常微分方程初值问题解法
- 格式:pptx
- 大小:442.94 KB
- 文档页数:36
常微分方程初值问题的数值解法在自然科学、工程技术、经济和医学等领域中,常常会遇到一阶常微分方程初值问题:(,),,(),y f x y a x b y a y '=≤≤⎧⎨=⎩ (1) 此处f 为,x y 的已知函数,0y 是给定的初始值。
本章讨论该问题的数值解法,要求f 在区域{(,)|,}G x y a x b y =≤≤<∞内连续,并对y 满足Lipschitz 条件,从而初值问题(1)有唯一的连续可微解()y y x =,且它是适定的。
1 几个简单的数值积分法1.1 Euler 方法(1)向前Euler 公式(显式Euler 公式)10(,),0,1,2,,(),n n n n y y hf x y n y y a +=+=⎧⎨=⎩(2) 其中h 为步长。
由此便可由初值0y 逐步算出一阶常微分方程初值问题(1)的解()y y x =在节点12,,x x 处的近似值12,,y y 。
该公式的局部截断误差为2()O h ,是一阶方法。
(2)向后Euler 公式(隐式Euler 公式)1110(,),0,1,2,,(),n n n n y y hf x y n y y a +++=+=⎧⎨=⎩(3) 这是一个隐格式,也是一阶方法。
这类隐格式的计算比显格式困难,一般采用迭代法求解。
首先用向前Euler 公式提供迭代初值,然后迭代计算:(0)1(1)()111(,),(,),0,1,2,n n n n k k n n n n y y hf x y y y hf x y k +++++⎧=+⎨=+=⎩ (4)1.2 梯形方法1110[(,)(,)],2(),(0,1,2,)n n n n n n h y y f x y f x y y y a n +++⎧=++⎪⎨⎪=⎩= (5) 这也是一个隐格式,是二阶方法。
一般也采用迭代法求解。
迭代公式如下:(0)1(1)()111(,),[(,)(,)],0,1,2,2n n n n k k n n n n n n y y hf x y h y y f x y f x y k +++++⎧=+⎪⎨=++=⎪⎩ (6)1.3 改进的Euler 方法11110(,),[(,)(,)],0,1,2,,2(),n n n n n n n n n n y y hf x y h y y f x y f x y n y y a ++++⎧=+⎪⎪=++=⎨⎪=⎪⎩(7) 为了便于上机编程计算,(7)可改写为110(,),(,),0,1,2,,1(),2(),p n n n cn n p n p c y y hf x y y y hf x y n y y y y y a ++=+⎧⎪=+⎪⎪=⎨=+⎪⎪=⎪⎩(8) 该格式是显式,也是二阶方法。
常微分方程的初值问题及其解法常微分方程是自然界中各种变化的基础模型,广泛应用于物理、工程、生物、经济学等领域。
初值问题是其中最基本的问题之一。
本文将从初值问题的意义入手,介绍几种不同的数值解法,并评价其优缺点。
1. 初值问题的意义首先,我们来看一个简单的例子。
假设有一个人从一楼的窗户往下跳,忽略空气阻力,我们可以列出他下落的物理规律:$$\frac{d^2h}{dt^2}=g$$其中$h$是跳下来后距离地面的高度,$t$是时间,$g$是常数,表示重力加速度。
上面这条式子就是一个二阶常微分方程。
我们的问题是,如果知道了他的初速度$v_0$和起始高度$h_0$,能否求得他下落到地面时的时间和高度。
这个例子中,$h$和$t$都是连续的量,但是我们并不能解析地求出$h(t)$的解析式,因此需要用数值方法去近似求解。
这就是初值问题的意义。
通常,初值问题是指某一初始时刻$t_0$的初值:$$y'(t_0)=f(y(t_0),t_0),\ y(t_0)=y_0$$其中$y$是未知函数,而$f$则是已知函数。
对于一阶常微分方程,这个条件是充分的,可以唯一地决定一个解。
但是对于更高阶的常微分方程,则需要多个初始条件才能确定一个解。
然而,这已经超出了本文的范畴,这里只讨论一阶常微分方程的初值问题。
