最新梁弯曲时横截面上的正应力教程文件
- 格式:doc
- 大小:4.86 MB
- 文档页数:4
单一材料梁的弯曲正应力实验一、实验目的1.用电测法测量单一材料的矩形截面梁在纯弯曲状态时其横截面上正应力的大小及分布规律,并与理论计算值比较,从而验证梁的弯曲正应力理论公式。
2.初步掌握电测法原理和静态电阻应变仪的使用方法。
二、预习思考要点1.本实验装置是如何实现使梁的某一区段处于纯弯曲状态的?2.梁处于纯弯曲状态时其内力分布有何特征?3.梁处于纯弯曲状态时,若要测取其上某一点的线应变为何只需在该点布设一枚应变计,且平行于梁的轴线方向?三、实验装置和仪器1.纯弯曲实验装置本实验采用低碳钢或中碳钢制成的矩形截面梁,测试其正应力分布规律的实验装置如图1-26(a)所示,所加的砝码重量通过杠杆以一定的放大比例作用于加载辅梁的中央,设作用于辅梁中央的载荷为F,由于载荷对称,支承条件对称,则通过两个挂杆作用于待测梁上C、D处的载荷各为F/2。
由待测梁的内力图可知CD段上的剪力Q=0,弯矩为一常量M=2aF ,即梁的CD段处于纯弯曲状态。
图1-26 弯曲正应力实验装置及试样贴片位置图2.静态电阻应变仪3.游标卡尺、钢直尺四、实验原理由于矩形截面梁的CD段处于纯弯曲状态,当梁发生变形其横截面保持平面的假设成立,又可将梁视作由一层一层的纵向纤维叠合而成且假设纵向纤维间无挤压作用,此时纯弯曲梁上的各点处于单向应力状态,且弯曲正应力的方向平行于梁的轴线方向,所以若要测量纯弯曲状态下梁的横截面上的正应力的分布规律,可在梁的CD 段任一截面上沿不同高度处平行于梁的轴线方向布设若干枚电阻应变计,为简便计算,本实验的布片方案如图1-26(b )所示,一枚布设在梁的中性层上,其余四枚分别布设在距中性层h/4或h/2处(h 为梁矩形截面的高度),此外还布设了一枚温度补偿片。
当梁受载后,电阻应变计随梁的弯曲变形而产生伸长或缩短,使自身的电阻改变。
通过力学量的电测法原理,利用电阻应变仪即可测出梁横截面上各测点的应变值ε实。
由于本实验梁的变形控制在线弹性范围内,所以依据单向虎克定律即可求解相应各测点的应力值,即σ实=E ·ε实,E 为梁材料的弹性模量。
一、实验目的1. 通过实验,了解梁在弯曲状态下的应力分布规律;2. 验证梁的弯曲正应力计算公式的准确性;3. 掌握应变电测法的基本原理和操作方法;4. 培养学生严谨的实验态度和科学的研究方法。
二、实验原理梁在弯曲状态下,其横截面上各点的正应力可以用以下公式计算:\[ \sigma = \frac{M y}{I_z} \]其中,\(\sigma\) 为正应力,\(M\) 为弯矩,\(y\) 为梁横截面上某点到中性轴的距离,\(I_z\) 为梁截面对中性轴的惯性矩。
实验中,通过测量梁横截面上不同位置的应变,根据虎克定律,可计算出相应位置的应力。
实验装置主要包括梁、应变片、静态数字电阻应变仪等。
三、实验仪器与设备1. 梁材料:矩形截面试件,尺寸为 \(b \times h\);2. 应变片:电阻应变片,用于测量梁横截面上的应变;3. 静态数字电阻应变仪:用于测量应变片输出的电阻变化,从而计算出应变;4. 加载装置:用于对梁施加弯矩;5. 游标卡尺:用于测量梁的尺寸;6. 计算器:用于计算实验数据。
四、实验步骤1. 准备实验装置,包括梁、应变片、应变仪等;2. 将应变片粘贴在梁的预定位置,确保应变片与梁表面紧密贴合;3. 接通应变仪电源,调整应变仪的量程和灵敏度;4. 使用游标卡尺测量梁的尺寸,记录数据;5. 在梁上施加预定的弯矩,确保梁处于弯曲状态;6. 使用应变仪测量梁横截面上不同位置的应变,记录数据;7. 根据实验数据和应变片的位置,计算出梁横截面上不同位置的应力;8. 比较实验测得的应力与理论计算值,分析误差原因。
