最常用的算法,他是一种简洁而又灵活的方法,其基本思想是根据给定的常微分方程和初值,通过积分形式求解精确解,此方法解决的问题比较简单,但它的误差公式与时间步长的N次方有关,误差较大,而且容易出现严重的误差误差,当时间步长To增大时会出现误差振荡。
改进欧拉法是弥补欧拉法缺陷的一种优化算法,它使用线性插值,代替欧拉法
用积分形式计算出来的结果,从而更准确地求出结果,且误差降低,由于它对动态系统的误差有一定的抑制,使得它的运算误差相对于欧拉法是高准确度的,但在某些特殊情况下仍然可能出现误差波动的情况。
四阶龙格-库塔法是在现实生活中最常用的数值解法。
它把问题分解成5种不
同形式的积分公式,并分别交由5个层次的方法来解决,仔细把握每一步的运算,把数值舍入后再运算,虽然该法运算量大,但它的准确性更高,误差相对于其它两种方法要小得多,且具有良好的精度稳定性,具有很好的鲁棒性和适应性,可以很好地用于对解初值问题作出估计和预测。
综上,这三种数值解法都有自身的特点,欧拉法计算简单,但误差较大;改进
欧拉法的精度和误差抑制能力更强;四阶龙格-库塔法的算术精度更高,出现误差
波动的概率最低,在可靠性方面更加准确。
因此,应用的时机对于三种算法的选择就显得尤为重要。
第七章 常微分方程初值问题的数值解法--------学习小结一、本章学习体会通过本章的学习,我了解了常微分方程初值问题的计算方法,对于解决那些很难求解出解析表达式的,甚至有解析表达式但是解不出具体的值的常微分方程非常有用。
在这一章里求解常微分方程的基本思想是将初值问题进行离散化,然后进行迭代求解。
在这里将初值问题离散化的方法有三种,分别是差商代替导数的方法、Taylor 级数法和数值积分法。
常微分方程初值问题的数值解法的分类有显示方法和隐式方法,或者可以分为单步法和多步法。
在这里单步法是指计算第n+1个y 的值时,只用到前一步的值,而多步法则是指计算第n+1个y 的值时,用到了前几步的值。
通过对本章的学习,已经能熟练掌握如何用Taylor 级数法去求解单步法中各方法的公式和截断误差,但是对线性多步法的求解理解不怎么透切,特别是计算过程较复杂的推理。
在本章的学习过程中还遇到不少问题,比如本章知识点多,公式多,在做题时容易混淆,其次对几种R-K 公式的理解不够透彻,处理一个实际问题时,不知道选取哪一种公式,通过课本里面几种方法的计算比较得知其误差并不一样,,这个还需要自己在往后的实际应用中多多实践留意并总结。
二、本章知识梳理常微分方程初值问题的数值解法一般概念步长h ,取节点0,(0,1,...,)n t t nh n M =+=,且M t T ≤,则初值问题000'(,),()y f t y t t Ty t y =≤≤⎧⎨=⎩的数值解法的一般形式是1(,,,...,,)0,(0,1,...,)n n n n k F t y y y h n M k ++==-@显示单步法7.2.1 显示单步法的一般形式1(,,),(0,1,...,1)n n n n y y h t y h n M ϕ+=+=-定理7.2.1 设增量函数(,,)n n t y h ϕ在区域00{(,,)|,||,0}D t y h t t T y h h =≤≤<∞≤≤内对变量y 满足Lipschitz 条件,即存在常数K ,使对D 内任何两点1(,,)t u h 和2(,,)t u h ,不等式1212|(,,)(,,)|||t u h t u h K u u ϕϕ-≤-成立,那么,若单步法的局部截断误差1n R +与1(1)p h p +≥同阶,即11()p n R O h ++=,则单步法的整体截断误差1n ε+与p h 同阶,即1()p n O h ε+=。
常微分方程初值问题数值解法初值问题:即满足初值条件的常微分方程的解y′=f(x,y),x∈[x0,b]y(x0)=y0.定理1(利普希茨条件)若存在正数L,使得对任意,y1,y2,有|f(x,y1)−f(x,y2)|≤L|(y1−y2)|定理2(解存在性)①若函数f在方区域x∈[a,b],y∈R连续,②函数f关于y 满足利普希茨条件,则对任意x∈[a,b],常微分方程存在唯一的连续可微数值解.两类问题:①单步法---计算下一个点的值yn+1只需要用到前面一个点的值yn②多步法---计算下一个点的值yn+1需要用到前面l个点的值yl1、欧拉法---下一个点的计算值等于前一个点的计算值加上步长乘以前一个点的函数值•具体过程一些批注:显式欧拉方程指下一步要计算的值,不在迭代方程中;隐式欧拉方程指下一步要计算的值,在迭代方程中。
怎么计算隐式欧拉方程----要借助显示欧拉迭代计算---一般用迭代法-----迭代---将微分方程在区间[xn,xn+1]进行积分,然后函数f进行近似,即可得到迭代方程-----迭代方程收敛性?由函数关于y满足利普希茨条件,可以推出迭代公式收敛。
•局部截断误差:假设前n步误差为0,我们计算第n+1步的误差,将次误差称为局部截断误差,且局部误差为O(hp+1)•p阶精度:由理论证明:若局部误差阶的时间复杂度为O(hp+1),则整体误差阶为O(hp)我们称公式精度为p。