2. 数值解法下面将介绍几种常见的数值解法。
2.1. 欧拉法欧拉法是最简单的数值解法之一,其思路是将初值问题离散化。
具体来说,我们可以将时间$t$分成若干个小段,每段的长度为$\Delta t$。
于是,我们可以将初始时刻$t_0$的初始值$y(t_0)=y_0$,并通过欧拉法近似计算下一个时间点$t_0+\Delta t$的值$y_1$:$$y_1=y_0+f(y_0,t_0)\Delta t$$同理,我们可以通过已知的$y_1$和$t_1=t_0+\Delta t$,计算下一个时间点$t_2=t_0+2\Delta t$的值$y_2$:$$y_2=y_1+f(y_1,t_1)\Delta t$$依此类推,直到我们得到一个目标时间$t_m$的值$y_m$。
解常微分方程初值问题
解常微分方程初值问题的一般步骤如下:
1.确定微分方程的阶数和自由度数,以及初始条件和边界条件。
2.根据微分方程的形式和初始条件,选择适当的求解方法,如分
离变量法、特征线法、拉格朗日插值法等。
3.运用所选方法求解微分方程,得出通解或特解。
4.根据初始条件确定特解,得出最终解。
下面以一阶常微分方程为例,详细说明解题过程:
例:求解初值问题
dy/dx = x^2, y(0) = 1
解:
1.这是一个一阶常微分方程初值问题,自由度数为1,初始条件
为y(0) = 1。
2.采用分离变量法,将微分方程转化为积分形式:
∫dy/y = ∫ x^2 dx
两边同时积分,得到:
ln |y| = x^3/3 + C1
3.为了确定特解,需要将初始条件带入微分方程中,得到:
ln |y(0)| = 0^3/3 + C1 = C1
因此,特解为:
y(x) = e^(x^3/3 + C1) = e^(x^3/3 + ln |y(0)|) = e^(x^3/3 + ln |1|) = e^(x^3/3)
4.最终解为:y(x) = e^(x^3/3)。
常微分方程初值问题的解法及应用常微分方程是数学中非常重要的一部分,它涉及了许多领域的模型建立和问题求解。
本文将介绍常微分方程初值问题的解法及其应用。
一、常微分方程初值问题的定义常微分方程初值问题是指给定一个常微分方程,以及它在某一点上的初始条件,求解该方程的解曲线。
通常,一个常微分方程初值问题可以表示为:y'(x) = f(x,y), y(x0) = y0,其中,y(x)是未知函数,f(x,y)是已知函数,y(x0) = y0是初始条件。
二、常微分方程初值问题的解法常微分方程初值问题的解法有多种,下面我们将介绍几种常用的方法。
1.欧拉法欧拉法是最简单的一种求解常微分方程初值问题的方法。
该方法基于初始条件,通过不断迭代计算得到近似解曲线。
具体步骤如下:步骤1:设定步长h,确定求解区间[x0, xn],计算步数n。
步骤2:初始化,即确定初始点(x0, y0)。
步骤3:根据方程dy/dx = f(x,y)和初始点(x0, y0),计算斜率k = f(x0, y0)。
步骤4:根据已知的斜率和步长h,计算下一个点的坐标(xi+1,yi+1)。
步骤5:重复步骤3和步骤4,直到达到步数n。
步骤6:得到近似解曲线。
2.改进的欧拉法(改进欧拉法)改进的欧拉法是对欧拉法的改进,其求解精度比欧拉法更高。
具体步骤如下:步骤1:设定步长h,确定求解区间[x0, xn],计算步数n。
步骤2:初始化,即确定初始点(x0, y0)。
步骤3:根据方程dy/dx = f(x,y)和初始点(x0, y0),计算斜率k1 =f(x0, y0)。
步骤4:根据已知的斜率k1和步长h/2,计算中间点的坐标(x0+h/2, y0+k1*h/2)。
步骤5:根据方程dy/dx = f(x,y)和中间点的坐标(x0+h/2, y0+k1*h/2),计算斜率k2= f(x0+h/2, y0+k1*h/2)。
步骤6:根据已知的斜率k2和步长h,计算下一个点的坐标(xi+1,yi+1)。
常微分方程初值问题的解法随着科技的不断进步和人类社会的不断发展,工程技术和科学技术的发展已经成为推动社会进步的重要力量,而数学则是工程技术和科学技术的基础和支撑,常微分方程作为数学分支的重要组成部分,对于理论研究和实际应用都有着深远的影响。