五、实验结果与分析1. 实验数据:表1:梁横截面上不同位置的应变测量值| 测点位置 | 应变值(με) || -------- | ------------ || A点 | 120 || B点 | 100 || C点 | 80 || D点 | 60 |表2:梁横截面上不同位置的应力计算值| 测点位置 | 应力值(MPa) || -------- | ------------ || A点 | 12.00 || B点 | 10.00 || C点 | 8.00 || D点 | 6.00 |2. 结果分析:通过实验数据与理论计算值的比较,可以看出,在梁的弯曲状态下,应力在梁横截面上呈线性分布。
等直梁纯弯曲时横截面上正应力的分布规律下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!等直梁纯弯曲时横截面上正应力的分布规律引言在工程力学中,等直梁的弯曲是一种常见的载荷形式。
实验三 直梁弯曲正应力测定实验指导书一、实验目的1、用电测法测定直梁纯弯曲时的正应力分布,并与理论计算结果进行比较,以验证弯曲正应力公式。
2、了解电阻应变测量的原理,初步掌握静态电阻应变仪的使用方法。
二、实验设备和器材 1、万能试验机或弯曲试验台 2、加力装置3、电阻应变仪4、预调平衡箱5、游标卡尺6、钢制矩形截面直梁(已贴好电阻应变片)试件(梁)付梁蝶形螺母杠杆砝码砝码托三、实验原理1、试样的制备:用矩形截面钢梁,在其横截面高度上等距离地沿梁的轴线方向粘贴5—7枚电阻应变片。
2、弯曲正应力的测量原理:梁纯弯曲时,横截面上的正应力σ在理论上沿梁的高度成线性分布,其计算公式为z I y M ⋅=σ式中,σ的单位为MPa ;M 为梁横截面上的弯矩,单位为N ·mm ;y 为应力σ所在的点到中性轴的距离,单位为mm ;I z 为横截面对中性轴z 的面积二次矩,单位为mm 4。
面积二次矩对于矩形截面按下式计算123bh I z =式中,b 为梁横截面的宽度,单位为mm ;h 为梁横截面的高度,单位为mm 。
令使载荷P 对称地加在矩形截面直梁上(如图所示)。
这时,梁的中段将产生纯弯曲。
若载荷每增加一级p ∆(用增量法),则可由电阻应变仪测出梁中段所贴应变片各点的纵向应变增量ε∆,根据虎克定律求出各点实测正应力增量σ实为σ实=E ε∆此值与理论公式计算出的各点正应力的增量即σ理=ZI My∆ 进行比较,就可验证弯曲正应力公式。
这里,弯矩增量2paM ∆=∆。
梁上各点的应变测量,采用半桥接线,各工作应变片共用一个温度补偿块。
四、实验步骤1.准备试样。
如图所示,测量试样的高度h 、宽度b ,以及试样各测量点的坐标y ;。
将试样放在试验机活动台的支座上,布置成纯弯曲梁,测量梁的跨度l 及加载梁的支点到支座的距离a 。
2.准备应变仪。
把梁上各测量点的应变片(工作应变片)按编号逐点接到预调平衡箱A 、B 接线柱上,将温度补偿片接到预调平衡箱上任一工作应变片所在列的B 、C 接线柱上作公共补偿,此时C 排接线柱应用金属连接片或导线连接起来。
梁的弯曲正应力实验一、实验目的1.测定梁承受纯弯曲时横截面上的正应力的大小及分布规律,并与理论计算结果进行比较,以验证梁的弯曲正应力公式。
2.了解电测法,练习电阻应变仪的使用。
二、实验设备和仪器1.万能材料试验机或梁弯曲实验台2.电阻应变仪,预调平衡箱3.游标卡尺,直尺4.矩形截面钢梁(已贴好电阻应变片)三、实验原理图3--16(a)梁弯曲实验台加载及测量图3—16(b) 万能试验机加载及测量试件选用矩形截面梁,加载方法及测量点的布置如图3—16(a)、(b)所示。
图3--16(a)为弯曲实验台装置示意图。
试件选用矩形截面梁,加载方法测量点的布置如图3-16(a)、(b)所示。
图3—16(b)为将梁放在万能试验机上加载实验情况。
梁受集中载荷P作用后使梁的中段为纯弯曲区域,两端为剪切弯曲区域。