•显示欧拉法与隐式欧拉法•梯形方法----将显式欧拉迭代方程与隐式欧拉迭代方程做一下加权平均,构造的计算公式.•改进的欧拉方法---思想:因为梯形公式是隐式公式,将显式欧拉公式对下一步的计算值进行预估,用梯形公式对下一步的计算值进行校正.2、龙格-库塔方法思想:根据Lagrange中值定理,下一次的计算值可以用前一次的计算值加上h乘以前一个点的斜率;而这个斜率用该区间上的多个点的斜率的算数平均来逼近。
注意:怎么计算任意斜率Ki?第i个点的斜率Ki有微分方程可以算出f′=f(xn,yn)所以要算的f(xn,yn)值,由欧拉法即可算出, yn+1=yn+hf′•2阶-龙格-库塔方法----类似改进的欧拉法根据Lagrange中值定理,下一次的计算值可以用前一次的计算值加上h乘以斜率;而这个斜率用区间上的端点和中点的斜率的算数平均来逼近。
常微分方程初值问题的数值解法在实际应用中,对于某些微分方程,我们并不能直接给出其解析解,需要通过数值方法来求得其近似解,以便更好地理解和掌握现象的本质。
常微分方程初值问题(IVP)即为一种最常见的微分方程求解问题,其求解方法有多种,本文将对常微分方程初值问题的数值解法进行较为详细的介绍。
一、欧拉法欧拉法是最基本的一种数值解法,它采用泰勒级数展开并截断低阶项,从而获得一个差分方程近似求解。
具体来讲,设 t 为独立变量,y(t) 为函数 y 关于 t 的函数,方程为:$$y'(t) = f(t, y(t)), \qquad y(t_0) = y_0$$其中 f(t,y(t)) 为已知的函数,y(t_0) 为已知的初值。
将函数 y(t) 进行泰勒级数展开:$$y(t+h) = y(t) + hf(t, y(t)) + O(h^2)$$其中 h 表示步长,O(h^2) 表示其他高阶项。
为了使误差较小,一般取步长 h 尽可能小,于是我们可以用欧拉公式表示数值解:$$y_{n+1} = y_n + hf(t_n, y_n), \qquad y_0 = y(t_0)$$欧拉法的优点是容易理解和实现,但是由于截取低阶项且使用的单步法,所以误差较大,精度较低,在具体应用时需要慎重考虑。
二、龙格-库塔法龙格-库塔法(Runge-Kutta method)是一种多步法,比欧拉法更加精确。
龙格-库塔法的主要思想是使用不同的插值多项式来计算近似解,并且将时间步长分解,每次计算需要多次求解。
以下简要介绍二阶和四阶龙格-库塔法。
二阶龙格-库塔法将时间步长 h 分解成两步 h/2,得到近似解表达式:$$\begin{aligned} k_1 &= hf(t_n, y_n)\\ k_2 &= hf(t_n+h/2,y_n+k_1/2)\\ y_{n+1} &= y_n+k_2+O(h^3)\\ \end{aligned}$$四阶龙格-库塔法四阶龙格-库塔法是龙格-库塔法中应用最为广泛的一种方法,其需要计算的中间值较多,但是具有更高的精度。
实验八 常微分方程初值问题数值解法一、基本题科学计算中经常遇到微分方程(组)初值问题,需要利用Euler 法,改进Euler 法,Rung-Kutta 方法求其数值解,诸如以下问题:(1) ()⎪⎩⎪⎨⎧=-='004y xy y x y 20≤<x分别取h=0.1,0.2,0.4时数值解。
初值问题的精确解245x y e -=+。
(2) ()⎩⎨⎧=--='0122y y x y 01≤≤-x用r=3的Adams 显式和预 - 校式求解取步长h=0.1,用四阶标准R-K 方法求值。
(3)()()()100010321331221==-='⎪⎩⎪⎨⎧-='-='='y y y y y y y y y 10≤≤x用改进Euler 法或四阶标准R-K 方法求解取步长0.01,计算(0.05),(0.1y y y 数值解,参考结果 123(0.15)0.9880787,(0.15)0.1493359,(0.15)0.8613125y y y ≈-≈≈。
(4)利用四阶标准R- K 方法求二阶方程初值问题的数值解(I )()()⎩⎨⎧='==+'-''10,00023y y y y y 02.0,10=≤≤h x(II)()()()⎩⎨⎧='==+'--''00,10011.02y y y y y y 1.0,10=≤≤h x(III)()()⎪⎩⎪⎨⎧='=+='00,101y y e y y x 1.0,20=≤≤h x(IV)()()⎩⎨⎧='==+''00,100sin y y y y 2.0,40=≤≤h x二、应用题1. 小型火箭初始质量为900千克,其中包括600千克燃料。
火箭竖直向上发射时燃料以15千克/秒的速率燃烧掉,由此产生30000牛顿的恒定推力.当燃料用尽时引擎关闭。
第七章 常微分方程初值问题的数值解法
--------学习小结
一、本章学习体会
通过本章的学习,我了解了常微分方程初值问题的计算方法,对于解决那些很难求解出解析表达式的,甚至有解析表达式但是解不出具体的值的常微分方程非常有用。
