cre_loxp基因敲除系统解读ppt课件
- 格式:ppt
- 大小:1.18 MB
- 文档页数:18
基因打靶基因打靶包括:胚胎干细胞的获得和培养、打靶载体的构建、重组ES细胞的筛选、嵌合体小鼠的制备、基因敲除小鼠的建立、Cre-loxP系统、FLP/FRT系统和条件性基因敲除、基因敲入和大规模ES细胞突变库的建立。
基本概念:1.基因打靶:是利用同源重组技术来定点改变物种的基因组顺序和结构,从而在突变的个体内来研究基因及基因组的功能。
2.基因敲除:是使用基因组中某个/某几个基因或基因的顺式元件产生缺陷,从而在突变体内。
3.丧生正常的功能,来推测这些基因或元件原来在体内的功能。
基因敲入:在个体基因组中定点加入某个/某几个基因或顺式元件,使之表达或发挥作用,从而研究该基因或顺式元件在体内的功能。
4.基因打靶技术是一种定向改变生物活体遗传信息的实验手段。
它的产生和发展建立在胚胎干细胞技术和同源重组技术成就的基础之上,并促进了相关技术的进一步发展。
自1987年早期胚胎干细胞技术建立及第一例基因剔除小鼠诞生以来,基因打靶的研究进展迅速,给现代生物学和医学研究带来了革命性的变化,并直接引发了现代生物学和医学研究各个领域中许多突破性的进展,成为后基因组时代研究基因功能最直接和最有效的方法之一。
一、胚胎干细胞的获得和培养基因打靶中用的小鼠ES细胞系有:D3、E14、R1、J1、CCE,均来源于129小鼠品系和其杂交品系(因为这类小鼠具有自发突变形成畸胎瘤和畸胎肉瘤的倾向,是基因敲除的理想实验动物)。
ES 623和B6-IIIES细胞系,来源于C57BL/6小鼠品系。
BALB/c-I,来源于BALB/c小鼠品系。
常用的饲养层细胞为PMEF(小鼠原代胚成纤维细胞。
PMEF需6 Gy的X 射线照射或丝裂霉素C处理细胞抑制生长后才能用作饲养细胞)。
建立ES细胞的过程中,最好采用只传了2-3代的原代小鼠胚胎成纤维细胞作为饲养细胞,所取得的ICM(内细胞团)只有10%-30%的几率建立ES细胞系。
一旦ES 克隆被确定,接下来应该考虑检查ES细胞的核型。
Cre-loxp系统Cre-lox系统介绍及使⽤汇总由于Cre-lox系统具有操作简单、重组率⾼的优点,如今已经成为体内外遗传操作的强有⼒⼯具。
利⽤Cre-lox系统,可以在特定细胞、组织或整个⽣物体,甚⾄在特定时间点敲除或表达某个基因,实现对特定基因的时空特异性操作,这对基因功能的研究和⼈类疾病动物模型的建⽴都具有深刻影响。
1.什么是Cre-lox系统?从名字就能知道这套系统的两个主要组成部分:(1)Cre重组酶环化重组酶(Cre,cyclizationrecombinase),是酪氨酸位点特异性重组酶之⼀,能催化两个DNA 识别位点之间的位点特异性重组。
Cre重组酶来源于P1噬菌体,由343个氨基酸组成,能特异性地识别Lox位点。
除Cre以外,此类重组酶还有Flp(flipase)和Dre(D6特异性重组酶)。
(2)Lox位点Cre重组酶识别的回⽂DNA位点,也叫loxP(locusofX-overP1)位点,长34bp,其特征结构为ATAACTTCGTATA?-NNNTANNN-TATACGAAGTTAT。
两边反向互补的13个碱基为Cre重组酶的识别序列,中间的8个碱基为重组发⽣位置,这也决定了loxP的⽅向。
N表⽰可变碱基,不同的碱基选择可形成不同的Lox位点,除了野⽣型loxP,常见的还有Lox2272,Lox511,Lox5171等等,这些突变Lox位点也能被Cre重组酶识别,但是只有两个序列相同的Lox位点之间才能发⽣重组。
在同⼀个DNA分⼦上,根据Lox位点的位置与⽅向,可能会发⽣3种不同的重组事件:(1)切除:当两个Lox位点在同⼀染⾊体上且⽅向相同时,将切除同向Lox位点之间的DNA序列(也叫Lox侧翼序列,Flox序列)。