载荷作用于纵向对称平面内,而且在弹性极限内进行实验。
故为弹性范围内的平面弯曲问题。
梁纯弯曲时横截面上的正应力计算公式为上式说明在梁的横截面上的正应力是按直线规律分布的。
以此为依据,在梁的纯弯曲区段内某一横截面处按等分高度布置5~7个测点。
各测点将沿着梁的轴向贴上电阻应变片(一般事先贴好)。
当梁承受变形时,各测点将发生伸长或缩短的线应变。
通过应变仪可依次测出各测点懂得线应变值。
从而确定横截面上应变的分布规律。
由于截面上各点处于单向应力状态下,可由虎克定律求出实验应力为式中,E为梁所用材料的拉压弹性模量。
本实验采用“等间隔分级增量法”加载,每增加等量的载荷△P,测定各测点相应的应变增量一次,取各次应变增量的平均值△,求出各测点的应力增量△为把△与理论公式计算出的应力增量△=△M·y /I Z进行比较,从而验证弯曲正应力公式的正确性。
四、实验方法和步骤1.测量梁的横截面尺寸及各测点距中性轴的距离。
2.正确安装已贴好应变片的钢梁,保证平面弯曲,检查两边力到作用点到支点的距离(即图3—16中的a值)是否相等。
《机械设计基础》课程单元教学设计单元标题:梁弯曲时横截面上的应力及强度计算单元教学学时 2在整体设计中的位置第16次授课班级上课地点教学目标能力目标知识目标素质目标能利用强度计算条件进行承载能力计算1.掌握应力计算公式2.掌握强度计算条件1.培养学生热爱本专业、爱学、会学的思想意识。
2.培养学生应用理论知识分析和解决实际问题的能力;3.培养学生的团队合作意识;4.培养学生仔细、认真、严谨的工作态度。
能力训练任务及案例任务:能利用强度计算条件进行承载能力计算教学材料1.教材2.使用多媒体辅助教学单元教学进度步骤教学内容教学方法学生活动工具手段时间分配1复习、导入复习总结:弯曲变形截面上剪力和弯矩的求法,剪力图、弯矩图的绘图步骤。
导入:梁弯曲时横截面上的应力及强度计算。
提问讲授讨论回答黑板课件视频5分钟2设置情景提出问题简支矩形截面木梁如图所示,L=5m,承受均布载荷q=3.6kN/m,木材顺纹许用应力[σ]=10MPa,梁截面的高宽比h/b=2,试选择梁的截面尺寸。
问题探究问题引领听讲思考黑板、ppt5分钟一.纯弯曲概念:1.纯弯曲:平面弯曲中如果某梁段剪力为零,该梁段称为纯弯曲梁段。
2.剪切弯曲:平面弯曲中如果某梁段剪力不为零(存在剪力),该梁段称为剪切弯曲梁段。
二.纯弯曲时梁的正应力:1.中性层和中性轴的概念:中性层:纯弯曲时梁的纤维层有的变长,有的变短。
其中有一层既不伸长也不缩短,这一层称为中性层。
中性轴:中性层与横截面的交线称为中性轴。
10分钟3讲授新知提供咨询2.纯弯曲时梁的正应力的分布规律:以中性轴为分界线分为拉区和压区,正弯矩上压下拉,负弯矩下压上拉,正应力成线性规律分布,最大的正应力发生在上下边沿点。
3、纯弯曲时梁的正应力的计算公式:(1).任一点正应力的计算公式:(2).最大正应力的计算公式:其中:M---截面上的弯矩;I Z---截面对中性轴(z轴)的惯性矩; y---所求应力的点到中性轴的距离。
74实验四 纯弯曲梁正应力实验一、实验目的1、测定矩形截面梁在纯弯曲时的正应力分布规律,并验证弯曲正应力公式的正确性;2、学习多点静态应变测量方法。
二、仪器设备1、纯弯曲梁实验装置;2、YD-88型数字式电阻应变仪;3、游标卡尺。
三、试件制备与实验装置1、试件制备本实验采用金属材料矩形截面梁为实验对象。
为了测量梁横截面上正应力的大小和它沿梁高度的分布规律,在梁的纯弯段某一截面处,中性轴和以其为对称轴的上下1/4点、梁顶、梁底等5个测点沿高度方向均匀粘贴了五片轴向的应变计(如图4-4-1),梁弯曲后,其纵向应变可通过应变仪测定。
图4-4-12、实验装置如图4-4-2和图4-4-3所示,将矩形截面梁安装在纯弯曲梁实验装置上,逆时针转动实验装置前端的加载手轮,梁即产生弯曲变形。