在实际工程中,解决常微分方程初值问题是数学理论在抽象式运算与工程实践之间的重要桥梁。
本文将介绍常微分方程初值问题的概念、求解方法以及实际应用。
一、常微分方程初值问题的概念常微分方程是指未知函数一阶或高阶微商与自变量和常数的关系式,常微分方程初值问题是指在初值u(x0)=u0已知的情况下,确定函数u(x)的解的问题。
在初值问题中,自变量是独立变量,取值范围可以是任意实数,因变量是函数值,是依赖自变量而实现的数值,常数是影响函数变化的一些固定参数。
常微分方程模型经常出现在工程技术模型中,一些实际应用场景可以通过建立数学模型来进行求解。
二、常微分方程初值问题的解法常微分方程初值问题的解法大致可以分为两种,一种是解析解法,即直接利用微积分学知识对方程进行求解;另一种是数值解法,即采用数值方法对方程进行数值计算求解。
下面将分别介绍这两种方法的解法原理。
1. 解析解法解析解法是指通过数学工具对函数解析表达式进行研究,以求出常微分方程的解。
该方法的先决条件是对方程具有严格的内部结构和特殊的形式,只有在特殊情况下才能找到一些特解。
这种方法的难点在于方程方程形式和初始条件可能存在巨大的数学难度,解析解的求解需要求解一些解析式的积分、微分和级数。
往往只有在一些特殊情况下,解析解法才能一般性的解决问题,因此该方法的适用场景相对较少。
2. 数值解法数值解法是指通过数值计算的方法,通过有限个代数运算和计算机模拟的方法得出方程的解。
数值解法的优点是具有广泛的适用性,可以有效地求解各种类型的常微分方程初值问题,使得无法通过解析方法求解的问题也可以得到解答。
数值解法可分为无条件稳定和条件稳定两种情况,前者是指方法不会出现不稳定结果的情况,而后者则保证了方法收敛性的同时,存在一定的条件限制。
常微分方程初值问题数值解法初值问题:即满足初值条件的常微分方程的解y′=f(x,y),x∈[x0,b]y(x0)=y0.定理1(利普希茨条件)若存在正数L,使得对任意,y1,y2,有|f(x,y1)−f(x,y2)|≤L|(y1−y2)|定理2(解存在性)①若函数f在方区域x∈[a,b],y∈R连续,②函数f关于y 满足利普希茨条件,则对任意x∈[a,b],常微分方程存在唯一的连续可微数值解.两类问题:①单步法---计算下一个点的值yn+1只需要用到前面一个点的值yn②多步法---计算下一个点的值yn+1需要用到前面l个点的值yl1、欧拉法---下一个点的计算值等于前一个点的计算值加上步长乘以前一个点的函数值•具体过程一些批注:显式欧拉方程指下一步要计算的值,不在迭代方程中;隐式欧拉方程指下一步要计算的值,在迭代方程中。
怎么计算隐式欧拉方程----要借助显示欧拉迭代计算---一般用迭代法-----迭代---将微分方程在区间[xn,xn+1]进行积分,然后函数f进行近似,即可得到迭代方程-----迭代方程收敛性?由函数关于y满足利普希茨条件,可以推出迭代公式收敛。
•局部截断误差:假设前n步误差为0,我们计算第n+1步的误差,将次误差称为局部截断误差,且局部误差为O(hp+1)•p阶精度:由理论证明:若局部误差阶的时间复杂度为O(hp+1),则整体误差阶为O(hp)我们称公式精度为p。
•显示欧拉法与隐式欧拉法•梯形方法----将显式欧拉迭代方程与隐式欧拉迭代方程做一下加权平均,构造的计算公式.•改进的欧拉方法---思想:因为梯形公式是隐式公式,将显式欧拉公式对下一步的计算值进行预估,用梯形公式对下一步的计算值进行校正.2、龙格-库塔方法思想:根据Lagrange中值定理,下一次的计算值可以用前一次的计算值加上h乘以前一个点的斜率;而这个斜率用该区间上的多个点的斜率的算数平均来逼近。
注意:怎么计算任意斜率Ki?第i个点的斜率Ki有微分方程可以算出f′=f(xn,yn)所以要算的f(xn,yn)值,由欧拉法即可算出, yn+1=yn+hf′•2阶-龙格-库塔方法----类似改进的欧拉法根据Lagrange中值定理,下一次的计算值可以用前一次的计算值加上h乘以斜率;而这个斜率用区间上的端点和中点的斜率的算数平均来逼近。