(2)反转:当两个Lox位点位于同⼀染⾊体上且⽅向相反时,两个Lox位点之间的序列发⽣序列反转,即颠倒。
(3)易位:如果两个Lox位点位于不同的染⾊体上且⽅向相同,则易位事件将导致DNA ⽚段的交换。
条件性基因敲除的“时空开关”——Cre-loxP系统介绍基因敲除小鼠是我们研究基因功能必不可少的利器,主要分为全身性基因敲除和条件性基因敲除。
然而,全身性基因敲除的小鼠存在着无法忽视的缺陷,例如:不能特异性地研究特定基因在特定组织内(及特定的时间)的功能;全身性基因敲除小鼠有时因某些基因对胚胎发育的影响而无法正常分娩;或因出生后严重的生理缺陷而过早死亡;或不能产生后代而不能获得纯合子动物模型。
因此,条件性基因敲除小鼠虽然有周期长、费用高、需要配合特定工具鼠使用等劣势,但仍获得了越来越多的选择与喜爱。
今天,就和大家一起来了解下条件性基因敲除方法必用的Cre-loxP重组系统以及应用Cre-loxP进行条件性基因敲除的原则。
概述Cre-loxP重组系统,即对一段特定的DNA序列进行定位并用Cre 重组酶对其进行剪接,由Cre重组酶和loxP位点两部分组成。
其中Cre蛋白,最初由“导致重组(Cause recombination)”命名,也有文献命名为“环化重组酶(Cyclizationrecombinase)”。
Cre重组酶(CyclizationRecombination Enzyme)由大肠杆菌噬菌体P1的Cre基因编码,是由343个氨基酸组成的38kD的蛋白质。
它不仅具有催化活性,而且与限制酶相似,能够特异性识别loxP位点, 从而重组或删除loxP片段间的基因。
loxP(Locus Of X-over P1)是P1噬菌体基因组中34bp的特殊位点序列,包括两个13bp的反向重复序列和一个8bp的间隔区域。
其中,反向重复序列是Cre重组酶的特异识别位点,而间隔区域决定了loxP位点的方向,间隔区中的“N”代表这个碱基是可变的:发展历史1985年,R H Hoess, K AbremskiCre-Lox首次发表了大肠杆菌噬菌体P1的Cre-lox位点特异性重组系统的断裂和交换机制文章。
1987年,Brian Sauer博士把大肠杆菌噬菌体P1的Cre-lox位点特异性重组系统在酿酒酵母中即真核系统中进行了功能表达,提出了Cre介导的位点特异性重组可能是调节真核生物基因组重排的有用工具的预想。
cre-loxp系统在大脑特定区域进行基因敲除的原理
Cre-LoxP系统是一种常用的基因敲除技术,常用于研究大脑特定区域基因敲除的原理。
它包括两个主要组分:Cre重组酶和LoxP位点。
Cre重组酶是一种DNA重组酶,它能够识别特定DNA序列LoxP(locus of X-over P1)位点,并在其周围催化DNA重组反应。
LoxP位点是一种具有特定核苷酸序列的DNA序列,通常包含两个反向定向的LoxP序列,这两个序列之间有一个区域。
在基因敲除实验中,Cre重组酶的表达会受到特定的基因启动子的调控,使其仅在特定的大脑区域表达。
当Cre重组酶表达之后,它会识别并结合LoxP位点,在这两个反向定向的LoxP序列之间催化DNA重组反应。
该DNA重组反应会导致LoxP序列之间的DNA片段从基因组中被剪切掉,从而导致基因的敲除。
被敲除的基因序列会在细胞复制和分裂过程中丢失,从而使得特定基因在该细胞及后代细胞中无法表达。
通过在特定大脑区域表达Cre重组酶,并在这些区域中携带包含LoxP位点的基因组,在Cre-LoxP系统的作用下,研究人员可以实现特定大脑区域的基因敲除,从而研究该基因在该区域中的功能。