从梁的内力图可以发现:梁的CD 段承受的剪力为0,弯矩为一常数,处于“纯弯曲”状态,且弯矩值M=21P •a ,弯曲正应力公式 σ=z yI ⋅M可变换为σ=y az⋅P ⋅I 2图4-4-2图4-4-37576四、实验原理实验时,通过转动手轮给梁施加载荷,各测点的应变值可由数字式电阻应变仪测量。
根据单向胡克定律即可求得σi 实=E ·εi 实(i=1,2,3,6,7)为了验证弯曲正应力公式σ=z y I ⋅M 或σ=y az⋅P ⋅I 2的正确性,首先要验证两个线性关系,即σ∝y 和σ∝P 是否成立:1、检查每级载荷下实测的应力分布曲线,如果正应力沿梁截面高度的分布是呈直线的,则说明σ∝y 成立;2、由于实验采用增量法加载,且载荷按等量逐级增加。
因此,每增加一级载荷,测量各测点相应的应变一次,并计算其应变增量,如果各测点的应变增量也大致相等,则说明σ∝P 成立。
最后,将实测值与理论值相比较,进一步可验证公式的正确性。
五、实验步骤1、试件准备用游标卡尺测量梁的截面尺寸(一般由实验室老师预先完成),记录其数值大小;将梁正确地放置在实验架上,保证其受力仅发生平面弯曲,注意将传感器下部的加力压杆对准加力点的缺口,然后打开实验架上测力仪背面的电源开关;2、应变仪的准备 a.测量电桥连接:图4-4-4如图4-4-4,为了简化测量电桥的连接,将梁上5个测点的应变计引出导线各取出其中一根并联成一根总的引出导线,并以不同于其他引出导线的颜色区别,所以,测量导线由原来的10根缩减为6根,连接测量电桥时,将颜色相同的具有编号1、2、3、6、7的五根线分别连接在仪器后面板上五个不同通道的A号接线孔内,并将具有特殊颜色的总引出导线连接在仪器后面板上的“公共补偿片BC”位置的B号接线孔内。
实验五 纯弯曲梁的正应力实验一、实验目的1、测定梁在纯弯曲时横截面上正应力大小和分布规律。
2、验证纯弯曲梁的正应力计算公式。
3、测定泊松比μ。
4、测量矩形截面梁在纯弯曲时最大应变值,比较和掌握运用不同组桥方式时提高测量灵敏度的方法。
二、实验设备1、材料力学组合实验台;2、电阻应变测力仪;三、实验原理和方法1、测定弯曲正应力 在纯弯曲条件下,根据平面假设和纵向纤维间无挤压的假设,可得到梁横截面上任一点的正应力计算公式为M =y zI σ (1)式中:M 为弯矩;I z 为横截面对中性轴的惯性矩;y 为所求应力点至中性轴的距离。
由上式可知,在弹性范围内,沿横截面高度,正应力按线性规律变化,其最大正应力产生在上下边缘,为max zMW σ=(2) W z 称为抗弯截面系数。
实验采用1/4桥公共补偿测量方法,加载采用增量法,载荷从100N 开始,每次增加700 N ,测出各点的应变增量ε∆,然后分别取各点应变增量的平均值ε∆实i ,依次求出各点的应力增量σ∆实i =E ε∆实i (3)四、实验步骤1.设计好本实验所需的数据表格;2.测量矩形截面梁的宽度b 和高度h 、载荷作用点到梁支点距离a 及各应变片到中性层的距离y i.3.拟定加载方案。
根据实验要求适当选取初载0100F N =,然后按照步长700N 分级加载,加到最大的载荷max 3600F N =。
4.根据加载方案,调整好实验加载装置。
5.按照实验要求接线(1/4桥),调整好电阻应变仪,检查整个系统是否处于正常工作状态;5.加载。
用均匀慢速加载至初载荷0100F N =,记下各点电阻应变仪得初读数,然后按照步长700F N ∆=分级加载,依次记录各点电阻应变片的应变度数,直到3600N 为止;6.完成全部试验内容后,卸掉载荷,关闭电源,整理所用仪器、设备,清理实验现场,将所有仪器设备复原。
五、实验结果处理1、 基本参数L=670 a=160 y 1=12.5 y 2=25 k=2.18 b=20 h=50 E=206Gpa2、原始数据在不同载荷作用下,六个应变片输出应变读数如表(a )所示。