在这一章里求解常微分方程的基本思想是将初值问题进行离散化,然后进行迭代求解。
在这里将初值问题离散化的方法有三种,分别是差商代替导数的方法、Taylor 级数法和数值积分法。
常微分方程初值问题的数值解法的分类有显示方法和隐式方法,或者可以分为单步法和多步法。
在这里单步法是指计算第n+1个y 的值时,只用到前一步的值,而多步法则是指计算第n+1个y 的值时,用到了前几步的值。
通过对本章的学习,已经能熟练掌握如何用Taylor 级数法去求解单步法中各方法的公式和截断误差,但是对线性多步法的求解理解不怎么透切,特别是计算过程较复杂的推理。
在本章的学习过程中还遇到不少问题,比如本章知识点多,公式多,在做题时容易混淆,其次对几种R-K 公式的理解不够透彻,处理一个实际问题时,不知道选取哪一种公式,通过课本里面几种方法的计算比较得知其误差并不一样,,这个还需要自己在往后的实际应用中多多实践留意并总结。
二、本章知识梳理
常微分方程初值问题的数值解法一般概念
步长h ,取节点0,(0,1,...,)n t t nh n M =+=,且M t T ≤,则初值问题000
'(,),()y f t y t t T y t y =≤≤⎧⎨
=⎩的数值解法的一般形式是
1(,,,...,,)0,(0,1,...,)n n n n k F t y y y h n M k ++==-
显示单步法
7.2.1 显示单步法的一般形式
1(,,),(0,1,...,1)n n n n y y h t y h n M ϕ+=+=-
定理7.2.1 设增量函数(,,)n n t y h ϕ在区域00{(,,)|,||,0}D t y h t t T y h h =≤≤<∞≤≤内对变量y 满足Lipschitz 条件,即存在常数K ,使对D 内任何两点1(,,)t u h 和2(,,)t u h ,不等式1212|(,,)(,,)|||t u h t u h K u u ϕϕ-≤-成立,那么,若单步法的局部截断误差1n R +与
1(1)p h p +≥同阶,即11()p n R O h ++=,则单步法的整体截断误差1n ε+与p h 同阶,即
1()p n O h ε+=。
(且称单步法为p 阶方法)
7.2.2 Runge-Kutta 方法(显式单步法)
1111111(,)(,)(2,3,...,)(2,3,...,)
(0,1,...,1)N n n i i
i n n i i n i n ij j j i i ij j y y h c k k f t y k f t a h y h b k i N a b i N n M +=-=-=⎧
=+⎪⎪
⎪=⎪⎪
=++=⎨⎪
⎪
==⎪⎪
⎪=-⎩
∑∑∑
N 级R-K 方法的局部截断误差为111
()()N
n n n i i
i R y t y t h c k
++==--∑,其中12,,...N k k k 中的n y 都
换成()n y t 。
一级一阶R-K (Euler 方法)
1(,)n n n n y y hf t y +=+ 2
31''()()2
n n h R y t O h +=+
二级R-K
1112212
221()(,)
(,)
n n n n n n y y h c k c k k f t y k f t a h y a hk +=++⎧⎪
=⎨⎪=++⎩
最高阶数是二阶,需满足条件122210102
c c a c --=⎧⎪
⎨-=⎪⎩
33'42211()'''()''()()
n n n y a
a R h y t h y t f O h +=-++
四级R-K
经典R-K 方法(四阶)1
12341213
243(22)6
(,)11(,)2211(,)22
(,)
n n n n n n n n n n h y y k k k k k f t y k f t h y hk k f t h y hk k f t h y hk +⎧=++++⎪⎪
=⎪⎪⎪=++⎨⎪
⎪
=++⎪⎪=++⎪⎩
三、本章思考题
问题:使用数值解法求解初值问题时步长h 由什么决定 答:步长h 的选择应由两个条件决定: 1、要使求解过程绝对稳定
2、要使每个节点处的整体截断误差1+n ε按模不超过给定的界限。
四、本章测验题
题目:用梯形公式求得的近似解为22k
k h y h -⎛⎫
= ⎪+⎝⎭
证明:
梯形公式为()()1,1,1[]2
k k k k k k h
y y f x y f x y +++=+
+ 将(),f x y y =-代入上式,得:11()2
k k k k h
y y y y ++=+
-- 解得:
21
110222222k k k k h h h y y y y h h h ++----⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪
+++⎝⎭⎝⎭⎝⎭
因01y =,故22k
k h y h -⎛⎫= ⎪+⎝⎭。