梁弯曲时横截面上的正应力
在确定了梁横截面的内力之后,还需要进一步研究横截面上的应力与截面内力之间的定量关系,从而建立梁的强度设计条件,进行强度计算。
1、纯弯曲与横力弯曲
从火车轴的力学模型为图2-53a所示的外伸梁。
画其剪力、弯矩图(见图2-53b、c),在其AC、BD段内各横截面上有弯矩M和剪力同时存在,故梁在这些段内发生弯曲变形的F
Q
同时还会发生剪力变形,这种变形称为剪力弯曲,也称为横力弯曲。
在其CD段内各段截面,
,梁的这种弯曲称为纯只有弯矩M而无剪力F
Q
弯曲。
2、梁纯弯曲时横截面上的正应力
如图2-54a所示,取一矩形截面梁,弯曲前在其表面两条横向线m—m和n—n,再画两条纵向线a—a和b—b,然后在其两端外力偶矩M,梁将发生平面纯弯曲变形(见图2-54b)。
此时可以观察到如下变形现象:
⑴横向线m —m 和n —n 任为直线且与正向线正交,但绕某点相对转动了一个微小角度。
⑵纵向线a —a 和b —b 弯成了曲线,且a —a 线缩短,而b —b 线伸长。
由于梁内部材料的变化无法观察,因此假设横截面在变形过程中始终保持为平面,这就是纯梁弯曲时的;平面假设。
可以设想梁由无数条纵向纤维组成,且纵向纤维间无相互的挤压作用,处于单向受拉或受压状态。
从图2-54b 中可以看出,;梁春弯曲时,从凸边纤维伸长连续变化到凹边纤维缩短,期间必有一层纤维既不伸长也不缩短,这一纵向纤维层称为中性层(见图2-54c )。
中性层与横截面的交线称为中性轴。
梁弯曲时,横截面绕中心轴绕动了一个角度。
由上述分析可知,矩形截面梁弯曲时的应力分布有如下特点:
⑴中性轴的线应变为零,所以其正应力也为零。
⑵距中性轴距离相等的各点,其线应变相等。
根据胡克定律,它们的正应力也必相等。
⑶在图2-54b 所示的受力情况下,中性轴上部分各点正应力为压应力(即负值),中性轴下部分各点正应力为拉应力(即正值)。
⑷横截面上的正应力沿y 轴呈线性分布,即ky =σ(k 为特定常数),如图2-55、图2-56所示。
最大正应力(绝对值)在离中性轴最远的上、下边缘处。
由于距离中性层上、下的纵向纤维的线应变与到中性层的距离y 成正比,当其正应力不超过材料的比例极限时,由胡克定律可知
y E
y E E •=•=•=ρρεσ
2-24 对于指定的横截面,ρE
为常数(即为上述k 的值)看,由于此时梁轴线的曲率
半径ρ还是一个未知量,通过静力学平衡关系∑z F )(=0,可得
图2-55 正应力分布图
图2-56 梁纯弯曲时横截面上的内力和应力
⎰=A M ydA σ
2-25 将公式(2-24)代入(2-25),得
M dA y E
dA y E
A A ==⎰⎰22ρρ
令
dA y I A
z ⎰=2 为截面对中性轴z 轴的轴惯性矩)(4mm ,则
z EI M =ρ
1 这是研究梁变形的一个基本公式,式中z EI 称为梁的抗弯刚度。
将公式(2-26)代入(2-24),即得到梁在纯弯曲时截面上任一点处的正应力计算公式:
z
I My =σ 为计算梁横截面上的最大正应力,可定义抗弯截面系数m ax y I W z z =
,则式(2-27),可写作:
z W M =
max σ 式中 M ——截面上的弯曲(N ·mm );
W z——抗弯截面系数(mm3).
I z 和W z 是仅与截面几何尺寸有关的量,常用型钢的I z 和W z 可在有关
设计手册中查得。
式(2-27)和(2-28)是由梁受纯弯曲变形推导出的,但只要梁具有纵向对称面,且载荷作用在其纵向对称面内,梁的跨度又较大的,横力弯曲也可以应用上述两式。
当梁横截面上的最大应力大于材料的比例极限时,公式不在适用。
3、惯性矩和抗弯截面系数的计算
梁常见横截面的I z 、W z 计算公式表2-2。